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Abstract—Network Function Virtualization (NFV) is a promis-
ing technique to greatly improve the effectiveness and flexibility
of network services through a process named Service Function
Chain (SFC) mapping, with which different network services
are deployed over virtualized and shared platforms in data
centers. However, such an evolution towards software-defined
network functions introduces new challenges to network services
which require high availability (HA), especially when catastrophic
failures happen, such as earthquake and power outage, which
may bring a whole data center down. One effective way of
protecting the network services from such failures is to use
sufficient redundancy, and in particular geographic redundancy
so that when the primary VMs in a failed data center go
down, the backup VMs deployed at another location can assume
the role of the primary. In doing so, however, the efficiency
of physical resources may be greatly decreased. To address
such issue, this paper defines availability-aware SFC mapping
problem and presents a novel online algorithm that can mini-
mize the physical resources consumption while guaranteeing the
required HA within polynomial time. Theoretically, we prove
the intractability of the problem and our backup VNFs picking
approximation algorithm can achieve a normalized relative error
of ((e− 1) ×AE(OPT ) + AE(Ø)) /e, where AE(OPT ) and
AE(Ø) are the availabilities with an optimal backup solution
and without backups, respectively. Simulation results show that
our proposed algorithm can significantly improve SFC request
acceptance ratio and reduce resource consumption.

I. INTRODUCTION

Network Function Virtualization (NFV) is a driving force
behind implementing network functions such as deep packet
inspection (DPI) and PDN gateway (PGW) in software-based
processing functions that run on the standardized commodity
storage, servers and switches. NFV enables a virtualized and
shared platform that can significantly reduce the hardware cost
and investment, as well as greatly improve the efficiency and
flexibility of utilizing physical hardware resources. Since NFV
can bring benefits in terms of manageability and flexibility
for service providers, many of them are starting to put this
technology into practice. One motivating case is the AT&T
Integrated Cloud (AIC), which are basically data centers where
virtualized functions can be run on common off-the-shelf
hardware platform. According to [1], 29 AIC nodes have been
deployed across the US, and at least 40 more nodes will be
added by the end of this year. By the end of 2020, they plan
to virtualize 75 percent of their massive network. Network

functions are deployed on the shared platform through a
process called Service Function Chain (SFC) mapping defined
by current standardization efforts [3]–[5]. A SFC consists of
a set of Virtual Network Functions (VNFs) interconnected by
logical links. Multiple SFCs from distinct clients may share
the computing and networking resources in order to improve
the resource utilization. For service providers, it is essential
to find an optimal mechanism for such SFC mapping so that
physical resources can be efficiently used.

However, software-based network functions introduce
unique availability challenges to future networks. Managing
availability usually implies a service recovery mechanism after
faults are detected. Traditional ways of improving availability
by utilizing diversity may no longer work since we use uniform
platform architecture in NFV.

Ensuring availability in multisite scenario, which refers
to the cases when VNFs are deployed on multiple Virtual
Infrastructure Managers (VIMs), is especially important and
challenging. In particular, virtual machines (VMs) used for
a service chain may be distributed at geographically differ-
ent locations for some practical reasons [2], [3]. However,
when catastrophic failures such as flood, earthquake and
propagating software faults happen at one site, there can be
serious consequences. Recently, several services of Amazon
and Google suffered outages due to software problems spanned
over the whole data center and lightening in the US and
Europe respectively [6], [7]. In NFV, as network functions
are virtualized and run on VMs, when an application fails,
restarting it repairs the application and thus can continue
providing the service again. Restarting may take a significant
amount of time causing service outage, for which redundancy
is a de-facto technique adopted by industry in masking such
failures [12], [14], [15]. When the service is protected by
redundancy, the service can be failed over to the standby entity
deployed at another location, which replaces the failed one
while it is being repaired. Specifically, VNFs are deployed
in multiple sites, which are geographically separated and are
managed by separate VIMs. When such a catastrophic failure
happens, the VNFs at the failed site can quickly fail over to the
redundant one so as to proceed the service. It is recommended,
according to ETSI [8], off-site resources should be available
for enterprise or large scale customers and network operators



service traffic for data services recovery, and most redundant
resources should be off-site for general consumer public and
Internet service provider (ISP) traffic. Since a service is
considered available only when all the functions it requires
are available, how to map functions onto physical substrate in
a resource-efficient way while ensuring availability is critical
and challenging in NFV.

In this paper, we take the first step by addressing the
following problem of availability-aware SFC mapping: what is
the minimum number of backup VNFs service provider needs
to provision to guarantee a certain degree of availability?
What is the best protection strategy in terms of availability
improvement and resource consumption? Furthermore, how
to map both primary and backup VNFs and interconnecting
logical links in a resource-efficient way? The goal is to use the
least amount of resources to meet each request’s availability
requirement such that a higher SFC request acceptance ratio
can be achieved, while reducing the resource consumption for
service providers. Hence, developing an effective protection
mechanism and an efficient SFC mapping scheme to meet
different clients’ Service Level Agreement (SLA) (e.g., the
availability requirement) are essential while consuming a small
amount of physical resources. To solve the availability-aware
SFC mapping problem, we propose an online algorithm to
guarantee each client’s availability requirement while mini-
mizing the amount of resources allocated.

Note that the availability-aware SFC mapping problem is
more difficult than the problem of survivable virtual infras-
tructure mapping studied earlier in [9]–[11] for two reasons:
1) we need to consider network function restrictions; 2) we
need an effective algorithm to search for and evaluate an
efficient backup plan to meet specific availability requirements
of heterogeneous SFC requests. There also exist some works
[24]–[26] focusing on how to allocate the VMs among geo-
distributed data centers in order to offer tolerance against
physical component failures. However, in our paper, we as-
sume that different VNFs are heterogeneous in terms of both
their functional and resource requirements hence we need to
consider both the functional and resource capabilities of the
substrate system. Finally, to the best of our knowledge, none
of these existing works has considered problems similar to
availability-aware SFC mapping problem with different clients
having different availability requirement and different data
centers having different availability. In summary, we list the
main contributions as follows:
• We propose a novel enhanced Joint Protection (JP) ap-

proach, and demonstrate its advantages by comparing
with traditional Dedicated Protection (DP) and Shared
Protection (SP) in terms of acceptance ratio performance
and resource consumption.

