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Abstract

Non-cooperative channel assignment, i.e., channel assignment for selfish wireless devices, is highly

challenging, especially in multiple collision domains. Inthis paper, we study the problem of non-

cooperative multi-radio channel assignment in multiple collision domains and focus on the fairness issue.

We first conduct an analysis of the fairness property of the system assuming no incentive-compatible

scheme is deployed. We show that, without any incentive-compatible scheme for channel assignment,

the stable states of the system may well be max-min unfair. Inorder to guarantee fairness, we propose

a channel assignment scheme for multiple collision domainsthat is incentive compatible. We rigorously

show that our proposed scheme can always achieve NEs with complete fairness. Simulation results

verify that our scheme guarantees complete fairness.

I. INTRODUCTION

The problem of channel assignment has been studied extensively in wireless networks. In

particular, given the increasing popularity of multi-radio wireless devices, a number of works

have been done on the multi-radio channel assignment.

In many wireless networks, a lot of devices belong to selfish users who have their own interests.

These selfish users will let their devices deviate from the protocols as long as this will benefit
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themselves. Hence, it is important to design incentive-compatible channel assignment schemes

that can function well in the presence of selfish users—this is callednon-cooperativemulti-radio

channel assignment, because the involved devices are selfish rather than cooperative.

Existing works (e.g., [1]–[4]) have studied non-cooperative multi-radio channel assignment,

but they are restricted to the setting of a single collision domain. Unlike these works, in this

paper, we consider non-cooperative multi-radio channel assignment in multiple collision domains.

Specifically, we focus on the fairness of channel assignmentin such a setting.

Our study mainly consists of two parts. In the first part, we assume that there is no incentive-

compatible scheme deployed, and analyze the fairness property of the stable states that the system

will converge to. Our analysis is in a game theoretic model, which allows us to obtain quantified

results on the fairness of the stable states (namelyNash Equilibria(NEs) in the game model).

The results indicate that the system could reach some NEs that are max-min unfair.

To guarantee fairness, we propose an incentive-compatiblescheme for channel assignment in

multiple collision domains. As in many existing works on non-cooperative wireless networks

(e.g., [1], [4]–[6]), the main tool used to provide incentives is payment (of credit, or virtual

money). Note that it is reasonable to require users to pay forthe channels they are assigned to,

because communication channels are a type of scarce resources.

The following is a summary of our contributions in this paper:

• This is thefirst work to study fairness of non-cooperative multi-radio channel assignment

in multiple collision domains.

• Assuming there is no incentive compatible scheme, we analyze the fairness property of NEs

in the game of multi-radio channel assignment in multiple collision domains. We find that

there are cases in which most NEs are max-min unfair.

• We propose an incentive-compatible scheme for multi-radiochannel assignment in multiple

collision domains. Through rigorous analysis, we show thatour scheme provides complete

fairness to all nodes.

• Simulations in GloMoSim [7] verify that our scheme guarantees complete fairness.

The rest of this paper is organized as follows. In Section II we present technical preliminar-

ies. In Section III we analyze the fairness property assuming no incentive-compatible channel

assignment scheme is used. In Section IV, we propose our incentive-compatible scheme for

multi-radio channel assignment. Evaluation results are presented in Section V.We conclude our
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paper in Section VI.

II. TECHNICAL PRELIMINARIES

In this section, we describe the system model in which we analyze non-cooperative channel

assignment. Specifically, we define a game of channel assignment in multiple collision domains.

We also review some game theoretic definitions used in later parts of this paper.

A. Model

As in [1], [2], [4], we assume that the available frequency band is divided into orthogonal

channels. Denote the set of channels byC. In the system, each node hasK transceivers and can

establish a bidirectional communication with another node, by tuning a pair of transceivers (one

transceiver from each node) to the same channel. Each node can transmit packets to another

node using multiple channels. Denote byP the set of communicating node pairs. There are|P |

communicating pairs in the system and each node is only involved in one such node pair. We

also assume that the channels have same characteristics. Note that there exist some node pairs

that cannot interfere with the communications of some otherpairs, even if they are all using

the same channel. In other words, the communicating pairs are in multiple collision domains.

We use the interference model (e.g. in [8]) that if two communicating pairs within each other’s

interference range are transmitting packets on the same channel at the same time, neither of

them can successfully transmit any useful data.

Our model for multi-radio channel assignment in multiple collision domains is a strategic

game. In the game, each player is a pair of communicating nodes. As in many existing works

on channel assignment in multiple collision domains (e.g.,[9]–[11]), we assume that time is

divided intoT slots, each of a fixed length, whereT is a large number. In the channel assignment

game, a player’s strategy is his choice of channels for all time slots.

Formally, the strategy of playeri, ai is defined asai = {Ai,c,t|1 ≤ t ≤ T, c ∈ C}, where

Ai,c,t =







1 if i is using channelc in slot t,

0 if i is not using channelc in slot t.

The strategy profilea is a matrix that includes all players’ strategies, i.e.,a = (a1, a2, · · · , a|P |).

