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Abstract

Turing’s beautiful capture of the concept of computability by the “Turing ma-
chine” linked computability to a device with explicit steps of operations and use of
resources. This invention led in a most natural way to build the foundations for
computational complexity.

1 Introduction

Computational complexity provides mechanisms for classifying combinatorial problems

and measuring the computational resources necessary to solve them. The discipline

proves explanations of why certain problems have no practical solutions and provides

a way of anticipating difficulties involved in solving problems of certain types. The

classification is quantitative and is intended to investigate what resources are necessary,

lower bounds, and what resources are sufficient, upper bounds, to solve various problems.
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This classification should not depend on a particular computational model but rather

should measure the intrinsic difficulty of a problem. Precisely for this reason, as we will

explain, the basic model of computation for our study is the multitape Turing machine.

Computational complexity theory today addresses issues of contemporary concern,

for example, parallel computation, circuit design, computations that depend on random

number generators, and development of efficient algorithms. Above all, computational

complexity is interested in distinguishing problems that are efficiently computable. Al-

gorithms whose running times are n2 in the size of their inputs can be implemented to

execute efficiently even for fairly large values of n, but algorithms that require an expo-

nential running time can be executed only for small values of n. It is common to identify

efficiently computable problems with those that have polynomial time algorithms.

A complexity measure quantifies the use of a particular computational resource during

execution of a computation. The two most important and most common measures are

time, the time it takes a program to execute, and space, the amount of store used during

a computation. However, other measures are considered as well, and we will introduce

other resources as we proceed through this exposition.

Computational complexity relies on an expanded version of the Church–Turing the-

sis [Chu36, Tur36], one that is even stronger than the original thesis. This expanded

version asserts that any two general and reasonable models of sequential computation

are polynomial related. That is, a problem that has time complexity t on some gen-

eral and reasonable model of computation has time complexity p(t), for some polyno-

mial p, in the multitape Turing machine model. The assertion has been proven for all

known reasonable models of sequential computation including random access machines

(RAMS). This thesis is particularly fortunate because of another assertion known as the

Cobham–Edmonds thesis [Cob64, Edm65]. The Cobham–Edmonds thesis asserts that

computational problems can be feasibly computed on some computational device only

if they can be computed in polynomial time. (Truth be told, an n100 time algorithm is

not a useful algorithm. It is a remarkable phenomenon though, that problems for which

polynomial algorithms are found have such algorithms with small exponents and with

small coefficients.) Combining these two theses, a problem can be feasibly computed only

if it can be computed in polynomial time on some multitape Turing machine.

Computational complexity forms a basis for the classification and analysis of combi-
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natorial problems. To illustrate this, consider the problem of determining whether an

arbitrary graph possesses a Hamiltonian Circuit (i.e., a simple cycle that contains every

vertex). Currently it is not known whether this problem has a feasible solution, and all

known solutions are equivalent to a sequential search of all paths through the graph, test-

ing each in turn for the Hamiltonian property. Recalling that input to a Turing machine

is a word over some finite input alphabet, it must be possible to encode data structures

such as graphs into words so that what is intuitively the size of the graph differs from the

length of the input by no more than a polynomial. In fact, it is easy to do so. Then, we

demand that the theory is capable of classifying the intrinsic complexity of this problem

in a precise way, and is capable of elucidating the difficulty in finding an efficient solution

to this problem.

Finally we should mention the seminal paper of Hartmanis and Stearns, “On the

Computational Complexity of Algorithms” [HS65], from which the discipline takes its

name. This paper formulated definitions of time and space complexity on multitape Tur-

ing machines and proved results demonstrating that with more time, more problems can

be computed. It was a fundamental step to make complexity classes, defined by functions

that bound the amount of resources use, the main subject of study. More abstract defini-

tions of computability could not have offered natural guidance to an intuitively satisfying

and practical formulation of computational complexity.

The Turing machine beautifully captured the discrete step by step nature of compu-

tation. Furthermore, this machine enabled the definition and measurement of time and

space complexity in a natural and precise manner amenable to quantifying the resources

used by a computation. This natural precision of Turing machines was fundamental

in guiding the originators of this field in their fundamental definitions and first results

which set the tenor for this research area up to the present day. Other, more abstract

definitions of computability, while having advantages of brevity and elegance, could not

and did not offer the needed precision or guidance toward this intuitively satisfying and

practical formulation of complexity theory.
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2 Modes of Computation

A computation of a Turing machine is a sequence of moves, as determined by its transition

function. Ordinarily, the transition function is single-valued. Such Turing machines are

called deterministic and their computations are sequential.

A nondeterministic Turing machine is one that allows for a choice of next moves;

in this case the transition function is multivalued. If M is a nondeterministic Turing

machine and x is an input word, then M and x specify a computation tree. The root of

the tree is the initial configuration of M . The children of a node are the configurations

that may follow in one move. A path from the root to a leaf is a computation, and a

computation is accepting if the leaf is an accepting configuration.

Given a Turing machine M , the language L(M) accepted by M is the set of words

such that some computation of M on x is accepting. (Observe that this definition is

meaningful for both the deterministic and the nondeterministic modes.) It is easy to

see, by a breadth-first search of the computation tree, that for every nondeterministic

Turing machine, there is a deterministic Turing machine that accepts the same language.

The difficulty for computational complexity is that this search technique results in a

deterministic machine that is exponentially slower than the original nondeterministic

one.

The advantage of nondeterministic Turing machines is that they are a very useful

mode for classification of computational problems. For example, whereas it is not known

whether there is a deterministic polynomial time-bounded Turing machine to solve (an

encoding of) the Hamiltonian Circuit problem, it is easy to design a nondeterministic

polynomial time-bounded Turing machine that solves this problem. This is what makes

it possible to give an exact classification of the Hamiltonian Circuit problem. Indeed, this

problem is known to be NP-complete, which places it among hundreds of other important

computational problems whose deterministic complexity is still open.

Nondeterminism is first considered in the classic paper of Rabin and Scott on finite

automata [RS59]. We will return to nondeterminism and to a precise definition of NP-

complete in a later section.

4



3 Complexity Classes and Complexity Measures

We assume that a multitape Turing machine has its input written on one of the work

tapes, which can be rewritten and used an as an ordinary work tape. The machine may

be either deterministic or nondeterministic. Let M be such a Turing machine, and let T

be a function defined on the set of natural numbers. M is a T (n) time-bounded Turing

machine if for every input of length n, M makes at most T (n) moves before halting. If

M is nondeterministic, then every computation of M on words of length n must take

at most T (n) steps. The language L(M) that is accepted by a deterministic T (n) time-

bounded M has time complexity T (n). By convention, the time it takes to read the input

is counted, and every machine is entitled to read its input.