• We for the first time prove that there’s no polynomial
time algorithm for solving the proposed availability-
aware SFC mapping problem.

• We develop an estimation method for computing SFC
availability with a polynomial time complexity, and show
the estimation error is negligible.
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(b) Parallelly Connected Two VNFs

Fig. 1. Two ways of combining VNFs

• We propose a novel backup selection strategy, prove its
approximation ratio, and illustrate that it can save the
number of backup VNF by 42%.

The rest of the paper is organized as follows. Section
II describes our availability model and protection schemes.
Section III defines the problem of availability-aware SFC
mapping and analyzes its complexity. Section IV introduces a
polynomial running time algorithm for availability evaluation
and an approximation algorithm with a theoretical lower bound
for backup VNF selection. We evaluate the performance of
the proposed algorithm in Section V followed by conclusion
in Section VI.

II. AVAILABILITY MODEL AND PROTECTION SCHEMES

A. Availability Model

To use a availability model for a given NFV deployment,
we first need to model the logical structure of the system.
Note that since in this paper, we are mostly concerned with
ensuring service availability with geographic redundancy in
multisite scenario, we assume that there are some protection
schemes used in a data center so that VNFs deployed in a data
center have 100% availability when the data center is working
fine, so the only source resulting in service disruptions is data
center being down due to catastrophic failures.

1) Availability of one single component: The availability
of a complex system such as an NFV deployment can be
modelled by decomposing it into constituent components [8],
of which the availability are known. The availability of a
component is the relative share of time the component is
functioning, and thus the probability to find the component
working if checking it at a random point in time. For a data
center, which is a repairable component, its availability can
be expressed using uptime followed by downtime, which can
be characterized in terms of Mean Time Between Failures
(MTBF) and Mean Time To Repair (MTTR), respectively. In
gernal, the availability of a data center can be characterized
as

A =
Uptime

Uptime+Downtime
=

MTBF

MTBF +MTTR
(1)



2) Availability of composed system: A SFC is generally
composed of a number of VNFs. In order to estimate the
availability of such composite system, which is derived from
the individual components it consists of, two basic ways
of combining components, serial and parallel, need to be
understood. In SFC, individual components are connected in
a serial manner, which means that in order for the SFC to
function, all components that the SFC comprises need to
function at the same time. For example, as shown in Fig. 1 (a),
in order for the function provided by this SFC to be available,
both V NF 1 and V NF 2 need to be available at a given time.
Therefore, the availability of this SFC request is:

ASFC = AV NF 1 ×AV NF 2 (2)

where AV NF 1
and AV NF 2

are independent because they are
deployed in different data centers.

While, if two individual components are connected in a
parallel way, as shown in Fig. 1 (b), it assumes that these two
components are fully redundant. If both V NF 1 and V NF 2

can provide the same function, then the requested service is
available when at least one of these two independent com-
ponents can function, assuming there is no service disruption
due to fail over. Thus, the availability of this SFC request can
be described as:

ASFC = 1− ((1−AV NF 1
)× (1−AV NF 2

)) (3)

Using these two basic models, we can model and evaluate
the availability of a more complicated SFC request with
different protections schemes, which will be discussed in the
next subsection. Note that this model can be applied to both
VNF failures and link failures.

B. Protection Schemes

In this subsection, we will first describe two traditional
protection schemes that are widely used in industry and studied
in academia, then we will propose a new one called Joint
Protection (JP).

1) Dedicated Protection: DP is one of the most popular
protection methods adopted in many system [12], [14]. Usually
for DP there is one active VNF and one backup VNF so that
when the data center holding the active VNF fails, the traffic
can be diverted to the backup VNF to continue providing
service. As shown in Fig. 2 (a), backup bi and bj will
duplicate the functionality of ni and nj respectively, and
connect to their neighboring VNFs (e.g., ni−1 and ni+1, nj−1
and nj+1). Although it provides high availability, it results in
high resource usage.

2) Shared Protection: To reduce resource consumption,
researchers have proposed another protection scheme called
shared protection. In SP, there are multiple (usually two) active
VNFs and one backup VNF that can take over when any one
of the data centers holding the active VNFs fails. It saves
resources by allocating max(sni

, snj
) resources on backup b

to protect either ni or nj and connecting the backup to the
neighboring VNFs of ni and nj shown in Fig. 2 (b), but the
network can fail when both of the VNFs protected by one

bi bj

b

(a) DP

(b) SP

(c) JP b

ni-1 ni ni+1
nj-1 nj nj+1

ni-1 ni ni+1 nj-1 nj nj+1

ni-1 ni ni+1 nj-1 nj nj+1

Fig. 2. Different Protection Schemes

backup fail. Compared with DP, SP cannot provide the same
level of protection.

3) Joint Protection: In this paper, we propose a novel
protection strategy called Joint Protection (JP) for providing
geographic redundancy so that even when multiple active
VNFs fail at the same time, the backup VNF can provide
all the functions that all the failed active VNFs provide. For
example, as shown in Fig. 2(c), JP provides protection to both
VNFs connected to it, and the amount of backup resources
reserved at VNF b will be sufficient for both ni and nj (i.e.,
sb = sni

+ snj
). Thus, the SFC can still function normally

even if both ni and nj fail simultaneously. As a result, one
in JP can provide high availability as in DP while potentially
saving resources as in SP. Our proposition will be validated
via simulations in Section 5.

III. PROBLEM FORMULATION & COMPLEXITY ANALYSIS

In this section, we formally describe the availability-aware
SFC mapping problem, the failure models we consider in the
paper and show the hardness of the problem.

