Maestro: A cloud computing framework with automated locking

(Invited Paper)

Murat Demirbas
University at Buffalo, SUNY
demirbas @ buffalo.edu

I. ABSTRACT

Concurrent execution is a big challenge for distributed
systems programming and cloud computing. Using locks is
the most common technique for developing distributed ap-
plications that require tight synchronization. Unfortunately,
locking is manual, error-prone, and unscalable. To address
this issue, we propose a scalable automated locking frame-
work called Maestro.

Maestro consists of a master and several workers, which
can be dynamically instantiated on demand. Maestro exam-
ines the program actions of the workers before deployment
and automatically decides which worker actions can be
executed locally (without contacting the master) and which
actions require synchronization through the master.

Maestro has applications in graph processing, real-time
enterprise analysis, and web-services domains. By enabling
the developers to write code at a higher-level of abstraction
(shared-memory), Maestro improves productivity and lowers

the cost of entry to cloud computing backend development.
Keywords-data center computing; tightly synchronized ap-
plications; automated locking; fault-tolerance

II. INTRODUCTION

Concurrent execution is a big challenge for distributed
systems programming and cloud computing. Concurrency
needs to be boosted to improve the system performance and
availability. For embarrassingly parallel data processing ap-
plications, concurrency is boosted and scalability is achieved
by adding more workers [1]. However, for data processing
applications that require tight synchronization, such as large-
scale graph processing systems, real-time enterprise analysis
systems, banking and stock market applications, uncon-
trolled concurrency wreaks safety violations. In these kind
of applications, concurrent execution needs to be controlled
to prevent latent race conditions and synchronization bugs.

Using locking primitives is the most common technique
to deal with tight synchronization requirements [2], [3].
Unfortunately, locking is manual and hence is error-prone.
If the developer misses to place a lock where required, then
safety is violated. (And these kind of bugs may be latent
heisenbugs and hard to debug.) In contrast if the developer
inserts unneeded locks, then the performance of the system
suffers due to the unnecessary synchronizations.

Serafettin Tasci
University at Buffalo, SUNY
serafett@buffalo.edu

Sandeep Kulkarni
Michigan State University
sandeep @ cse.msu.edu

Here we suggest that it is possible achieve automated
concurrency control as well as a scalable system. We propose
an automated locking service architecture with a master and
several workers. Our framework, Maestro, accepts program
actions for the workers in a guarded command structure (in
the event-driven programming terminology, a guard corre-
sponds to the event detection condition and the command
corresponds to the event-handling code). By examining the
guards of the actions, Maestro automatically decides which
worker actions can be executed locally (without contacting
the master), and which actions require synchronization/locks
through the master, as we describe in more detail in the next
section.

The advantages of Maestro are many. Maestro enables
the developers to write programs in a high-level language
without having to worry about the distribution and concur-
rency challenges involved in datacenter computing. Maestro
automates the insertion of locks without involving the de-
veloper. This lowers the cost of entry to cloud-computing
backend application development. While there has been a
lot of work on parallel batch processing systems based on
MapReduce [1], Maestro fills a void in real-time tightly-
synchronized/consistency-critical cloud applications, such
as graph processing, financial applications, and real-time
enterprise analysis applications. By doing the compilation
from high-level shared-memory model to the message-
passing datacenter computing model, Maestro introduces
many opportunities to optimize the performance of the
cloud applications (such as partitioning data/tasks to workers
appropriately, pre-assigning leases to appropriate workers).
Finally, Maestro is scalable and lightweight, and provides
masking fault-tolerance to worker/master failures.

A. Maestro goals

Our project has the following goals:

Automatic insertion of locks/synchronization without in-
volving the developer. By analyzing the high-level program
input by the developer, Maestro automatically inserts locks
where they are needed and deploys the corresponding dis-
tributed message-passing program with the needed support-
ing services in the datacenter. Safety (correctness) of the
high-level input program is preserved by this transformation,



while fast performance and scalability is unhampered by
unnecessary/avoidable synchronization.

Improving the effectiveness and efficiency of the developer.
Maestro enables the developer to write code at the shared
memory level without having to worry about distribution and
concurrent execution challenges. By highlighting the async
and sync actions in the input program, Maestro empowers
the developer to improve performance even further.

High-scalability and elastic-scalability. Maestro aims to
beat transactional and manual-locking solutions via the use
of async actions and input-program-specific optimizations.
In Maestro, locks are assigned subject to a predicate eval-
vation of the guards of sync actions, and this reduces the
wasted concurrency in traditional transactions and manual
locking approaches due to busy polling. !