Denote the length of a word x by |x|. We might be tempted to say that a nondeter-

ministic Turing machine is T (n) time-bounded if for every input word x ∈ L(M), the

number of steps of the shortest accepting computation of M on x is at most T (|x|). It

turns out that the formulations are equivalent for the specific time bounds that we will

write about. But, they are not equivalent for arbitrary time bounds.

A complexity class is a collection of sets that can be accepted by Turing machines

with the same resources. Now we define the time-bounded complexity classes: De-

fine DTIME(T (n)) to be the set of all languages having time-complexity T (n). Define

NTIME(T (n)) to be the set of all languages accepted by nondeterministic T (n) time-

bounded Turing machines.

In order to define space complexity, we need to use off-line Turing machines. An

off-line Turing machine is a multitape Turing machine with a separate read-only input

tape. The Turing machine can read the input, but cannot write over the input. Let

M be an off-line multitape Turing machine and let S be a function defined on the set

of natural numbers. M is an S(n) space-bounded Turing machine if for every word of

length n, M scans at most S(n) cells on any storage tape. If M is nondeterministic,

then every computation must scan no more than S(n) cells on any storage tape. The

language L(M) that is accepted by an S(n) deterministic space-bounded Turing machine

has space-complexity S(n).

Observe that the space taken by the input is not counted. So space-complexity might

be less than the length of the input or substantially more. (Also, in this manner we
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reflect the space required to carry out the computation.) One might be tempted to say

that a nondeterministic Turing machine is S(n) space-bounded if for every word of length

n that belongs to L(M), there is an accepting computation that uses no more than S(n)

work cells on any work tape. The comment made for time-bounds applies here as well.

Now, we define the space-bounded complexity classes: Define DSPACE(S(n)) to be

the set of all languages having space-complexity S(n). Define NSPACE(S(n)) to be the

set of all languages accepted by nondeterministic S(n) time-bounded Turing machines.

We note that the study of time complexity begins properly with the paper [HS65]

of Hartmanis and Stearns and the study of space complexity begins with the paper

[HLS65] of Hartmanis, Lewis and Stearns. These seminal papers introduced some of the

issues that remain of concern even today. These include time/space trade-offs, inclusion

relations, hierarchy results, and efficient simulation of nondeterministic computations.

We will be primarily concerned with classes defined by logarithmic, polynomial and

exponential functions. As we proceed to relate and discuss various facts about complex-

ity classes in general, we will see what impact they have on the following list of standard

complexity classes. These classes are well-studied in the literature and each contains

important computational problems. The classes are introduced with their common no-

tations.

1. L = DSPACE(log(n));

2. NL = NSPACE(log(n));

3. POLYLOGSPACE =
⋃{DSPACE(log(n)k) | k ≥ 1};

4. DLBA =
⋃{DSPACE(kn) | k ≥ 1};

5. LBA =
⋃{NSPACE(kn) | k ≥ 1};

6. P =
⋃{DTIME(nk) | k ≥ 1};

7. NP =
⋃{NTIME(nk) | k ≥ 1};

8. PSPACE =
⋃{DSPACE(nk) | k ≥ 1};

9. E =
⋃{DTIME(kn) | k ≥ 1};
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10. NE =
⋃{NTIME(kn) | k ≥ 1};

11. EXP =
⋃{DTIME(2p(n)) | p is a polynomial};

12. NEXP =
⋃{NTIME(2p(n)) | p is a polynomial};

The class NL contains the problem of determining for arbitrary directed graphs G

and vertices u and v, whether there is a path from u to v. This problem is not known

to belong to L. The latter class contains the restriction of this problem to the case that

no vertex has more than one directed edge leading from it. [Jon73, Jon75]. The famous

class P is identified with the class of feasibly computed problems. The corresponding

nondeterministic class NP will be discussed in a later section.

The class denoted by LBA is so named because it is known to be identical to the

class of languages accepted by linear-bounded automata, otherwise known as the context-

sensitive languages [Myh60, Kur64]. This comment explains the notation for the corre-

sponding deterministic class as well.

E characterizes the complexity of languages accepted by writing push-down automata

[Mag69], and NE characterizes the complexity of the spectrum problem in finite model

theory [JS74]. PSPACE contains many computational games, such as HEX [ET76].

4 Basic Results

Now we survey several different types of results that apply to all complexity classes.

These results demonstrate that the definitions of these classes are invariant under small

changes and they prove a variety of relationships between these classes. These are for

the most part early results, and their proofs typically involve intricate Turing machine

simulations.

The concepts of reducibility used in comparing combinatorial problems, including in

definitions of completeness, and in related proof methods such as simple diagonalization

and simulation common to complexity theory, arose as generalizations of fundamental

concepts of computability theory. These ideas originated with the founders of computabil-

ity theory prominently including Gödel, Church, Turing, Kleene, Post and others. Alan

Turing in particularly defined his eponymous machines, embodying the specific mode
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of computation most amenable to the application of these ideas (as mentioned above),

and also introduced the oracle Turing machine [Tur50], which enabled a machine-based

definition of the most general notion of relative computability. While other, machine-

independent concepts give rise to the same general results, the use of Turing’s oracle

Turing machines allow for a precise quantified measurement of time, space, nondeter-

minism, randomness, etc., which provides the more exact and fine-grained notions of

computation most applicable to computer science.

4.1 Linear Compression and Speedup

The first results are of the form: if a language can be accepted with resource f(n), then it

can be accepted with resource cf(n), for any c > 0. These results justify use of “big-oh”

notation for complexity functions.

The Space Compression Theorem [HLS65] asserts that if L is accepted by a k-tape

S(n) space-bounded Turing machine, then for any c > 0, L is accepted by a k-tape cS(n)

space-bounded Turing machine. If the S(n) space-bounded Turing machine is nondeter-

ministic, then so is the cS(n) space-bounded Turing machine. A simple machine simula-

tion proves the result. As a corollary, it follows that DSPACE(S(n)) = DSPACE(cS(n))

and NSPACE(S(n)) = NSPACE(cS(n)) , for all c > 0.

Linear speedup of time is possible too, but not quite as readily as is linear compression

of space. The Linear Speedup Theorem [HS65] asserts that if L is accepted by a k-tape

T (n) time-bounded Turing machine, k ≥ 1, and if

inf
n→∞

T (n)/n =∞, (1)

then for any c > 0, L is accepted by a k-tape cT (n) time-bounded Turing machine. Thus,

if infn→∞ T (n)/n =∞ and c > 0, then DTIME(T (n)) = DTIME(cT (n))

Condition 1 stipulates that T (n) grows faster than every linear function. The Linear

Speedup Theorem does not apply if T (n) = cn, for some constant c. Instead, we have

the result that for all ε ≥ 0, DTIME(O(n)) = DTIME((1 + ε)n), and the proof actually

follows from the proof of the Linear Speedup Theorem. This result cannot be improved,

for Rosenberg [Ros67] showed that DTIME(n) 6= DTIME(2n).