A. availability-aware SFC Mapping Problem

We consider our problem with a generic network model.
Given a Physical Substrate (PS) Ps(Ns, Ls), where Ns is the
set of Physical Nodes (PNs) and Ls is the set of Physical
Links (PLs). For each PN n ∈ Ns, it is associated with a
set of k types of resources Skn = {sin|i ∈ [1, k]}, where
sin denotes the capacity of resource of type i. In addition,
each PN n is associated with availability An. Given the set
of resources available at a PN n, it can provide a set of
functions denoted by fPn . Fn =

⋃Ns

i=1 f
P
i is the set of all

functions that the network can provide. For example, PN F ,
as shown in Fig. 1, can only provide functions for Home
Subscriber Server (HSS), and it’s availability is 0.94, while
PN E can provide functions for PDN/Serving Gateway and



Fig. 3. NFV Architecture

Mobility Management Entity (MME). For a given SFC request
r denoted by Vr(Nr, Lr, θr), Nr = {n1r, n2r . . . n

|Nr|
r } is the

set of VNFs, each of which requires a set of resources to
perform one single network function fnj

r
∈ Fn. Fr =

⋃
j fnj

r

is the set of functions that request r needs. Each logical links
lr ∈ Lr has a bandwidth demand and θr is the availability
requirement of this SFC. To map a SFC, we not only need
to map a VNF to a PN by reserving an appropriate type and
amount of resources in the chosen PN to perform the function
requested by that VNF, but also map a logical link through
allocating an appropriate amount of bandwidth along each and
every physical link over the chosen path to carry the traffic
flow from one VNF to another VNF. For instance, in Fig. 3,
the VNF requiring Media Resource Function (MRF) on packet
flow 1 can only be mapped onto PN D as it’s the only PN
providing such function, while the traffic from MRF to HSS
can flow from PN D to F directly or redirect to any other
path starting with PN D and ending with PN F .

As discussed in the previous section, a service is considered
being available at a given time if all the functions the service
requests are able to function normally. In this work, since we
mainly focus on service protection when catastrophic failures
bring data centers down, we only consider node failures.
When no protection is provisioned, the availability of a SFC
request r can be obtained as Ar =

∏
f∈Fr

Af , where Af
is the availability of the PN providing function f . However,
when there are protections, evaluating availability becomes a
hard problem (discussed in Section III.B). Upon mapping, a
SFC request is considered as being blocked if any VNFs or
logical links cannot be mapped or the availability cannot meet
the client’s requirement. Therefore, we can define the SFC
availability-aware mapping problem as follows. Given a set of
SFC requests, each with a specific availability requirement, we
need to find out the minimum number of backup VNFs needed
in order to achieve each availability requirement and efficiently

Validator Picker

SFC RequestsAvailability Requirement

Set of Backups

Available Physical 
Resource

Fig. 4. Proposed Architecture

assign primary and backup VNFs to physical nodes. Noted that
we try to solve a more general problem without assuming the
number of failed data centers at the same time. A decision
algorithm can be embedded in a centralized system, such as
NFV Management & Orchestration (MANO), that manages
all the incoming requests.

B. Complexity Analysis

In this section, we will briefly discuss the complexity of
our problem. Due to the limit of pages, we defer more details
of the complexity analysis to Appendix A. Concretely, below
we list the conclusions we draw from the analysis.

Theorem 1. The problem of verifying if the availability is
above a given threshold (denoted by VA) is PP-complete.

Even with an oracle to the VA problem, we still cannot op-
timally decide if there exists a solution for a SFC request,and
finding a local optimal is difficult.

Theorem 2. Determining if there exists a solution for a SFC
request (denoted by DE) is NPPP -complete.

Theorem 3. Finding a local optimal solution for a SFC
request (denoted by LM) is co-NPPP-complete.

The objective of globally minimizing the number of backup
VNFs further elevates the complexity.

Theorem 4. Finding a maximum set A belongs to NPNP
PP

.

The complexity classes we mention satisfy these contain-
ment properties and relations to other classes [16]:

P ⊆
NP

co-NP
⊆ PP ⊆

NPPP

co-NPPP ⊆ NPNPPP
⊆ PSPACE

Hence the availability-aware SFC mapping problem is be-
lieved to be intractable.

IV. ALGORITHM DESIGN

In this section, we propose an online algorithm for providing
geographic redundancy for NFV. The basic components are
shown in Figure 4. Our design is independent of the specific
topology used by the physical network or SFC. Our goad
is to find the most resource-efficient mapping for each SFC
request while meeting its availability requirement. Inputs to
the decision algorithm are the physical topology, including
resource availability for each PN and PL, and the mapping
of each SFC request without any backups and the availability
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Fig. 5. SFC Availability Evaluation

requirement of each SFC request. The mapping process of
SFC requests is same as [13]. The metric of interest is the
SFC acceptance ratio, defined by the number of accepted SFC
request by the decision algorithm over the total number of
SFC request. The protection scheme used here is the JP we
proposed in Section II.B.

Based on our complexity analysis in Section III.B, we know
finding the optimal solution is challenging. Hence, to address
the challenges, we can decompose the problem into two sub-
parts: A ’backup picker’ (Section IV.B) proposes backup VNFs
selection that will maximize the availability, subject to the
resource availability for each PN and PL. A ’backup validator’
(Section IV.A) confirms or reject the proposal by evaluating
the availability and comparing the evaluation with the SFC
requirement. In addition, the validator also needs to update
availability for each PN after each time picker chooses backups
so that the picker can better propose backup for subsequent
iterations. In each iteration, the picker chooses one backup
VNF for two primary VNFs. The process repeats until either
the availability requirement is met, confirmed by the validator,
or no more physical resource is available to improve the SFC’s
availability, output by the picker.