Masking fault-tolerance against worker & master failures.
Maestro aims to make workers fully soft-state and easily
restartable, so that a master can instantiate and start a new
worker in place of a failed or slow worker quickly. Maestro
also aims to make the master hot-swappable to mask master
failures as well.

III. MAESTRO FRAMEWORK

Maestro accepts as input high-level (shared memory)
program actions for workers in a guarded command structure
(i.e., guard — command). In the event-driven programming
terminology, a guard corresponds to an event detection pred-
icate and the command corresponds to the corresponding
event-handling code. By examining the guards of the worker
actions, Maestro automatically decides which worker actions
can be executed locally (without contacting the master), and
which actions require synchronization through the master, as
follows. If the guard of an action is local, it means there is
no need to communicate with other nodes before evaluating
the guard since other nodes cannot affect the truth value
of the guard. If the guard contains global variables but no
other node can change the truth value of the guard until this
worker performs another action, again there is no need to
obtain the most up-to-date information from other workers
to perform this operation. On the other hand, if the truth of
the guard can be changed by other workers after the guard
is evaluated to true, the worker needs to check in with other
workers to obtain the latest values of its variables before
performing this operation.

We name the first two types of guards as asynchronous
(async) guards, because unlike the third case, they do not
require synchronization with other nodes for guard evalu-
ation. The advantage of async guards is that they do not
require locking of the variables. Other workers do not have
to wait for the completion of this operation and they can

'Busy polling is the unnecessary locking of variables by some workers
continuously just to evaluate a condition only to find it false and abort the
remainder of computation.

continue their operations without affecting the truth value
of this guard.

A. Maestro architecture

The master is responsible for keeping the durable copies
of all program variables, tables, and databases. (Master can
use dedicated storage nodes for keeping the databases, but
what we mean is master always has the authoritative copy
and controls the access to the databases and permanent
copies of variables.) The workers keep a soft state and
synchronize it with the master when necessary. The workers
do the computation using the variables and data they cache
from the master according to the rules we describe below.

While executing an async action, the worker does not
contact the master and evaluates the guard locally (using
local and cached variables). In the case that the guard
evaluates to true, the worker executes the statement body
(command part) of the action. If the statement body updates
some global variables, these updated values must be pushed
back to the master. However, the pushing of these values to
the master can be delayed until the updated variables are read
by a sync action at that worker. Since execution of a sync
action involves contacting the master anyways, the pushing
of the updated variables to the master is piggybacked at the
beginning of that action execution.

While executing a sync action, the worker needs to contact
the master in order to retrieve the most up-to-date values of
the global variables the guard includes. When contacted by
a worker for a sync action, the master evaluates the guard. If
the guard holds, the master grants a lock to that worker for
execution of the action and sends the most up-to-date values
of the variables needed for the statement execution. This
lock ensures that the sync action is executed atomically with
respect to other workers. Other workers cannot modify these
locked variables during that action execution. The worker
writes back the results to the master right after execution and
this automatically releases the lock at the master. Figure 1
below illustrates the interaction between the master and
workers.

\
v

MASTER

Zy
1
i

/

/ \

Al / N A3
/ \

lock(A2)

\
v

Interaction between master and workers

wi
A1l : asynch
A2 : synch

Figure 1.

Thus, in Maestro architecture, the master serves as a lock
server for the workers similar to traditional datacenter com-



puting platforms [4] in many aspects. However, the Maestro
framework introduces two significant improvements. Firstly,
in Maestro, the locks are assigned subject to a predicate
evaluation of the guards of sync actions, and so we call these
locks as “predicated locks”. The predicated locks reduce the
wasted concurrency in traditional transactions and manual
locking approaches due to busy polling.

The second improvement Maestro introduces is to au-
tomate the locking process. To this end, Maestro first de-
termines async and sync actions by using syntactic analy-
sis, analysis of individual program steps or more complex
techniques such as model checking. The automated locking
prevents race condition bugs (which may occur due to
missed locks in manual locking) and performance penalties
(which may occur due to over-application of locks in manual
locking).