The two linear speedup theorems also hold for nondeterministic machines. Thus, if

infn→∞ T (n)/n =∞ and c > 0, then NTIME(T (n)) = NTIME(cT (n)) And, for all ε ≥ 0,
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NTIME(O(n)) = NTIME((1 + ε)n).

However, a stronger result is known for nondeterministic linear-time complexity classes.

A Turing machine that accepts inputs of length n in time n + 1 (the time it takes to

read the input) is called real-time. Nondeterministic Turing machines that accept in time

n + 1 are called quasi-realtime. The class of quasi-realtime languages is NTIME(n + 1).

Book and Greibach [BG70] showed that NTIME(n+ 1) =
⋃{NTIME(cn) | c ≥ 1}.

Since DTIME(n) is a proper subset of DTIME(2n), and

DTIME(2n) ⊆ NTIME(2n) = NTIME(n),

it follows that DTIME(n) 6= NTIME(n). In 1983, Paul, Pippenger, Szemeredi, and Trot-

ter [PPST83] obtained the striking and deep result that DTIME(O(n)) 6= NTIME(O(n)).

4.2 Inclusion Relationships

Now we survey the known inclusion relationships between time-bounded and space-

bounded, deterministic, and nondeterministic classes.

First of all, it is trivial that for every function f , DTIME(f) ⊆ DSPACE(f).

Obviously a Turing machine might enter an infinite loop and still use only bounded

space. Nevertheless, if a language L is accepted by an S(n) space-bounded Turing ma-

chine, where S(n) ≥ log(n), then L is accepted by an S(n) space-bounded Turing machine

that halts on every input. The proof depends on the observation that within space S(n) a

Turing machine can enter at most an exponential in S(n) possible distinct configurations.

A machine enters an infinite loop by repeating one of these configurations, thus making

loop detection possible. Analysis of this result yields the following theorem.

Theorem 1 DSPACE(S(n) ⊆ ⋃{DTIME(cS(n)) | c ≥ 1}, for S(n) ≥ log(n).

Theorem 2 NTIME(T (n)) ⊆ ⋃{DTIME(cT (n)) | c ≥ 1}

We alluded to this result already. Recall that a nondeterministic T (n) time-bounded

Turing machine M and an input x of length n determine a computation tree of depth

at most T (n), and that M accepts n only if one of the paths of the tree is an accepting

path. Theorem 2 is simply a formal expression of the time it takes to execute a search

of this tree.
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The theorems just presented are proved by rather straightforward simulations. The

next theorems involve deep recursions in their simulations. First we need a couple of

technical definitions. The point is that the following results don’t seem to hold for all

resource bounds, but only for those that are constructible. This is not a problem, because

it turns out that all the bounds in which we are interested are constructible.

A function S(n) is space-constructible if there is some Turing machine M that is S(n)

space-bounded, and for each n, there is some input of length n which uses exactly S(n)

cells. A function S(n) is fully space-constructible if every input of length n uses S(n)

cells.

A function T (n) is time-constructible if there is some Turing machine M that is T (n)

time-bounded, and for each n, there is some input of length n on which M runs for

exactly T (n) steps. A function T (n) is fully time-constructible if for every input of length

n, M runs for exactly T (n) steps.

It is merely an exercise to see that ordinary arithmetic functions such as log(n), nc,

and cn, are fully time-constructible and fully space-constructible.

Theorem 3 (Savitch [Sav70]) If S is fully space-constructible and S(n) ≥ log(n),

then NSPACE(S(n)) ⊆ DSPACE(S2(n)).

This is a very important result, from which the following corollaries follow. Observe

that a standard depth-first search simulation would only provide an exponential upper-

bound.

Corollary 1 PSPACE =
⋃{DSPACE(nc) | c ≥ 1} =

⋃{NSPACE(nc) | c ≥ 1} and

POLYLOGSPACE =
⋃{DSPACE(log(n)c) | c ≥ 1} =

⋃{NSPACE(log(n)c) | c ≥ 1}

For this reason, nondeterministic versions of PSPACE and POLYLOGSPACE were

not defined as standard complexity classes.

Corollary 2 NSPACE(n) ⊆ DSPACE(n2) and NL ⊆ POLYLOGSPACE.

Theorem 4 ([Coo71a]) If S is fully space-constructible and S(n) ≥ log(n), then

NSPACE(S(n)) ⊆
⋃
{DTIME(cS(n)) | c > 1}.
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4.3 Relations between the Standard Classes

Figure 1 shows the inclusion relations that emerge by application of the results just

presented. In this figure, a complexity class C is included in complexity class D if there

is a path from C to D reading upward.

From Theorem 1 we learn that L ⊆ P, PSPACE ⊆ EXP , and DLBA ⊆ E. By

Theorem 2, we know that NP ⊆ PSPACE. By Savitch’s Theorem, LBA ⊆ PSPACE,

and (Corollary 2) NL ⊆ POLYLOGSPACE. Theorem 4 is used to conclude that NL ⊆ P

and LBA ⊆ E. All other inclusions in the figure are straightforward.

4.4 Separation Results

Now we consider which of these classes are the same and which are not equal. The

following theorems are proved by diagonalization.

The first theorem asserts that if two space bounds differ by even a small amount,

then the corresponding complexity classes differ. The second theorem gives a separation

result for time, but it requires that the time functions differ by a logarithmic factor.
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There are technical reasons for this. The intuition that makes results for time harder to

obtain than for space is straightforward though. Time marches relentlessly forward, but

space can be reused.

Theorem 5 ([HLS65]) If S2 is space-constructible, and

inf
n→∞

S1(n)/S2(n) = 0,

then there is a language in DSPACE(S2(n)) that is not in DSPACE(S1(n)).

(This theorem was originally proved with the additional assumptions that S1(n) ≥
log(n) and S2(n) ≥ log(n). Sipser [Sip78] showed that the additional assumptions are un-

necessary.) As consequences of this theorem, L 6= POLYLOGSPACE, POLYLOGSPACE 6=
DLBA, and DLBA 6= PSPACE. It even follows easily from theorems we described already

that LBA is properly included in PSPACE.

Theorem 6 ([HS65]) If T2 is fully time-constructible and

inf
n→∞

T1(n) log(T1(n))/T2(n) = 0,

then there is a language in DTIME(T2(n)) that is not in DTIME(T1(n)).

Thus, P 6= EXP. Equality (or inequality) of all other inclusion relationships given in

the figures is unknown. Amazingly, proper inclusion of each inclusion in the chain

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

is an open question even though the ends of the chain are distinct (L 6= PSPACE).