A. Validating Backup Choice

The validator determines whether the backups proposed by
the picker are enough to meet the availability requirement.
As seen from Theorem. 1, the problem VA is PP-complete,
so there’s no polynomial time solution to solve the problem.
Previous research [17], [18] proposed solutions using Monte
Carlo related methods, but it’s hard to determine how many
steps are needed to converge to the stationary distribution
within an acceptable error, and the procedure is time con-
suming. In this subsection, we will show a computational
easier way for problem VA. Let us explain the rationale first.
We consider the whole network as a composition of several
independent sub-networks, and thus, the availability of the
request is the multiplication of the availability of each sub-
network as discussed in Section II.A. At beginning, all VNFs

are considered as separate sub-networks, so the availability
of the SFC request is the multiplication of the availability of
the physical nodes that primary VNFs are mapped to. Until
the availability requirement is met, two primary VNFs with a
backup VNF are selected for each iteration by the picker. We
explain in Section IV.B which two VNFs are selected. Then,
a new sub-network is formed, composed of the backup VNF
and two sub-networks, each of which contains one of the two
selected primary VNFs. The availability of these two selected
VNFs and this new sub-network need to be updated. Then the
availability of this new sub-network will be used in evaluating
the the availability of the SFC request.

We next show how to evaluate the availability of the new
sub-network using an example. Assume the availability of the
two selected VNFs ni, nj are Ai, Aj , and the availability
of the backup b is Ab. ni and nj provides function fni

, fnj

respectively. Before provisioning b as backup there are totally
four possible cases:

1) Neither ni nor nj has backups: If neither of the two
selected VNFs has backups, the availability of the sub-network
they form equals to the probability that the backup is avail-
ability or both of the two selected VNFs are availability while
the backup cannot work.

Asub = 1− (1−Ab)× (1−AiAj) (4)

2) Only one of ni or nj has backups: Without loss of
generality, we assume nj is the one already has backups, and
we denote the sub-network contains nj as N . We analyze
this case by considering which sub-network provides the
function that nj requires. We can observe that this function is
provisioned either by the sub-network N or the new backup
b, and these two situations are mutually excluded. So the
new sub-network is considered working if the sub-network
N functions properly and at least one of the backup b and ni
works properly, or backup b is available and all the nodes in
sub-network N except for the one providing fnj

are available.
Therefore,

Asub = AN × (1− (1−Ab)(1−Ai)) +Ab ×AN\j (5)

where AN\j is the probability that sub-network N can
provide all the functions except fnj

. To compute AN\j ,
we decompose AN = r′N − AN\j = A′N − (1 −
Aj)

∏M
k=1(1−Ajk)A′′N , where A′N is the probability that

the sub-network N may or may not provide fnj , while all
the others function normally, A′′N is the probability that all
functions except fnj

in sub-network N are available, Ajk is
the kth backup connected with nj excluding backup b, and M
is the total number of backups that nj currently has. We then
define τ =

A′
N

A′′
N
≈ 1 + ε, where ε is a small constant. Noted

that as the sub-network contains more nodes, τ gets closer to
1. So

AN\j =
(1−Aj)

∏M
k=1(1−Ajk)AN

τ − (1−Aj)
∏M
k=1(1−Ajk)

(6)



3) Both ni and nj have backups and they belong to
different sub-networks: Since ni and nj belong to different
sub-networks, we denote the sub-networks containing ni and
nj using W and N respectively. Applying similar strategy
described in the previous case, the probability that the new
sub-network functions can be decomposed into two cases:
when either both sub-networks W and N work properly, or
when backup b is available and at least one of the sub-networks
W and N fails to provide fni and fnj while other functions
can be provisioned. Hence,

Asub = ANAW +Ab(AN\jAW\i +AN\jAW +AW\iAN )
(7)

4) Both ni and nj have backups and they belong to
the same sub-network: Similarly, when the sub-network N
containing ni and nj both works properly, whether or not
backup b can work has no influence on the availability of the
sub-network. And when backup b is available, at most one of
the functions fni

and fnj
should be available. Thus,

Asub = AN +Ab ×AN\ij (8)

where AN\ij denotes the probability that sub-network N
can provide all functions except for fni and fnj . Here,
verifying if ni and nj have common backup VNFs is necessary
to avoid double calculating.

Fig. 5 illustrates all the four cases for evaluating SFC
availability. After updating the availability of the new sub-
network, the availability of the two selected VNFs needs to
be updated accordingly as well. As seen from the methods
described in this subsection, for each iteration the computation
complexity of computing availability is polynomial time with
respect to the number of backup a VNF has. We will later show
in the simulation that the estimation error is small enough to
be neglected.

B. Choosing Backup

The next question to answer is how picker selects backups
to minimize the number of backups that a request require. We
propose a heuristic here to select backup nodes to maximize
the availability that a SFC request can achieve, denoted as
problem MA. The Proposition immediately follows [16].

Proposition 1. MA cannot be approximated within any fixed
factor in polynomial time unless P=NP.

The intractability result holds in general, i.e., when no
further constraints are put on the problem instances. Therefore,
solving this problem is also hard. Here we propose a greedy
heuristic algorithm based on the following Theorem. First we
define improvement ratio.

Definition 1. Define an improvement ratio as the ratio of the
improvement of the network overall availability to the network
overall availability before adding a backup.

Theorem 5. Provisioning a backup VNF to two primary
VNFs whose availabilities are among the lowest maximizes
the improvement ratio for each case described in Section IV.A.

We have four cases as described in the previous section,
here we only prove Theorem. 5 for the second case. Note
that we can similarly prove Theorem. 5 for other cases as
well (in fact, case 1 is simpler, and cases 3 and 4 are based
on case 2).