B. Use of formal methods for determining Sync and Async
actions

Maestro utilizes three approaches to determine if an action
is an async action. All three approaches are sound: if either
declares that an action is an async action then it indeed is.
However, the approaches differ in terms of their simplicity
and their success in determining that a given action is an
async action. To explain these three approaches, let p be a
program and let ac be an action of p of the form g — st.
Note that a stable action permits us to check the guard,
g, at some point in the computation and then execute the
statement, st, at some later point. To permit this, it suffices
to ensure that g is still true when the statement st is executed.
Towards this end, we first construct program p’ that includes
all actions of p except action ac. Now, we need to check that
if p’ executes in any state where g is true then g continues
to be true in the subsequent state. This can be expressed in
terms of the Hoare triple {g A reachable}ac’{g}, where ac’
is any action of p’ and reachable captures the predicate that
requires that the state is reachable from some initial state of
.

Approach 1: Syntactic Analysis. For several actions, the
verification of the above Hoare triple can be achieved with
syntactic checking, i.e., by checking that ac’ does not update
variables involved in g.

Approach 2: Analysis of One Program Step. In some
cases, the Hoare triple can be verified by checking the
compatibility of executing action ac’ in a state where g is
true. Specifically, if the conjunction of g and the guard of
ac’ is false then it implies that ac’ cannot be executed in
any state where g is true. Hence, the condition in the above
Hoare triple can be easily satisfied. Moreover, to verify the
above Hoare triple, it also suffices to verify that {g}ac'{g},
i.e., execution of ac’ in any state where ¢ is true results in a
state where g is true. This condition can be easily converted
to a Boolean formula that can be checked with SAT solvers
(e.g., [5]) or theorem provers (e.g., [6]). Observe that this

approach partitions the tasks involved in verifying that ac
is a locally stable action into several small subtasks that
only involve one action at a time. Hence, we expect that the
verification for the same should be achieved quickly.

Approach 3: Analysis of several consecutive program
steps. As mentioned above, the above approaches are sound
but not necessarily complete. In other words, execution of
ac’ does not prevent ac from being executed at a later point,
then that conclusion is valid. However, since we omitted the
condition, it is possible that ac’ does not conflict with ac
although we fail to verify it. In such a case, the designer
has two options. Either accept that ac’ is a conflicting action
and, hence, ac needs to be executed as a synchronous action.
Alternatively, the designer can utilize a model checker [7]
to verify the above condition. Specifically, here, the input
program will be p’, i.e., the program without action ac. And,
the condition to be verified can be expressed trivially in
temporal logics such as LTL or CTL.

C. Cache management

Async actions are very amenable to caching, and can
always be served from the worker’s cache. While executing
an async action, the worker does not need to fetch the most
recent copy of the global variables from the master, as they
are either stable or locally stable. This enables the workers to
execute async actions without contacting the master to lock
any variables. However, an async action can still modify
some global variables in the statement body, and this may
have some consequences for serialization/consistency. For
example, if an async action at worker w updates a global
variable ¢, then a sync action at w will have access to
the updated version of ¢ whereas another sync action at
another worker will use ¢’s old value, leading to a serial-
ization/consistency problem.

Thus after an async action execution, the new values
assigned for any global variables need to be synchronized
back to the master. When should worker w inform the master
about the update of a global variable ¢ by an async action?
As long as w does not read ¢, w does not need to synchronize
with the master. When w reads c in a sync action w will
get the latest value of c. So it needs to inform the master
with the new value of ¢ at this point. In this case we can
piggyback the act of informing master about the new value
of ¢ to that of contacting the master for the execution of the
current sync action (guard evaluation).

D. Optimizations

The master can use several optimizations to improve the
scalability. One significant optimization is for the master to
partition the data to workers so that workers have more local
variables/actions. We give an example of this optimization in
our case study in Section IV. Master can also partition tasks
(actions) to workers to improve locality of execution hence
the performance and scalability of the system. We anticipate



that in some cases instantiating workers with specialized
actions is more advantageous to instantiating all workers
with identical actions. We plan to investigate these patterns
in future work. Other possible optimizations also exist for
master-side. The master can give leases (tokens) to transform
some sync actions to async actions. For example if a sync
action checks whether sufficient resources are available, the
master can allocate/lease sufficient resources to that worker
in advance, so that the worker does not need to ask anymore
and can execute this action as an async action.