Similarly, equality of each inclusion in the chain

P ⊆ NP ⊆ PSPACE ⊆ EXP

is open, yet P 6= EXP.

Also, it is not known whether any of the inclusions in the chain

DLBA ⊆ LBA ⊆ E ⊆ NE

12



are proper.

In addition to the results explicitly mentioned here, there is a nondeterministic space

hierarchy theorem due to Ibarra [Iba72]. In 1987 Immerman [Imm88] and Szelepcsényi

[Sze88] independently proved that nondeterministic S(n) space-bounded classes are closed

under complements for S(n) ≥ log(n). A consequence of this important result is that

there is a hierarchy theorem for nondeterministic space that is as strong as that for de-

terministic space. Also there is a difficult nondeterministic time hierarchy theorem due

to Cook [Coo73].

Book [Boo72, Boo76] has shown that none of the complexity classes POLYLOGSPACE,

DLBA, and LBA is equal to either P or NP. He does this by analyzing the closure prop-

erties of these classes, and shows that they are different from one another. To this date,

it is not known which of these classes contains a language that does not belong to the

other.

5 Nondeterminism and NP-Completeness

Several different additions to the basic deterministic Turing machine model are often con-

sidered. These additions add computational power to the model and allow us to classify

certain problems more precisely. Often these are important problems with seemingly no

efficient solution in the basic model. The question then becomes whether the efficiency

provided by the additional power is really due to the new model or whether the added

efficiency could have been attained without the additional resources.

The original and most important example of this type of consideration is nondeter-

minism. For each of the standard nondeterministic complexity classes we have been

considering, it is an open question whether the class is distinct from its deterministic

counterpart. (The only exception being PSPACE.)

Recall that a nondeterministic Turing machine is one with a multivalued transition

function, and recall that such a machine M accepts an input word x if there some

computation path of M on x that terminates in an accepting state. Let us assume, for

each configuration of M , that there are exactly two possible next configurations, say c0

and c1. Then, M can be simulated in the following two-stage manner: (1) Write an

arbitrary binary string on a work-tape of a deterministic Turing machine M ′. (2) Given
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an input word x, M ′ deterministically executes the computation path of M on x that is

determined by the binary-string written on its work-tape. That is, M ′ simultaneously

simulates M and reads its binary word from left to right; if the symbol currently scanned

is 0, then M ′ continues its simulation in configuration c0, and if the symbol currently

scanned is 1, then M ′ continues its simulation in configuration c1. Clearly, there is a

binary string r such that M ′ accepts x when r is written on its work-tape if and only if

there is an accepting computation of M on x. Informally, stage (1) comprises a “guess”

of a witness or proof r to the fact that x ∈ L(M), and stage (2) comprises a deterministic

verification that r is a correct guess.

This guessing and verifying completely characterizes nondeterminism. Consider the

problem (SAT) of determining, given a formula F of propositional logic, whether F is

satisfiable. If F has n variables, there are 2n different truth assignments. All known

deterministic algorithms for deciding the satifiability of F are equivalent to a sequential

search of each of the assignments to see if one of them leads to satisfaction (i.e., evaluates

to the truth value TRUE). Clearly, an exhaustive search algorithm for checking satisfac-

tion takes 2n steps for a formula of size n, thereby placing SAT into the complexity class

E. However, the following nondeterministic algorithm for SAT reduces its complexity to

polynomial time: Given an input formula F , (1) guess an assignment to the Boolean

variables of F . This takes O(n) steps. (2) Verify that the assignment evaluates to True.

This takes O(n log(n)) steps. Thus, SAT belongs to the class NP.

NP is the most important nondeterministic complexity class. It is the class of lan-

guages that have deterministic, polynomial-time verifiers. NP plays a central role in

computational complexity as many important problems from computer science and math-

ematics, which are not known to be solvable deterministically in polynomial time, are in

NP. These include SAT, the graph Hamiltonian Circuit problem discussed earlier, var-

ious scheduling problems, packing problems, nonlinear programming, and hundreds of

others. The most central and well-known open problem in complexity theory is whether

P = NP. This problem is one of the several Millenium Prize Problems and the researcher

who solves it receives a $1,000,000 prize from the Clay Mathematics Institute [Ins00].

The concept of NP-completeness plays a crucial role here as it gives a method of

defining the most difficult NP problems. Intuitively, a problem A in NP is NP-complete

if any problem in NP could be efficiently computed using an efficient algorithm for A as
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a subroutine.

Formally, A is NP-complete if (1) A ∈ NP, and (2) for every B ∈ NP, there is a

function f that can be computed in polynomial time such that x ∈ B if and only if

f(x) ∈ A. (When property (2) holds for any sets B and A, we way B is many-one

reducible to A in polynomial time, and we write B≤P
mA.) This definition captures the

intuitive notion: An efficient procedure for determining whether x belongs to B is to

compute f(x) and then input f(x) to a simple subroutine for determining membership

in A.

Focus on the class NP as well as the discovery that SAT is NP-complete is due

to Cook [Coo71b], and to Levin [Lev73], who independently obtained a variant of this

result. Karp [Kar72] discovered a wide variety of NP-complete problems, and clearly

demonstrated the importance of this new notion. These works opened the floodgates to

the discovery of many more NP-complete problems in all areas of computer science and

other computational disciplines.

The salient fact about NP-complete problems is that NP = P if and only if P contains

an NP-complete problem. Thus, a single problem captures the complexity of the entire

class.

6 Relative Computability

In this section we expand more broadly on the idea of using a subroutine for one problem

in order to efficiently solve another problem. By doing so, we make precise the notion

that the complexity of a problem B is related to the complexity of A—that there is an

algorithm to efficiently accept B relative to an algorithm to efficiently accept A. Most

generally, this should mean that an acceptor for B can be written as a program that

contains subroutine calls of the form “x ∈ A,” which returns TRUE if the Boolean

test is true, and which returns FALSE, otherwise. The algorithm for accepting B is

called a reduction procedure and the set A is called an oracle. The reduction procedure is

polynomial time-bounded if the algorithm runs in polynomial time when we stipulate that

only one unit of time is to be charged for the execution of each subroutine call. Obviously,

placing faith in our modified Church–Turing thesis and in the Cobham–Edmonds thesis,

these ideas are made precise via the oracle Turing machine.
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An oracle Turing machine1 is a multitape Turing machine with a distinguished work

tape called the oracle tape, and three special states Q, YES, and NO. When the Turing

machine enters state Q the next state is YES or NO depending on whether or not the

word currently written on the oracle tape belongs to the oracle set. In this way, if the

machine is provided with an oracle A, it receives an answer to a Boolean test of the form

“x ∈ A” in one move. Let M be an oracle Turing machine, let A be an oracle, and

let T be a time complexity function. Oracle Turing machine M with oracle A is T (n)

time-bounded if for every input of length n, M makes at most T (n) moves before halting.