Proof. Given that two VNFs ni and nj are selected, b as a
backup VNF, and nj already has backups. As nj already has
backup, we must have computed the availability of the sub-
network N which contains nj already. Then the availability of
the whole network before connecting ni and nj with backup b
is Abefore = A1A2 . . . AkAiANAp . . . Aq , and the availability
after adding backup is Aafter = A1A2 . . . Ak(AN (1 − (1 −
Ab)(1 − Ai)) + AbAN\j)Ap . . . Aq where A1A2 . . . Ak and
Ap . . . Aq are the availability of the sub-networks not selected,
and AN is dependent on Aj . The improvement ratio u is,

u =
Aafter −Abefore

Abefore
= −Ab +

Ab
AiAN

(AN +AN\j) (9)

Let’s substitute Eq. (6) for AN\j , and let S = (1 −
Aj)

∏M
k=1(1 − Ajk) then calculate the partial derivative with

respect to Ai and Aj respectively,

uAi
=

∂u

∂Ai
= − Ab

A2
iAN

(AN +AN\j) (10)

uAj =
Ab
Ai

(S′A2
N + 2∂AN

∂Aj
S ×AN )(τ − S)− (τ − S)′S ×A2

N

(τ − S)
2

(11)
As the availability is always greater than or equal to 0, and

Ai ∈ [0, 1], from Eq. (10) we can easily tell that u decreases
monotonically as Ai increases. While the monotonic property
of Eq. (11) is not as obvious as Eq. (10). To see that, we let
uAj

= 0 to compute the critical point, and get

2
∂AN
∂Aj

= (
S

τ − S
+ 1)

AN
1−Aj

(12)

Solve this partial differential equation, and get

AN =

√√√√ τ∏M
k=1(1−Ajk

)
− (1−Aj)

1−Aj
(13)

which means that when the equation holds true, we get the
critical point. However, τ∏M

k=1(1−Ajk
)
� 1 since τ > 1,

M ≥ 1 and both AN ∈ [0, 1] and Aj ∈ [0, 1]. Therefore
this equation can never hold, which means u is a monotone
function respect to Aj in its domain. Also we can easily check
uAj=1 < uAj=0, so we can come to the same conclusion for
Ai that u decreases monotonically as Aj increases. Therefore,
selecting two VNFs with lowest availabilities leads to the
largest improvement ratio.

Define AE(B) as the function to calculate the avail-
ability of a request with a set of backup nodes B, and
ρb(B) = AE(B ∪ {b})−AE(B) as the availability improve-
ment when adding a backup node b. So AE(Ø) is the
availability of the request without any backups. Here we



assume function AE can accurately evaluate the availability.
As there are four cases in total for evaluating availability for
each step, we will first prove that when a backup is provisioned
for two nodes that neither of them has backup (case 1), we
can have the largest availability improvement. Define ρib as
the availability improvement when a backup b is provisioned
and the relationship of the two nodes that backup b protects
belongs to case i. i is the case number as defined in Section
IV.B. Then we have the following Lemma.

Lemma 1. ρ1b > ρ2b > ρ3b > ρ4b

Proof. Here we only prove the first inequality. One can prove
the rest using the same method. Given a network which
consists of three sub-networks, N1, N2 and N3. In N1 and N2

all nodes are primary VNFs while N3 is composed of primary
and backup VNFs. Either we can provide a backup b for node i
and j or node i and p, where node i, j and p are primary VNFs
in sub-network N1, N2 and N3, respectively. If node i and j
are selected, then ρ1b = (Ab−AbAN1AN2)×AN3 ; if node i and
p are selected, then ρ2b = (AN3−AN3AN2 +AN3\p)×AbAN1 .
For ρ1b > ρ2b , the following inequality must hold

1−AN1

AN1

>
AN3\p

AN3

(14)

We argue that this inequality should hold in practice where
a whole data center being down happens rarely, which makes
1−AN1

is at least one order of magnitude larger than AN3\p,
while AN1 and AN3 are about the same order.

Together with Theorem 5, we outline how picker select
backup VNFs with the following Theorem.

Theorem 6. Selecting two VNFs whose relationship belongs
to the category in Section IV.B with the smallest case number,
and settling ties by choosing the nodes whose availabilities
are among the lowest maximizes the availability improvement
for each iteration.

Proof. Based on Theorem 5 and Lemma 1, the theorem follows
immediately.

Next, we analyze how close the availability derived from the
backup plan selected by picker is to the one achieved by the
optimal backup solution. Assume the request has n primary
nodes, and K is the number of backup nodes that can be
provisioned.

Theorem 7. When K ≤ dn2 e, our greedy backup selection
method can achieve the optimal solution.

Proof. When K ≤ dn2 e, or K = dn2 e and n is even, according
to Lemma 1, the nodes that each one of K backup protects
should be mutually exclusive. To prove the optimality of this
greedy algorithm, we need to prove the greedy choice property
and the optimal structure property [23].

Greedy Choice Property: The greedy algorithm selects two
nodes with the lowest availabilities among all primary nodes
as the first pair of nodes to be provisioned with a backup.
Say these two nodes are i and j, and the backup node is b.

We have to show that there exists an optimal backup strategy
that also contains a backup node to protect this pair of nodes.
There are four possible cases:

1) The optimal backup strategy contains a backup node to
protect node i and j, then we are done.

2) The optimal backup strategy doesn’t contain any backup
node to protect either of node i and j. Then we can
remove any backup node from the optimal strategy and
add a backup to protect node i and j. In doing so, we
get a higher availability. Contradiction.

3) The optimal backup strategy contains a backup node to
protect one of node i and j. Similarly, we can remove
this backup node from the optimal strategy and add a
backup to protect node i and j so that we can get a
higher availability. Contradiction.

4) The optimal backup strategy contains two backup nodes
to protect node i and j respectively. Assume node i and
p is one pair and node j and q is the other pair. Without
loss of generality, we assume Ai < Aj < ApAq , then
we need to show when i and j form a pair and p and q
form another pair, we have a higher overall availability.
Based on case 1 in Section IV.B, if we can get a higher
availability, then

(Ab + (1−Ab)AiAj)(Ab + (1−Ab)ApAq) >
(Ab + (1−Ab)AiAp)(Ab + (1−Ab)AjAq)

⇔ AiAj +ApAq > AiAp +AjAq

⇔ Ap(Aq −Ai) > Aj(Aq −Ai) (15)

SinceAq > Ai and Ap > Aj by our assumption, the
inequality holds. Contradiction.