A powerful optimization for the worker-side is to use
“Hinted evaluation of the guards locally”. Since the eval-
uation of the guard has no side effects, the workers can
unilaterally evaluate the guards of even sync actions using
cached values as hints. Only when the guard evaluates to
true, the worker synchronizes with the master to obtain
the latest update for the variables to evaluate the guard. If
the guard continues to evaluate to true, the worker begins
execution of its statement, else if the guard fails to evaluate
to true then no statement is executed. This hinted evaluation
of the guard further reduces the query traffic from the
workers to the master. This optimization suggests a tradeoff
between updating worker with more recent information and
evaluation of guards, which we will explore in future work.

To optimize concurrent execution efficiency further, we
allow the developer to annotate some variables to provide
hints to Maestro. One such tag is “Compatible”. A variable
tagged as “Compatible” is not locked/synced by the master
even if that variable is (read-write) shared between the
master and workers.

IV. CASE STUDY: GRAPH SUBCOLORING

Large-scale graph processing is essential for many ser-
vices, including social networking sites (Facebook has 500
million users, Twitter 100 million users), search engines
(where nodes correspond to URLs and vertices can represent
different relationships), semantic web data processing, and
even software model-checking with large state. An example
of graph processing which needs a high degree of coordi-
nation between vertices is distributed graph subcoloring. In
graph subcoloring, the aim is to assign colors to a graph’s
vertices such that each color class induces a vertex disjoint
union of cliques. Assigning different colors to each vertex
solves the problem vacuously but the challenge is to find a
solution using minimal number of colors. This problem is
NP-complete and it is hard to find an optimal solution.

To maintain a minimal graph subcoloring, no 2-hop neigh-
bors which do not have a direct connection can have the
same color. Figure 2 shows a valid but not minimal graph
subcoloring example. Instead of using 3 colors, it is possible
to make all the three nodes in the middle red and set the
leftmost and rightmost nodes to the same color (either blue
or green). Figure 3 shows an invalid graph subcoloring due
to the existence of 2-hop neighbors that have the same color.

Figure 2. A valid but not minimal graph subcoloring

Figure 3.

An invalid graph subcoloring

We are given the below three actions in guarded com-
mand format as the input program to Maestro. Initially all
vertices are assigned a different color. For simplicity, the
input program omits a lot of optimizations and employs
periodically executing actions.) Action 1 denotes that any
vertex ¢ periodically caches the state of any of its neighbor
j, and learns the color of j as well as the colors of neighbors
of j. Action 2 is also periodically executed. It provides i
hints about which color is best for minimizing the number
of colors for subcoloring. For each possible color c, if a 2-
hop neighbor which is not a neighbor of the initiator vertex
also has color ¢, then this color is not a good candidate
and Action 2 marks it as such, else Action 2 increments the
safety score of ¢ for 7. Since Action 2 is about providing
hints in a best-effort manner, it works on cached copies of
neighbors’ state, and does not attempt to collect the most
up-to-date state. Action 3 is the action to finally update the
color of ¢. Action 3 selects the color with the highest score
and before adopting this color for vertex ¢, it checks to make
sure that no vertex in the 2-hop neighborhood that is not an
immediate neighbor of ¢ has the same color.

jenbri — i.copy.j = j.copy.j
true — for each color c¢ that ¢ knows of:
if 35 : 7 € nbr.i Ai.copy.j.color = cN
3k : k € d.copy.j.nbr Ak & nbr.i Ai.copy.j.colork = c
then safe.c = -c0
else safe.c ++

¢ =maz(Ve: safe.c)A
=(3k : k € nbr.nbri Ak ¢ nbr.i A color.k = ¢)
— colori:=c

The Maestro rules classify actions 1 and 2 as async easily
as their guards are stable predicates. Action 3 is a sync action



because its predicate is not locally-stable in the most general
sense. However, we explain below how Maestro can make
Action 3 into an async action by partitioning the graph data
to the workers.

In the Maestro setup, after the master partitions the data
to the workers, each worker w; becomes responsible for a
neighborhood of vertices. Each neighborhood contains two
types of vertices: middle vertices have all 2-hop neigh-
bors belonging to the same worker, while border vertices
may contain 2-hop neighbors outside the current worker
boundary. Figure 4 shows an example in which there are
two workers and each worker is responsible for a 3-by-3
neighborhood of nodes. Here only the leftmost and rightmost
vertices are middle vertices.

While Action 3 is operating on a border vertex b; of
worker w;, w; needs to contact the master to learn the
latest colors of the 2-hop neighbors of b; that belong to
another worker. In addition, it needs to execute the color
update atomically after learning the neighbor’s colors. After
w,; completes the color update of b;, it has to inform the
master about the new color. As an optimization, w; may
delay this update until another worker contacts with master
to learn the color of w;.