If M is a nondeterministic oracle Turing machine, then every computation of M with

A on words of length n must make at most T (n) moves before halting. The language

accepted by M with oracle A is denoted L(M,A).

6.1 The Polynomial Hierarchy

If B is accepted by a polynomial time-bounded oracle Turing machine with oracle A,

then we write B ∈ PA. PA is the class of sets acceptable in polynomial time relative

to the set A. The class NPA is defined analogously. PNP is the class of sets accepted

in polynomial time using oracles in NP. Similarly, NPNP is the class of sets accepted in

nondeterministic polynomial time using oracles in NP.

In analogy to the arithmetical hierarchy, there is a hierarchy of complexity classes that

lies between P and PSPACE that is generated by using more and more powerful oracles.

This is called the polynomial hierarchy (cf. [Sto76, Wra76]). The class P forms the bottom

of the hierarchy and NP lies on the first level. The second level, denoted ΣP
2 , is defined

to be NPNP. The third level, ΣP
3 , is NPΣP

2 . In this manner, the classes of the polynomial

hierarchy are defined inductively. It is not known whether the polynomial hierarchy is a

strict hierarchy, just as it is not known whether P 6= NP. However, researchers believe

the polynomial hierarchy forms an infinite hierarchy of distinct complexity classes, and

it serves as a useful classification scheme for combinatorial problems.

If P = PSPACE, then the entire polynomial hierarchy (PH) collapses to P. However,

this is not believed to be the case. Researchers believe that the hierarchy is strict, in

which case it follows that PH is properly included in PSPACE. And assuming this is so,

1Oracle Turing machines were first discussed by Turing in his 1939 London Mathematical Society
paper, “Systems of Logic Based on Ordinals” [Tur39]. They were called o-machines in the paper.
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the structure of PSPACE− PH is very complex [AS89].

6.2 NP-Hardness

A set A is NP-hard if for all sets B ∈ NP, B ∈ PA. Note that NP-hard sets are not

required to belong to NP. NP-hard problems are as “hard” as the entire class of problems

in NP, for if A is NP-hard and A ∈ P , then P = NP.

Define a set B to be Turing reducible to A in polynomial time (B≤P
TA) if B ∈ PA.

Then, it is interesting to compare ≤P
T with ≤P

m. (Recall that we needed the latter in

order to define NP-complete sets.) The reducibilities “B≤P
mA” and “B≤P

TA” are not the

same, for they are known to differ on sets within the complexity class E [LLS75]. Define

a set A to be ≤P
m-hard for NP if for all sets B ∈ NP, B≤P

mA. Under the assumption P 6=
NP, one can prove the existence of an NP-hard set A that is not ≤P

m-hard for NP [SG77].

Furthermore, NP-hard problems are known that (1) seem not to belong to NP, and (2)

no ≤P
m-reduction from problems in NP is known [GJ79],[HS01, HS11].

6.3 Complete Problems for Other Classes

Completeness is not a phenomenon that applies only to the class NP. For each of the

complexity classes in our list of standard classes, it is possible to define appropriate re-

ducibilities and to find complete problems in the class with respect to those reducibilities.

That is, there are problems that belong to the class such that every other problem in

the class is reducible to them. A problem that is complete for a class belongs to a sub-

class (that is closed under the reducibility) if and only if the entire classes are the same.

Interestingly, each of the sample problems given at the end of Section 3 are complete

for the classes to which they belong. So, for example, the graph accessibility problem is

complete for NL, and this problem belongs to L if and only if L = NL. The canonical

complete problem for PSPACE is formed by fully quantifying formulas of propositional

calculus. The problem then is to determine whether the resulting quantified Boolean

formula is true.
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7 Nonuniform Complexity

Here we briefly digress from our description of computational complexity based on the

Turing machine to describe an important finite model of computing, Boolean circuits.

Since real computer are built from electronic devices, digital circuits, this is reason enough

to consider their complexity. The circuits that we consider are idealizations of digital

circuits just as the Turing machine is an idealization of real digital computers. Another

reason to study such nonuniform complexity is because interesting connections to uniform

complexity are known.

A Boolean circuit is a labeled, acyclic, directed graph. Nodes with in-degree 0 are

called input nodes, and are labeled with a Boolean variable xi or a constant 0 or 1. Nodes

with output degree 0 are called output nodes. Interior nodes, nodes other than input and

output nodes represent logical gates: they are labeled with AND, inclusive OR, or NOT.

Arbitrary fan-out is allowed.

The constants 1 and 0 are the allowed inputs. If C is a circuit with exactly one

output node and n input nodes, then C realizes a Boolean function f : {0, 1}n 7→ {0, 1}.
When the input nodes receive their values, every interior value receives the value 0 or 1

in accordance with the logical gate that the interior node represents. If x = x1x2 . . . xn

is a string in {0, 1}n and C is a circuit with n input nodes, then we say C accepts x if

C outputs 1 when x is the input. Let A be a set of strings of length n over the binary

alphabet. Then A is realized by a circuit C if for all string x of length n, C accepts x if

and only if x belongs to A.

As we have described computational complexity thus far, one machine is expected to

serve for inputs of all lengths. The Turing machine is “uniform;” it is finitely describable,

but might accept an infinite number of strings. A circuit however serves only for inputs

of one length. Therefore, it is not a single circuit that corresponds to a machine, or that

can accept a language, but a family of circuits, one for each length. A family of circuits

is “nonuniform;” it may require an infinite description. We say that a family of circuits

{Cn} recognizes a set A, A ⊆ {0, 1}∗, if for each n, the circuit Cn, realizes the finite set

An = {x | |x| = n and x ∈ A}.
It should be obvious that families of circuits are too broad to exactly classify com-
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plexity classes, because every tally language2 is recognized by some family of circuits.

So there are families of circuits that recognize undecidable languages. Nevertheless, we

proceed.

The size of a circuit is the number of nodes and the depth of a circuit is the length

of the longest path in the circuit. The size of a circuit is a measure of the quantity of

the circuit’s hardware. We concentrate our focus on polynomial size families of circuits,

because these are the only families that can feasibly be constructed.

Circuit depth corresponds to parallel processing time, but we are not ready to fully

justify this claim, which requires understanding the relationship between uniform and

nonuniform computation. Basically, every parallel computation (on some parallel pro-

cessor) can be unraveled to form a family of circuits with constant delay at each gate.

So circuit depth is a lower bound on parallel time. If language A is not recognizable by a

family of circuits of depth T (n), then no parallel computer can compute A in time T (n).