Optimal Structure property: Let P1 be the subproblem
obtained from the original problem P by removing node i and
j. Let S be an optimal backup strategy for the original problem
P , in which node i and j are the first pair of node that gets
protected. Let S1 be obtained from S by deleting b. Then S1

is a backup strategy for the subproblem P1. We need to show
that S1 is an optimal solution for P1. Towards a contradiction,
suppose this is not the case. We replace the backup strategy
in S except b by the optimal backup strategy of P1, we get
another backup strategy S′ of P with a higher availability.
This contradicts the fact that S is an optimal strategy of P .

Since both properties hold, the greedy algorithm is correct.
When K = dn2 e and n is odd, after we choose bn2 c pairs of

nodes to provide with a backup each, we achieve the maximum
availability possible. Then we greedily find the node with a
backup protected and the lowest availability and pair it with the
only left primary node which doesn’t have a backup to provide
them a with backup, which can maximize the availability based
on Theorem 5. This concludes the proof.

With K > dn2 e, we can prove our algorithm is near-optimal.

Theorem 8. when K > dn2 e, the algorithm computes a backup
scheme which maximize the availability with a normalized
relative error of e−1e AE(OPT )+ 1

eAE(Ø), where AE(OPT )



and AE(Ø) are the availabilities with an optimal backup
solution and without backups, respectively.

Proof. For arbitrary backup set S and T with T − S =
{j1, j2, . . . , jτ} and S − T = {k1, k2, . . . , kν}, we have

AE(S ∪ T )−AE(S) =
τ∑
t=1

[AE(S∪{j1, j2, . . . , jt})−AE(S∪{j1, j2, . . . , jt−1})] =

τ∑
t=1

ρjt(S ∪ {j1, j2, . . . , jt−1}) ≤
∑

v∈T−S
ρϕ(S

′)
v (S′) (16)

where ϕ(S′) is the smallest case number of calculating ρj1 ,
and and this can be realized by dynamically changing S’.
When adding an element, say jp, into the backup set, if
the way of calculating the availability is the same as the
way of calculating availability when adding the 1st element,
then S′ = S ∪ {j1, j2, . . . , jν−1}; otherwise, S′ = S ∪
{j1, j2, . . . , jν−1}−{Q}, where Q ⊆ S∪{j1, j2, . . . , jν−1} so
as to ensure the availability is calculated using the same case
number when adding the 1st backup node. Based on Lemma
1, this inequality holds.

Similarly,

AE(S ∪ T )−AE(T ) =
ν∑
t=1

[AE(T∪{k1, k2, . . . , jt})−AE(T∪{k1, k2, . . . , kt−1})] =

ν∑
t=1

ρkt(T ∪ {k1, k2, . . . , kt−1} − kt) ≥
∑

v∈S−T
ρϕ(χ)v (χ)

(17)

where χ = T ∪ S − {v} and v ∈ S − T . Subtracting Eq. (17)
from Eq. (16), we get

AE(T )−AE(S) ≤∑
v∈T−S

ρ
ϕ(S′)
j (S′)−

∑
v∈S−T

ρ
ϕ(χ)
j (χ) ≤

∑
v∈T−S

ρ
ϕ(S′)
j (S

′)

(18)

since the improvement of availability is always greater than
or equal to 0. Taking T as the optimal solution, S to be the
set St generated after t iterations of the greedy algorithm, and
using

AE(St) = AE(Ø) +

t−1∑
i=0

ρi (19)

and AE(OPT ) = AE(T ), |T − St| ≤ K, we have

AE(OPT ) ≤ AE(Ø) +

t−1∑
i=0

ρi +
∑

v∈T−St

ρϕ(S
′′)

v (S′′) (20)

where S′′ is constructed from St in the same way as con-
structing S′ from S. Now take t = 0, we have

AE(OPT ) ≤ AE(Ø) +K × ρmax (21)

Fig. 6. Network map from a major tier-1 service provider

where ρmax = max(ρ
ϕ(S′′)
v (S′′)), ∀v ∈ T − St. So,

AE(OPT )−AE(Ø) ≤ Kρmax ≤ K(AE(Φ)−AE(Ø))
(22)

where AE(Φ) is the availability of a solution constructed by
our greedy algorithm. ρmax ≤ AE(Φ)−AE(Ø) holds based
on Lemma 1 and Theorem 8. So we have,

AE(OPT )−AE(Φ)

AE(OPT )−AE(Ø)
≤ K − 1

K
(23)

Since (K−1K )
K ≤ e−1 [22], we have the approximation ratio

e− 1

e
AE(OPT ) +

1

e
AE(Ø) ≤ AE(Φ) (24)

V. EVALUATION

In this section, we use synthetic policy to evaluate our
algorithm in terms of (i) SFC request acceptance ratio, (ii)
backup resource consumed by requests, and (iii) accuracy of
availability evaluation proposed in Section IV.A.

A. Experimental Workloads

1) Physical Network: For physical networks, we use the
network map from a major tier-1 service provider [19], as
shown in Fig. 6. It has 116 nodes and 151 fiber links. Each
node of the network represents one single data center, which
can provide three types of resources, namely CPU, memory
and storage, with the capacity of 2000 units each. We assume
there are 8 types of functions in the network, and each of
the physical node can provide two to four functions. The
availability of each physical node is randomly distributed
within [0.9, 0.99]. The network traffic along each link is
carried using Optical Orthogonal Frequency Division Multi-
plexing (OOFDM), because it is a cost-effective technique to
achieve Terabit-per-second transmission [20], which is needed
to support the huge amount of traffic flow between data
centers. Each of the links has a spectrum capacity of 24THz
with a spacing of 12.5GHz per spectrum slot.