On the other hand, Action 3 operating on a middle vertex
m,; of worker w; does not need to contact the master, because
it already has all the color information about the neighbors.
In addition, it does not need to execute the color update
atomically because it knows that until a color update occurs
within this worker, the state (i.e. color) of the neighbors will
be preserved.

To contrast, in a basic distributed implementation in which
Maestro is not used, the programmer would need to enforce
executing the three program actions (or at least Action 3)
atomically for all vertices to ensure correct execution. This
involves locking the 2-hop neighborhood every time Action
3 is executed, and is very detrimental to the performance of
the system.

Worker 2

Figure 4. Middle vertices denoted with M and border vertices with B

In the above mesh graph structure, as the number of
vertices per worker increases, the ratio of middle vertices
also increases. Since Maestro can execute color update on
middle vertices asynchronously, we expect the performance

gain provided by Maestro to increase as well. (Of course
increasing this too much is also a problem because we
lose parallelism from having many workers processing the
graph.) Next, in the performance evaluation section we
present experiments with different graph sizes and graph
types (mesh, social, random) to illustrate this effect.

V. SYSTEM EVALUATION

To provide a preliminary measure on the effectiveness of
the Maestro framework, we present experiment results for
our case study, the graph subcoloring problem.

A. Setup

We ran experiments on Amazon EC2 using a master node
and a number of worker nodes. The master node is a medium
EC2 instance which consists of 5 EC2 compute units and
1.7 GB memory. The workers are standard micro instances
consisting of 2 EC2 compute units and 613 MB memory. In
our workloads we did not observe the master ever becoming
a bottleneck in a workflow, mainly because the master does
not perform heavy operations in the Maestro framework. It
just answers the nonlocal color update requests of workers
and update its graph coloring map at each color update
message received from the workers.

B. Scenarios

We compare Maestro with two other master-worker type
distributed computing solutions. These alternative scenarios
also employ workers for all subcoloring tasks and use master
as a coordinator during the subcoloring process. The main
difference lies in the way vertices in the input graph are
partitioned between master and workers. This partitioning
affects the usage of locks on vertices and the amount of
messaging between master and workers.

In the all-centralized framework, only the master has
access to the graph data. Workers do not hold any graph-
related data, instead they send requests to the master for
acquiring leases to start the color-update program mentioned
in Section IV on a specific vertex. Master checks the
availability of the vertex and all of its 2-hop neighbors
and gives the lease for that vertex to the worker if all
neighborhood is available at that moment. If the lease of
any vertex in the neighborhood has already been given to
another worker, then the lease request is rejected by master
and the worker tries to get a lease for another vertex. If the
worker manages to get the lease for the vertex, then it also
gets the colors of all the vertices in the 2-hop neighborhood
of this vertex. After calculation of the new color for that
vertex based on the neighborhood’s color map, the worker
submits the new color to the master and releases the lease.
Workers perform this procedure until colors for all nodes
stabilize. This solution avoids the need for 2-hop messages
but requires workers to communicate with the master for
every vertex.



In the all-distributed framework, master keeps no color or
neighborhood data about the graph. Instead each worker has
a separate portion of the graph and they have direct access
to their vertex set in this partition. Master just keeps the
mapping of vertices to workers. In this scenario, a worker
can perform the color-update program only on its vertex
set. If the current vertex is a middle vertex, i.e. all vertices
in the 2-hop neighborhood belong to the same worker, the
worker does not need to contact the master throughout the
procedure. On the other hand, if the vertex is a border vertex,
then the worker sends a color request to the master indicating
which vertices need to be contacted. Then the master sends
a color request message to the workers that have access to
the data about these vertices and sends the color replies to
the requester worker. Unlike the all-centralized solution, this
solution does not have to contact master for middle vertices.
On the other hand, when a worker needs data about nonlocal
vertices, the retrieval operation is more costly compared to
the all-centralized framework.

Maestro combines the advantages of both solutions. In
Maestro each worker is responsible for a neighborhood of
vertices, so a middle vertex does not need to contact with
master since it already has all the color information about the
neighbors. In addition, since the master keeps color copies
for all vertices in the graph and synchronizes it with the
workers as vertex colors are updated, a color request for
a nonlocal vertex can be answered directly by the master
without further forwarding this request to the worker which
has direct access to that vertex.