Savage [Sav72] proved that every set in DTIME(T (n)) can be recognized by a family

of circuits of size O(T (n))2. A tighter result than this is proved by Pippenger and Fischer

[PF79]. As an immediate consequence, every language in P has a polynomial-size family

of circuits. Hence, if some language in NP does not have a polynomial-size family of

circuits, then P 6= NP.

Largely because of this observation, much effort has gone into obtaining lower-bounds

for various classes of circuits. Thus far this effort has met with limited success: Deep

results have been obtained for highly restricted classes [FSS84, Ajt83, Yao85]. There is

more to this story. Shannon [Sha49], in a nonconstructive proof, showed that almost all

circuits require exponential size circuits, but we have no information about which sets

these are. One of the great challenges is to find lower bounds to the circuit size of families

of circuits that recognize explicit, interesting, combinatorial problems.

Now we must mention the important result of Karp and Lipton [KL80] that states that

if NP has a polynomial-size family of circuits, then the polynomial hierarchy collapses to

the second level. Here is another important connection between nonuniform and uniform

complexity, which supports the conjecture that NP does not have a polynomial-size family

of circuits.

2A tally language is a language defined over a unary alphabet.
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8 Parallelism

We consider now the theory of highly parallel computations. VLSI chip technology is

making it possible to connect together large numbers of processors to operate together

synchronously. The question, of course, is what can be done with the result. Several

models of parallel computation have been proposed and even though each model can

simulate the other without much loss, the issue of “correct” model is not quite as settled

as it is with sequential computation. In this article we mention two models of parallelism,

“alternating Turing machines” and “uniform families of circuits,” which are important

to computational complexity.

The alternating Turing machine, due to Chandra, Kozen, and Stockmeyer [CKS81] is

a fascinating extension of the nondeterministic Turing machine. Informally, think of the

nondeterministic Turing machine as one consisting of “existential” configurations. That

is, when the Turing machine enters an existential configuration, it causes a number of

processes to operate in parallel, one process for each nondeterministic choice. If one of

these processes accepts, then it reports acceptance back to its parent, and in this manner

the computation accepts. With the alternating Turing machine, a process that became

active by this action, in turn enters a “universal” configuration that causes another large

number of processes to become active. This time, the universal configuration eventually

reports acceptance to its parent if and only if all of the processes it spawns accept.

Consider such alternating Turing machines that operate in polynomial time, and consider

the complexity class AP of languages that are accepted by these devices. It should come

as no surprise that alternating Turing machines that consist of a constant k > 0 number of

alternations accepts precisely the kth level of the polynomial hierarchy. More surprising,

is the theorem that AP = PSPACE. Studies have shown that it is true in general that

parallel time is within a polynomial factor of deterministic space.

The theorem just stated suggests that presumably intractable languages, i.e., those

in PSPACE, are capable of enormous speedup by using parallelism. This, however, is

an impractical observation. The proof of the theorem requires an exponential number

of processes. No one will ever build parallel computers with an exponential number of

processes.
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Before returning to the question of what are the problems that can take advantage of

parallelism, we introduce our second model. Families of circuits would provide a simple

and effective model were it not for the fact that small families of circuits can recognize

undecidable sets. We repair this flaw by introducing uniformity. Borodin and Cook

[Coo79, Bor77] define a family of circuits {Cn}n to be logspace uniform if there exists a

deterministic Turing machine that on input 1n, for each n ≥ 1, computes (an encoding

of) the circuit Cn. Then, for example, one interesting result is that P is the class of

languages that have logspace uniform, polynomial-size families of circuits.

Now we can return to the question at hand and we do so with a discussion of Green-

law et al. [GHR95]: We have seen already that parallelism will not make intractable

problems tractable. Therefore, if we are to dramatically improve performance it must be

by reducing polynomial sequential time to subpolynomial parallel time. We achieve this

by trading numbers of processors for speed. The goal of practical parallel computation

is to develop algorithms that use a reasonable number of processors and are exceedingly

fast. What do we mean by that? We assume that a polynomial number of processors is

reasonable, and more than that is unreasonable. Can fewer than a polynomial number

of processors suffice? To answer this questions observe that

(sequential time)/(number of processors) ≤ (parallel time)

Taking sequential time to be polynomial time, obviously, if parallel time is to be sub-

polynomial, then a polynomial number of processors must be used. We focus on the

class of problems that have uniform families of circuits with polynomial size and polylog,

i.e., (log n)O(1), depth. So highly parallel problems are those for which we can develop

algorithms that use a polynomial number of processors to obtain polylog parallel time

bounds.

The resulting class of languages is called NC, and is named in honor of Nick Pippenger,

who obtained an important characterization [Pip79]. Researchers identify the class NC

with the collection of highly parallel problems, much as we identify P with the collection

of feasibly computable problems.

The models we introduced are quite robust. For example, it is known that NC is iden-

tical to the class of languages accepted by alternating Turing machines in simultaneous

polylog time and log space.
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9 Probabilistic Complexity

In a 1950 paper in the journal Mind [Tur50], Alan Turing wrote,

An interesting variant on the idea of a digital computer is a ‘digital computer

with a random element’. These have instructions involving the throwing of

a die or some equivalent electronic process: one such instruction might for

instance be, ‘Throw a die and put the resulting number into store 1000.’

Nearly thirty years after this paper appeared the ideas put forth there became a

central part of the active area of probabilistic complexity theory. The main computational

model used for this study is a probabilistic Turing machine. It has been used to measure

and formalize the performance of probabilistic algorithms and to define the main concepts

for the theoretical study of probabilistic complexity theory.

The impetus for this work began in the mid-1970’s with the work on algorithms for

primality testing pioneered by Solovay and Strassen [SS77], and by Miller and Rabin

[Mil76] , [Rab80]. The two algorithms invented in these papers both have the same

character. They both yield methods for testing whether a given input integer is prime

that are significantly more efficient than any deterministic algorithm. Instead they make

use of random numbers r provided to the algorithm, and used there to decide primality.

While very efficient the algorithm can, in rare instances of r, make a mistake and wrongly

decide that a composite number is actually prime. If the probability of these errors

happening is non-negligible, such algorithms have little worth. But in this case it is

possible to ensure that the probability of error is extremely small, say smaller than the

chances the computer makes a hardware error during the computation, or smaller than

the number of atoms in the known universe. In such cases the algorithms can be thought

to be essentially correct and useful for the actual task of finding large prime numbers for

various application, most notably cryptographic applications.

From these ideas arose other examples of strong probabilistic algorithms for impor-

tant interesting problems. Over the next decade these algorithms gained in impact and

theorists took on the task of classifying and examining these algorithms and the strength

of the assumptions and method underlying them. The model they used for this study

was essentially the model proposed above by Alan Turing in 1950.
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These algorithms suggested that we should revise our notion of “efficient computa-

tion”. Perhaps we should now equate the efficiently computable problems with the class

of problems solvable in probabilistic polynomial time. Beginning in the 1970’s a new

area of complexity theory was developed to help understand the power of probabilistic

computation.