Denote bya−i the profile of all players excepti.
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A flow contention graph can represent the interference relationship among players. DefineNi

to be the set of players who are connected withi in the flow contention graph. We callNi the

interference set of playeri. Let nmax = maxi∈P |Ni|.

Denote byki,t the number of channels used by playeri in any time slott, i.e., ∀i, ∀t, ki,t =
∑

c∈C Ai,c,t. To define the payoff function for each playeri, we must note that in each time

slot, whether it can successfully transmit packets dependson its strategy as well as those of

players in its interference set. Assume thatr is the amount of utility that a player can obtain

by transmitting data through one radio in a time slot;β(β < r) is the cost in each time slot for

one radio to transmit data. Then, the payoff for each playeri is defined in Eq. (1).

ui =
T
∑

t=1

(

r
∑

c∈C

(Ai,c,t ·
∏

j∈Ni

(1 − Aj,c,t)) − β · ki,t

)

(1)

Note that any playeri can successfully transmit on one channel only if no player inhis interfer-

ence set uses that channel. Eq. (1) reflects this fact by multiplying Aj,c,t by
∏

j∈Ni
(1 − Aj,c,t).

B. Definitions

Before analyzing the channel assignment game, we first review some of the definitions that

we use in later parts of this paper.

Definition 1: (Nash Equilibrium (NE)) [12] The strategy profilea∗ = {a∗
1, a

∗
2, · · · , a∗

|P |} is a

Nash equilibrium (NE) if for every player, we have thatui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i) for all strategy

ai.

The main objective of this paper is to study fairness in the channel assignment game described

above. Here we distinguish two levels of fairness: max-min fairness [13], which is weaker, and

complete fairness, which is stronger.

Definition 2: (Max-Min Fairness) A strategy profileammf is max-min fair if for every strategy

profile s such that there exists playeri ∈ P , ui(a
mmf ) < ui(a), there must exist another player

j ∈ P , uj(a) < uj(a
mmf ) < ui(a

mmf ). Otherwise, it is max-min unfair.

Definition 3: (Complete Fairness) The strategy profileacf achieves complete fairness if the

payoffs of all players are equal.

III. A NALYSIS OF FAINESS WITHOUT INCENTIVE-COMPATIBLE SCHEMES

In this section, we rigorously analyze the NEs in a system without incentive-compatible

schemes, studying their fairness. We first prove that, in some scenarios, some NEs are max-
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min unfair to players in terms of payoffs. Then we give an concrete example showing that in

some cases, most NEs are max-min unfair.

Proposition 1: With |C| ≤ K, if a Nash equilibrium strategy profilea∗ has an outcome s.t.

for a cliqueE of size n in the flow contention graph,∃i ∈ E, s.t. ∀j ∈ E, j 6= i, u∗
i < u∗

j

andd(i) < 2n − 1 (whered(i) is the degree ofi in the flow contention graph), thena∗ is not

max-min fair.

Proof: First we show that in a Nash equilibriuma∗, the payoff of playeri can be written as

u∗
i =

∑

0<t≤T

∑

c∈C

A∗
i,c,t(r − β). Actually, if a∗ is a NE, then∀i, t, c, if A∗

i,c,t = 1,
∏

j∈Ni
(1 − A∗

j,c,t) = 1.

To show this, suppose∃i, t, c s.t.A∗
i,c,t = 1 and

∏

j∈Ni
(1 − A∗

j,c,t) = 0. We consider another

strategy fori, a′
i, which equalsa∗ except forAi,c,t

′ = 0. Then we compare the utilities of player

i taking strategya∗
i anda′

i when the strategies of players remain the same.

u′
i − u∗

i = Ai,c,t
′ ∏

j∈Ni

(1 − A∗
j,c,t)r − βAi,c,t

′−(A∗
i,c,t

∏

j∈Ni

(1 − A∗
j,c,t)r − βA∗

i,c,t)

= 0 − (−β) > 0

This contradicts with the fact thata∗ is a Nash equilibrium.

Now we suppose we have a cliqueA of sizen in the flow contention graph. We denote the

player with the strict minimum payoff inE by i, i.e. ∀j ∈ E, j 6= i, u∗
i < u∗

j .

We consider the two cases ofd(i) to show that no matter in which case, playeri can always

increase its payoff without affecting the players with lower payoffs thani.

Case 1.d(i) = n − 1. For u∗
j > u∗

i , ∃(t, c) s.t. A∗
j,c,t = 1, A∗

i,c,t = 0. In this time slot, all the

other players do not have radios on channelc, i.e. ∀h ∈ E, h 6= j, A∗
h,c,t = 0, because otherwise

h and j are interfering with each other and thusa∗ would not be a Nash equilibrium. Since

d(i) = n− 1 means that the players ini’s interference set are all inE, by makingSi,c,t = 1 and

Aj,c,t = 0, i can increase its payoff without decreasing others’ payoffsexceptu∗
j . Therefore,a∗

is not max-min fair.