Network Type = Mesh, Number of workers = 4

4096
all-centralized

—+—all-distributed

1024 ——Maestro

2048

Time (sec)

8 16 32 64 128 256 512 1024 2048 409 8192 16384 32768 65536
Number of vertices

Figure 5. Comparison of frameworks in a mesh graph

C. Results and Evaluation

We compare a basic Maestro implementation with all-
distributed and all-centralized solutions over three graph
types. Mesh graph is a regular graph in which vertices are
organized as in 4. Random graph is formed by incrementally
adding a new vertex to the graph at each step and connecting
it to two random neighbors. Finally social graph is gen-
erated by using the Barabasi-Albert graph model with the
parameters given in http://current.cs.ucsb.edu/socialmodels/

to closely follow social network data from Facebook. As-
signment of vertices to the workers is done randomly in
random and social graphs due to the difficulty of determining
disjoint sets of vertices. On the other hand, in mesh network,
we partition the graph based on the spatial proximity of the
vertices on the mesh. The completion time of the subcoloring
algorithm (for all-centralized, all-distributed, and Maestro
frameworks alike) is taken as the last vertex color update
time in the graph. This is detected by using a very generous
timeout for monitoring any color update activity.

Network Type = Random, Number of workers = 4

2048 "
all-centralized

1024 —e—all-distributed

——Maestro

Time (sec)

2 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Number of vertices

Figure 6. Comparison of frameworks in a random graph

Figure 5 shows the completion time of the subcoloring
algorithm for mesh graph for the three different frameworks
as the graph size increases. We see that all-centralized
framework always exhibits the worst performance. This is
caused by the inefficient utilization of workers due to ex-
cessive locking of nodes. Despite the small margin, Maestro
consistently outperforms the all-distributed solution. This
may be because Maestro eliminates extra messages between
the master and the workers for nonlocal color requests that
are present in the all-distributed solution.

Network Type = Social, Number of workers = 4

2048 e ——T——
all-centralized

1024

—+—all-distributed

s12 ——Maestro

Time (sec)

8 2 128 512 2048 8192 32768 131072
Number of vertices

Figure 7. Comparison of frameworks in a social graph

The difference between the frameworks is less obvious in
a random graph since the graph structure and assignment of
vertices to workers is not identical between different runs



of the subcoloring program. However we still observe that
the gap between each method increases as the graph size in-
creases (Figure 6). Maestro maintains the linear relationship
between runtime and graph size as the number of vertices
increase. (Both x-axis and y-axis are given in log-scale.)
This indicates that Maestro is more scalable compared to
the other approaches. We also see this linear behavior of
Maestro in other graph types (Figure 8).

Fr k= Maestro, of workers =4

Mesh
—e—Social

——Random

Time (sec)

2 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
Number of vertices

Figure 8. Maestro framework in different graph types

Finally, in Figure 7 we see the performance of Maestro in
a social graph. Maestro outperforms other methods, except
for the very small graph sizes (which can be explained by
the delay due to the initial copying of vertex colors to the
master from workers).

VI. RELATED WORK

A popular approach for dealing with synchronization
requirements is to use transactions. Transactions free de-
velopers from worrying about manually controlling concur-
rent execution, and are therefore desirable [8]. However,
since transactional systems require a coordinator to pro-
cess/moderate all transactions, they are inherently limited in
their scalability. In order to guarantee safety and correctness,
everything used in a transaction must be locked before eval-
uating & processing of that transaction, hence transactions
are susceptible to the busy polling phenomena we described
in the introduction. This significantly decreases concurrency,
preventing nodes to access shared variables simultaneously.
The scalability of distributed transactions are also limited
due to flooding of requests among multiple coordinators,
and the control overhead due to the coordinators reaching
an agreement.

Distributed lock managers (DLMs) provide concurrent
access to shared resources via synchronizing the accesses
to these resources by means of locking. A very popular
example is the Chubby locking service by Google [3].
Chubby is designed primarily for loosely-coupled distributed
systems. To keep the load lighter on the system, Chubby
provides coarse-grained locks instead of finer-grained locks.
This locking scheme may not always be appropriate for

systems that require tight synchronization. Chubby depends
on manual locking from the developers and is prone to the
disadvantages of locking approaches. Zookeeper [2] is a
related centralized coordination service for distributed appli-
cations. It provides locking mechanisms similar to Chubby
as well as common services such as naming, configuration
management, synchronization, and group services for dis-
tributed systems. Most Zookeeper applications are loosely
synchronized, and does not need tight synchronization. In
contrast, Maestro aims to provide high-performance dis-
tributed processing for tightly synchronized systems. More-
over, Zookeper requires the developer to insert and manage
locks manually, whereas Maestro inserts and manages locks
automatically without involving the developer.