Formally, a probabilistic Turing machine is just a nondeterministic Turing machine,

but acceptance is defined differently. Each nondeterministic choice is considered as a ran-

dom experiment in which each outcome has equal probability. We may assume that each

nondeterministic branch has exactly two possible outcomes, so that each has possibility

1/2. A probabilistic Turing machine has three kinds of final states, accepting or a-states,

rejecting or r-states, and undetermined or ?-states. The outcome of the machine on an

input is now a random variable whose range is {a, r, ?}. We let Pr[M(x) = y] denote

the probability that machine M on input x halts in a y-state. Note that the probabil-

ity of a given nondeterministic path is obtained by raising 1/2 to a power equal to the

number of nondeterministic choices along it. The probability that M accepts an input x,

Pr[M(x) = a], is the sum of the probabilities of all accepting paths (that is, paths which

end in an a-state).

Using this model we can now define several different useful probabilistic complex-

ity classes. These classes were originally defined by Gill [Gil77] and by Adleman and

Manders [AM77]. Each consists of languages accepted by restricting the machines to

polynomial time and specifying the probability needed for acceptance. The first class,

PP, for probabilistic polynomial time, is the easiest to define and is the most powerful

parallel class we consider, but is the least useful. Let χA denote the characteristic func-

tion of A. PP is the class of all languages for which there is a probabilistic, polynomial

time-bounded Turing machine M such that for all x,

Pr[M(x) = χA(x)] > 1/2.

That is,

x ∈ A→ Pr[M(x) = a] > 1/2,

and

x 6∈ A→ Pr[M(x) = r] > 1/2.
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One would like to increase the reliability of a probabilistic Turing machine by repeat-

ing its computations a large number of times and giving as output the majority result.

This turns out not to be possible with PP, and this is why there is no practical interest

in this class, we are at times stuck with a too high probability of error. While it is not

known whether PP is contained in the polynomial hierarchy, we do have the following

two quite easy facts.

Lemma 1 NP ⊆ PP.

Proof Let M be a nondeterministic Turing machine that accepts an NP language L.

Now consider the nondeterministic Turing machine M ′ whose first move is to nondeter-

ministically either simulate M or to go into a special state where the computation, in

every succeeding move, just splits into two identical computations until the length of the

computation reaches the same length as the computations of M and then halts in an

accepting state.

Now if x 6∈ L then there are exactly as many accepting computations as rejecting

computations. Namely, none of the computations whose first step is to simulate M

accept while all of the computations whose first step is to go into the special new state

accept. These two groups of computations are of the same size.

On the other hand, if x ∈ L, then as above, all computations starting with the special

state accept and at least one computation of M accepts and so more computations accept

than reject. So the machine M ′, considered as a probabilistic machine, shows that L is

in PP.

While stated without proof, it is quite straightforward to simulate the answer to PP

computations within PSPACE, yielding,

Lemma 2 PP ⊆ PSPACE.

The error probability is the probability that a probabilistic machine gives the wrong

answer on a given input. The next class we define bounds the error probability away

from 1/2, and that restriction makes it possible to increase reliability. The class BPP,

for bounded-error probabilistic polynomial time, is the class of all languages for which
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there is a probabilistic, polynomial time-bounded Turing machine M and a number

ε, 0 < ε < 1/2, such that for all x,

Pr[M(x) 6= χA(x)] < ε.

BPP-type Turing machines are said to be of the “Monte Carlo” type. They model

algorithms that are allowed to make mistakes (i.e. terminate in an r-state when x ∈ L,

or terminate in an a-state, when x 6∈ L) with some small probability. On the other hand,

“Las Vegas” algorithms may terminate with “?” (again with small probability), but they

never err. These too can be captured by probabilistic complexity.

The primality algorithms in the examples above were Monte Carlo algorithms. It is

not difficult to see that P ⊆ BPP ⊆ PP, and BPP is closed under complement. But

where does BPP lie with respect to the polynomial hierarchy? Somewhat surprisingly,

Sipser, Gacs, and Lautemann proved that BPP ⊆ ΣP
2 [Sip83, Lau83].

In fact something stronger can be seen from these algorithms. Namely the proba-

bilistic primality algorithms have the property that when the input to them is prime

it is always identified as being prime by the algorithms. It is only when the input in

composite that there is some probability of error. To capture this property we define the

class, R, an interesting, one-sided version of BPP.

The class R, for random polynomial time, is the class of all languages for which there

is a probabilistic, polynomial time-bounded Turing machine M such that for all x,

x ∈ A→ Pr[M(x) = a] > 1/2,

and

x 6∈ A→ Pr[M(x) = a] = 0.

It has been shown that primality and also its complement, the set of all composite

number, is solvable in R.

Neither R nor BPP are known to contain complete problems. Several properties of

these classes suggest that such problems don’t exist. And it is known that oracles exist

relative to which neither class contains complete problems.

Returning to the idea of primality testing, and the complexity of the set of prime

numbers, it is easy to see that primality is in co-NP. An early result of Pratt [Pra75]
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showed that one could also find a witness for primality which can be checked in polynomial

time, putting primality into NP ∩ co-NP.

The early probabilistic algorithms of Strassen/Solovay and of Miller/Rabin discussed

earlier show that primality is in co-R. Later, work of Adleman and Huang [AH87]

improved this to obtain primality in R ∩ co-R, implying that primality has an efficient

Las Vegas algorithm. Finally, early in this century Agrawal, Kayal and Saxena [AKS04]

gave a deterministic polynomial-time algorithm for primality. If this result was known

in the 70’s, perhaps the study of probabilistic algorithms would not have progressed as

quickly.

9.1 Derandomization

If you generate a random number on a computer, you do not get a truly random value,

but a pseudorandom number computed by some complicated function on some small,

hopefully random seed. In practice this usually works well so perhaps in theory the same

might be true. Many of the exciting results in complexity theory in the 1980’s and 90’s

consider this question of derandomization—how to reduce or eliminate the number of

truly random bits to simulate probabilistic algorithms.

The results above add to the possibility of eliminating randomness from BPP and

R problems. BPP has many similar properties to P (e.g., they are both closed under

complement and BPPBPP = BPP) and because there are no natural problems and very

few candidates for problems in BPP − P, many believe that P = BPP. This subject

considers how to reduce or eliminate randomness from probabilistic algorithms, making

them deterministic. For example P = BPP is equivalent to being able to derandomize

all BPP algorithms. There has been very interesting considerable progress in this area

in the past decade. But it is still unknown whether P = BPP, or even P = R.