Fig. 7. CDF of the estimation error
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2) SFC Requests: Each SFC request consists of two to
six VNFs interconnected. Each VNF demands three types of
node resources and can provide one function, and the demand
for each kind of resource is uniformly distributed between 0
and 30. Each logical link has a bandwidth demand among
{10, 40, 100, 200} Gb/s with equal probability. For each SFC
request, we select the availability requirement among {95%,
99%, 99.9%}, similar to the ones used by Google Apps [21].

We evaluate our algorithm using a Macbook with OS X
10.9 with 1.7 GHz Intel Core i7 processor and 8GB memory.
Our algorithms are implemented in C++. The statistics are the
average results.

B. Availability Evaluation Accuracy
We first evaluate the availability evaluation accuracy

achieved by validator proposed in Section IV.A. Table I
summarizes the median estimation error when the number of
VNF is randomly chosen from two to six and τ is varied.

From the table, we can see that when τ is 0.07, the
estimation error is the smallest, and we fix τ to 0.07 for
later simulations. With τ = 0.07, we evaluate the Cumulative
Distribution Function (CDF) of the estimation error of val-
idator as shown in Fig. 7 when the number of request is 300
to ensure that the request acceptance ratio is 100%, and the
availability threshold is set to 99.9%, as depicted in Fig. 7. We
can observe that 95% of the error is smaller than 3.5× 10−4,
which demonstrates the effectiveness of using the validator to
predict the service availability.

TABLE I
MEDIAN ESTIMATION ERROR ACHIEVED BY VALIDATOR

τ 0.03 0.05 0.07 0.09 0.11
Median Error (10−4) 1.63 1.55 1.38 1.71 2.2
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C. SFC Request Acceptance Ratio

To understand how picker and JP works, we compare the
number of requests which can be accepted with different
algorithms. Since a request can be accepted if and only if there
is enough resource and the availability requirement can be met,
the rationale behind this experiment is an algorithm with better
resource efficiency can accept more request. From Fig. 8, we
can see that JP + ”picker” achieves the best acceptance ratio
performance, and in particular, it outperforms SP and DP, both
of which adopt the ”picker”, by 11.2% and 22.1%, respectively
when the number of request is 1100. To show the effectiveness



of the ”picker”, we also show the case where we randomly
select two VNFs for each iteration to protect as the baseline
method, and JP + such random backup selection achieves
the same performance as SP + ”picker”. Another interesting
thing we can find from the figure is that when the number of
requests is small (i.e., 700), all four algorithms have similar
performance, while as the number of requests increases, the
other three algorithms saturate faster than JP + ”picker”. The
takeaway here is that compared with other methods, JP +
”picker” can meet availability requirement while consuming
less resources. Furthermore, we analyze the running time of
our algorithm as shown in Fig. 11 and 12. With 1100 SFC
requests, the total running time is less than 8 seconds, while
validator never use more than 3 seconds.

D. Backup Resource Consumption

To further understand how JP + ”picker” can save resources,
we compare the average number of backup VNFs and logical
links used for each SFC request w.r.t. different availability
requirement. The number of request used in this experiment is
1100, and only the accepted requests are considered. As shown
in Fig. 9, JP + ”picker” uses 27.8% and 15.7% fewer links
compared with the other two methods respectively when the
availability requirement is “three nines” (i.e., 99.9%). Similar
observations can be made when comparing the number of
backup VNFs as illustrated in Fig. 10. We can see that JP +
”picker” requires fewer number of backup VNFs. In particular,
JP + ”picker” can save up to 42.1% of physical nodes.

VI. CONCLUSION

NFV explores the virtualization technologies to offer
Network-as-as-Services through connected/chained VNFs.
With this new NFV technique, traditional hardware-based
network appliances are replaced by network functions imple-
mented in software that can be run on standard high-volume
servers in data centers. Since telecom networks must be always
on, it is critical to provide effective and efficient protection and
resource allocation schemes for guaranteeing network service
availability, even when catastrophic failures happen, which
may bring a whole data center down. In this paper, we have
proposed an online algorithm for availability-aware SFC map-
ping in NFV networks, which can minimize the resources al-
located to SFC requests while meeting clients’ heterogeneous
SLA requirement. In addition we have developed a lower
bound for our backup VNFs picking algorithm. Furthermore,
we have shown that our design is able to evaluate service
availability with a negligible estimation error in polynomial
time. We have also validated our design through extensive
simulations and demonstrated that it can achieve a significant
performance improvement compared to traditional protection
mechanisms and baseline backup VNFs picking method.
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APPENDIX

We first formulate the availability-aware SFC mapping
problem as a Boolean formula. For one physical node n, pn
represents if node n is used for mapping for the request, and
qn and q̄n denote if node n is used as a mapping node for
one VNF in a virtual request or a backup VNF, respectively.
Assume this physical node n can provide a set of functions
{fi|fi ∈ Fn}, then we use {xin|fi ∈ Pn} to show which one or



two functions node n provides. For example, assume a PS has
3 PNs which n1, n2 and n3 can provide functions f1, f2, f3,
f2 and f1, f3 and given a SFC request that needs functions
f2, f3, then the Boolean formula can be written as

ϕ = C(n1) ∧ C(n2) ∧ C(n3) ∧ eval(n1, n2, n3)

= (((p1 ∧ q1) ∧ (x11 ∧ x̄21 ∧ x̄31) ∧ (x̄11 ∧ x21 ∧ x̄31)

∧ (x̄11 ∧ x̄21 ∧ x31)) ∨ ((p1 ∧ q̄1) ∧ (x11 ∧ x21 ∧ x̄31)

∧ (x̄11 ∧ x21 ∧ x31) ∧ (x11 ∧ x̄21 ∧ x31)) ∨ (p̄1 ∧ x̄11 ∧ x̄21 ∧ x̄31))

∧ ((p2 ∧ x22) ∨ (p̄2 ∧ x̄22)) ∧ (((p3 ∧ q3) ∧ (x13 ∧ x̄33)

∧ (x̄13 ∧ x33)) ∨ ((p3 ∧ q̄3) ∧ (x13 ∧ x33)) ∨ (p̄3 ∧ x̄13 ∧ x̄33))

∧ (((x21 ∧ x1) ∨ (x22 ∧ x2)) ∧ ((x31 ∧ x1) ∨ (x33 ∧ x3)))

where C(ni) shows the constraints for node i, and
eval(n1, n2, n3) presents which nodes can provide which
functions. x1, x2 and x3 is 1 if this physical node can function
normally at a given time and 0 otherwise. We are trying to find
the minimum number of nodes needed to be selected, which
is equivalent to finding the maximum set of nodes A whose
value of pn can be set to 0, and let the rest of the nodes
satisfy the Boolean formula with probability greater or equal
to certain threshold. As the first step, we show that verifying if
the availability is above clients’ requirement optimally is not
a viable option.