MapReduce [1] employs a master-worker architecture that
is applicable mostly for embarrassingly parallel applications.
Workers do not need to interact with each other during
individual job executions and therefore MapReduce does not
provide tight synchronization or locking of shared variables.

MapReduce is inefficient for processing graph data be-
cause it is a functional language and requires passing the
entire state of the graph from one stage to the next. As
a result, several graph processing frameworks have been
developed recently to more efficiently process large graphs.
Pregel framework from Google is a well-known example [9].
Pregel programming model asks developers to write code
from the point-of-view of a vertex in the graph. Pregel
employs the Bulk Synchronous Parallelism (BSP) approach
[10] and hence requires system-wide synchronization steps.
Pregel inspired several open source projects, including
Golden Orb, Apache Giraph, and Apache Hama. These
projects also use the BSP model, and their basic architectures
and programming model is similar to Pregel. GraphLab
and Signal-Collect projects also develop graph processing
frames for processing large scale graphs. Maestro does not
need system-wide synchronization as in the BSP approach.
Thus, Maestro’s concurrency is not hampered, and Maestro’s
execution model is more flexible.

VII. DISCUSSION & FUTURE WORK

One risk with Maestro maybe that of developers showing
reluctance to adopt Maestro’s guarded-command input lan-
guage. To prevent or alleviate this risk, we plan to develop
GUlI-based Integrated Development Environment (IDE) and
relate our input language to event-driven programming
which the developers are more familiar with.

Another risk can be the master becoming a commu-
nication/computation performance bottleneck. In the Mae-
stro framework, there is a single master, but the master
is not contacted for every decision and acts only as a
lightweight lock manager for sync actions. Experience with
similar cloud computing frameworks, such as the Google
File System (GFS) [4] and Zookeeper [2], shows that in



practice the single master does not constitute a commu-
nication/computation bottleneck if it is not contacted for
every operation/heavyweight-operations. To alleviate this
risk, Maestro deployments will ensure that sufficient network
bandwidth and computational resources is available at the
node where the master is hosted. Furthermore, Maestro will
employ Paxos [11] replication of the master to mask master
failures.

We will build applications on top of Maestro to showcase
Maestro’s benefits for cloud computing application devel-
opers as well as benchmarking Maestro’s performance and
comparing to related tools. In future work we will build
social network graph processing and real-time enterprise
analytics applications using the Maestro framework and
compare Maestro’s performance against transactional and
manual-locking solutions.

Since Maestro performs compilation of high-level code
to the datacenter computing level, we have a high-degree of
flexibility in this compilation and there are many opportuni-
ties to optimize and customize Maestro. As we mentioned
before, developing smart data/task partitioning at the master
to the workers is a very promising venue for performance op-
timization. Another opportunity is to develop smart leasing
(resource allocation) at the master to the workers. We will
investigate ways to customize Maestro for target application
environments as our project progresses.

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

(9]

[10]

(11]

REFERENCES

J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” OSDI, p. 13, 2004.

P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper:
wait-free coordination for internet-scale systems,” USENIX
technical conference, 2010.

M. Burrows, “The chubby lock service for loosely-coupled
distributed systems,” in OSDI, 2006, pp. 335-350.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 29-43, 2003.

B. Dutertre and L. de Moura, “The Yices SMT solver,” SRI
International, 2006.

S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal
verification for fault-tolerant architectures: Prolegomena to
the design of PVS,” IEEE Transactions on Software Engi-
neering, vol. 21, no. 2, pp. 107-125, Feb. 1995.

G. Holzmann, The Spin Model Checker, Primer and Reference
Manual. Reading, Massachusetts: Addison-Wesley, 2003.

J. Gray and A. Reuter, Transaction Processing : Concepts
and Techniques. Morgan Kaufmann Publishers, 1993.

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” SIGMOD, pp. 135-146, 2010.

L. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol. 33, no. 8, pp. 103-111, 1990.

L. Lamport, “Paxos made simple,” ACM SIGACT News,
vol. 32, no. 4, pp. 18-25, 2001.