There have been two approaches to eliminating randomness, both of which indicate

that strong, general derandomization results may be possible. The first approach arose

from cryptography where creating randomness from cryptographically hard functions was

shown by Blum and Micali [BM84]. Subsequently Yao [Yao82] showed how to reduce the

number of random bits of any algorithm based on any cryptographically secure one-way

permutation. H̊astad, Impagliazzo, Levin and Luby [HILL91] building on techniques of

Goldreich and Levin [GL89] and Goldreich, Krawczyk and Luby [GKL88] prove that one
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can get pseudorandomness from any one-way function.

Nisan and Wigderson [NW94] take a different approach. They show how to get pseu-

dorandomness based on a language hard against nonuniform computation. Impagliazzo

and Wigderson [IW97] building on this result and Babai, Fortnow, Nisan and Wigder-

son [BFNW93] show that BPP equals P if there exists a language in exponential time

that cannot be computed by any subexponential circuit. This is a believable hypothesis.

10 Interactive Proof Systems

One can think of the class NP as a proof system: For example for the NP problem

SAT = {satisfiable Boolean formulas} an arbitrarily powerful prover gives a proof, i.e.,

a string representing a truth assignment, that shows a formula is satisfiable. This proof

can be verified by a polynomial-time verifier, an algorithm that is capable of checking

that the string is a short (polynomial-length) proof of satisfiability. We do not put

any restriction on how the verifier obtains the proof itself, it is sufficient that the proof

exists. For example, the proof might be provided by a powerful prover with unrestricted

computational power.

Consider a generalization of these ideas where we allow a protocol or dialogue be-

tween the verifier and a prover to decide language membership. As before there is no

restriction placed on the computational power of the prover, and the verifier is restricted

to be only polynomially powerful. We add one more ingredient to this mix by allowing

randomization. That is, we allow the verifier, whose time is polynomially limited, to use a

random sequence of bits to aid in the computation, and require only that he be convinced

with high likelihood, and not with complete certainty, of the membership claim being

made. Specifically the verifier is a probabilistic polynomial-time Turing machine with

acceptance probability bounded away from 1/2, i.e., one implementing a Monte Carlo

algorithm.

This model generalizes that of the NP verifier, it is clear that as before NP problems

are those for which membership can be proved by a prover giving the verifier a polynomial

length “proof” and the verifier validating that proof in deterministic polynomial time.

The model also easily captures the class BPP as any BPP problem can be decided by

the probabilistic polynomial time verifier without any information from the prover.
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In general this simple probabilistic interactive proof where the interaction is limited to

one “round” of communication, in this case the prover sending a message to the verifier,

yields the complexity class of problems called MA. One can also consider extended

interaction where the verifier sends messages based on her random bits back to the

prover. The (fixed) bounded round version of this class is denoted AM and the unbounded

polynomial round version is IP. The incredible power of these interactive proof systems

has led to several of the most surprising and important recent results in computational

complexity theory.

In 1985, Babai [Bab85] defined interactive proof systems to give complexity-theoretic

characterizations of some problems concerning matrix groups. An alternative interactive

proof system was defined by Goldwasser, Micali and Rackoff [GMR89] as a basis for

the cryptographic class zero-knowledge. Zero-knowledge proof systems have themselves

played a major role in cryptography.

Goldreich, Micali and Wigderson [GMW86] show that the set of pairs of noniso-

morphic graphs has a bounded-round interactive proof system. Boppana, H̊astad and

Zachos [BHZ87] show that if the complement of any NP-complete language has bounded-

round interactive proofs then the polynomial-time hierarchy collapses. As a consequence

of this result it is known that the graph isomorphism problem is not NP-complete unless

the polynomial-time hierarchy collapses.

In 1990, Lund et al. [LFKN90] showed that the complements of NP-complete lan-

guages have unbounded round interactive proof systems. These techniques were quickly

extended by Shamir [Sha90] to show that every language in PSPACE has interactive

proof system. A few years earlier, Feldman [Fel86] had proved that every language with

interactive proofs lies in PSPACE. The result that IP = PSPACE is one of the central

advances in complexity theory in the last two decades.

It is notable that in general proofs concerning interactive proof systems do not rela-

tivize, that is they are not true relative to every oracle. The classification of interactive

proofs turned out not to be the end of the story but only the beginning of a revolution

connecting complexity theory with approximation algorithms. For the continuation of

this story we turn to probabilistically checkable proofs.
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10.1 Probabilistically Checkable Proofs

Understandably, following on the IP = PSPACE result, there was a flurry of activity

in the early 1990’s examining and classifying the many variations of proof systems both

stronger and weaker than IP. One natural direction of this work was to try to apply these

methods to the large, central class of NP problems. After a series of results improving

on the understanding of interactive proof systems with multiple provers, Babai et al.

[BFLS91] scale these proof techniques down to develop “holographic” proofs for NP

where, with a properly encoded input, the verifier can check the correctness of the proof

in a very short amount of time.

Feige et al. [FGL+96] made an amazing connection between probabilistically checkable

proofs and the clique problem. By viewing possible proofs as nodes of a graph, they

showed that one cannot approximate the size of a clique well without unexpected collapses

in complexity classes.

In 1992, Arora et al. [ALM+92] building on work of Arora and Safra [AS98] showed

that every language in NP has a probabilistically checkable proof where the verifier uses

only a logarithmic number of random coins and a constant number of queries to the proof.

Their results have tremendous implications for the class MAXSNP of approximation

problems. This class developed by Papadimitriou and Yannakakis [PY91] contains many

interesting complete problems such as vertex cover, max-cut, independent set, some

variations of the traveling salesman problem and maximizing the number of satisfiable

clauses of a formula. Arora et al. shows that, unless P=NP, every MAXSNP-complete

set does not have a polynomial-time approximation scheme. Specifically, for each of these

problems there is some constant δ > 1 such that they cannot be approximated within a

factor of δ unless P=NP.

Since these initial results on probabilistically checkable proofs, we have seen a large

number of outstanding papers improving the proof systems and getting stronger hard-

ness of approximation results. Arora [Aro98] developed a polynomial-time approxima-

tion algorithm for the traveling salesman problem in the plane. In a series of papers

H̊astad [H̊as99], [H̊as01] obtains tight results for several central approximation problems

including max-clique, max-cut, set splitting, chromatic number, and bounded-clause-

length versions of SAT. A good explanation of this method and further inapproximability

results can be found in Trevisan [Tre04].
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11 A. M. Turing Award

The highest honor available to be bestowed on a computer scientist is the ACM’s appro-

priately named A. M. Turing Award. The award is accompanied by a prize of $250,000,

with financial support provided by the Intel Corporation and Google Inc. Awardees

who we have cited in this paper include Manuel Blum, Stephen Cook, Juris Hartmanis,

Richard Karp, Michael Rabin, Dana Scott, Richard Stearns, and Andrew Yao.
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