Proof for Theorem 1. By the definition of language in PP,
it is clear that VA problem is in PP. Note that MAJSAT [16]
is a PP-complete problem. To show PP-completeness, we can
reduce MAJSAT problem to VA problem. Note that, for an
instance φ with n variables of MAJSAT, the number of all
possible assignments to φ is 2n. Thus, we have

φ ∈MAJSAT ⇐⇒ the number of assignments that

satisfies φ is greater than 2n−1

⇐⇒ Pr[φ(x)] >
1

2
with x ∈ {0, 1}n

Given that VA problem’s instance is a pair (φ, θ) consisting
of a Boolean formula φ and a threshold θ. Hence, with a
MAJSAT instance φ, we can set instance (φ, 1/2) for VA
problem. To verify the correctness,

φ ∈MAJSAT ⇐⇒ Pr[φ(x)] >
1

2
with x ∈ {0, 1}n

⇐⇒ the probability that a given formula

φ can be satisfiedis greate than a

given threshold
1

2

⇐⇒ (φ,
1

2
) ∈ V R,

φ /∈MAJSAT ⇐⇒ Pr[φ(x)] ≤ 1

2
with x ∈ {0, 1}n

⇐⇒ the probability that a given formula

φ can be satisfieis NOT greater than

a given threshold
1

2

⇐⇒ (φ,
1

2
) /∈ V A.

Thus, it is a valid many-one reduction from MAJSAT problem
to VA problem. Therefore, VA problem is also PP-complete.

Proof for Theorem 2. We can construct a nondeterministic
oracle Turing machine N with oracle that solves VR problem,
which conducts the following three steps to solve the given
instance (Y, φ, θ) of DE problem, where Y is a set of variables:

1) Randomly guess a solution to set Y , which takes time
O(|Y |)

2) Hardcode the guess to φ to obtain φ′, which takes time
O(|φ|)

3) Query the VA oracle with (φ, θ)

Since O(|Y |) and O(|φ|) are polynomials in terms of n, this
satisfies the definition of NPPP class. Hence, DE problem
is in NPPP . To show NPPPCcompleteness, we reduce
E-MAJSAT [16] problem to DE problem. In E-MAJSAT
problem, for an instance (k, φ), (we represent a sequence of
variables x as x1x2 · · ·xn.)

(k, φ) ∈ E −MAJSAT ⇐⇒ (∃x1x2 · · ·xk ∈ {0, 1}k)

](assignments to xk+1 · · ·xn
that satisfies φ) > 2n−k

⇐⇒ (∃x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
,

where ](A) denotes the number of elements in set A. With
such an E-MAJSAT instance, we first define a set of variables
as Y = x1, x2, · · · , xk and then set instance (Y, φ, 1/2) for
DE problem. To verify correctness

(k, φ) ∈ E −MAJSAT ⇐⇒ (∃x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
⇐⇒ there exists a solution to set

Y such that the probability

that a given φ can be satisfied

is greater than a given

threshold
1

2

⇐⇒ (Y, φ,
1

2
) ∈ DE,



(k, φ) /∈ E −MAJSAT ⇐⇒ (x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
⇐⇒ (∀x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] ≤ 1

2
⇐⇒ there DOESNOT exist a

solution to set Y such that

the probability that a given

φ can be satisfied is greater

than a given threshold

⇐⇒ (Y, φ,
1

2
) /∈ DE,

Thus, this is a valid many-one reduction from E-MAJSAT
problem to DE problem. Therefore, DE problem is NPPP -
complete.

Proof for Theorem 3. To show co-NPPP-completeness, we
can construct a many-one reduction from A-MAJSAT problem
to this problem. Concretely, note that the formula φ in the
input instance (k, φ) is not necessarily of monotone form,
while the Boolean formula in instance for problem LM is
monotone. Hence, in order to transfer an A-MAJSAT instance
to a LM instance, we need to employ the standard way
of converting general Boolean formula to monotone CNF
Boolean formula. Observe that, if fixing a subset of variables
Y, in such monotone CNF Boolean formula, the number of
satisfying assignments would become a minimum with all
variables in Y set to be 0. With this standard way, it is also
easy to derive such a set Y from k in A-MAJSAT instance. At
this point, we set a threshold θ as 1

2 and then get an instance
(Y, φ′, 12 ). Then, we can use an oracle solving problem LM to
solve A-MAJSAT problem. It is easy to check the validity
of this many-one reduction. Since A-MAJSAT problem is
co-NPPP-complete, therefore, problem LM is also co-NPPP-
complete.

Proof for Theorem 4. By the definition of NPNP
PP

[16],
we can construct a polynomial-time bounded nondeterministic
oracle Turing machine M to accept our problem with oracle
to a problem in co−NPPP as follows:
Taken an instance (φ, θ) of our problem as input

1) Randomly guess a maximum set A that will meet our
property

2) Use (A, φ, θ) to access the LM oracle that decides
maximal set

Clearly, before verifying, the randomly generated set A by
machine M is just a possible candidate for maximum set. To
make sure that, M uses LM oracle to verify the correctness.
Note that we reply on the power of nondeterministic Turing
machine to guess a possible solution, which takes O(n) time.
Also LM is co−NPPP -complete. Therefore, our problem is
in NPNP

PP

.