Case 2.d(i) > n−1. In this case, there are some players ini’s interference set but not in clique

A. We denote the player setQ = {q|q ∈ Ni, q /∈ E, uq ≤ ui}. From |Q|+n−1 ≤ d(i) < 2n−1,

we can obtain that|Q| ≤ n − 1.

Because∀q ∈ Q, u∗
q ≤ u∗

i and |Q| ≤ n − 1, we get

(n − 1)
∑

0<t≤T

∑

c∈C

A∗
i,c,t ≥

∑

q∈Q

∑

0<t≤T

∑

c∈C

A∗
q,c,t. (2)
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Furthermore, fromu∗
j > u∗

i , we have

∑

0<t≤T

∑

c∈C

A∗
j,c,t >

∑

0<t≤T

∑

c∈C

A∗
i,c,t (3)

Combining (2) and (3),

∑

j∈E,j 6=i

∑

0<t≤T

∑

c∈C

A∗
j,c,t > (n − 1)

∑

0<t≤T

∑

c∈C

A∗
i,c,t ≥

∑

q∈Q

∑

0<t≤T

∑

c∈C

A∗
q,c,t (4)

Since∀t, c,
∑

j∈E,j 6=i A
∗
j,c,t ≤ 1, to satisfy (4), there must existt, c, s.t.

∑

j∈E,j 6=i A
∗
j,c,t = 1

and
∑

q∈Q A∗
q,c,t = 0. Then playeri can increase its payoff by putting one spare radio on channel

c in time slotc, while the payoffs of players inQ will not be decreased since no interference is

caused with them.

This completes the proof of Proposition 1.

Using Proposition 1, now we demonstrate that, in some scenarios, most NEs are max-min

unfair.

Example. Consider, the flow contention graph in Fig. 1.

1

2 3 4

Fig. 1. The flow contention graph in example of unfairness.

In this example, we assume that each player has2 radios and that there are3 channels,

a, b, c, available. Since player 1, 2 and 3 form a clique of size 3 in the flow contention graph,

by Theorem 1, a NE being max-min fair requires thatu1 = u2 = u3. So, the number of max-min

fair Nash equilibria is only6 (when each player except player 4 uses exactly one channel),while

there are36 Nash equilibria in total. Therefore,83.3% of the Nash equilibria in this scenario

are max-min unfair.

IV. SCHEME FOR COMPLETE FAIRNESS TO PLAYERS(SCF)

In this section, we provide an incentive-compatible channel assignment scheme to make sure

that all the NEs provide complete fairness to all the players.

As in many existing works on non-cooperative wireless networks (e.g., [1], [4]–[6], among

others), we use an economic tool, payment, in our scheme. Assume that there is virtual currency
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circulating in the system. Before using channels, each player has to first pay the administrator

for his use of the channels.

To calculate the payment for each player, we use the topological information of each node.

Specifically, we assume that the flow contention graph is partitioned into a number of maximal

independent sets, and that, before the channel assignment game starts, each player receives the

ID of its independent set ID as an input. In practice, this independent set ID can be obtained

in various ways. One possibility is that a central agency whoknows the global topology runs

an algorithm to find maximum independent sets in rounds. If such a centralized approach is not

applicable or undesirable, we can also use a distributed algorithm with reasonable complexity,

running locally at each player to find which independent set each player belongs to. To provide

good performance as well as time efficiency, the idea of some approximation algorithms (e.g.

[14]) for maximal independent set partition can be useful. However, we do not discuss the

details of the algorithm for finding the independent set IDs,because it is orthogonal to the main

problems we solve. In this paper, we assume that independentsets are sorted such that a smaller

independent set ID implies that the independent set is larger. 1

We outline our scheme, the Scheme for Complete Fairness (SCF), in Protocol 1. In this

scheme, we use the maximal independent set IDsi.MISID to compute the amount of payment

each player should make in each slot. Letm denote the total number of independent sets in

the system. To achieve complete fairness, we need to give equal opportunities to all players for

use of channels. We introduce a special independent set called the token independent set for

each slott, whose ID is denoted byχt
τ . Our main idea here is to let each independent set be

the token independent set in a round-robin fashion. In each time slot, only the players in the

independent sets with IDs smaller thanχt
τ by no more than⌊ |C|

K
⌋, are encouraged to put their

radios on channels to transmit packets (as discussed below). As each independent set is taking

turns to be the token independent set, players can obtain complete fairness.

When we plug in the payment formula Eq. (5) in Protocol 1 into the payoff function for each

player introduced in Section II, we can obtain the followingupdated payoff function, assuming

1We also assume that after the maximal independent set partition, the number of maximal independent sets is greater than
⌈

|C|
K

⌉

, because otherwise it is trivial to have all radios assignedwithout any interference.
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Protocol 1 Outline of Scheme for Complete Fairness (SCF)
In time slot t,

(a) Each playeri computes

χt
τ = (t mod m).

χt
i = (χt

τ − i.MISID) mod m.

(b) Each playeri decides to useki,t radios and makes payment

pi,t =
(r − β) · ki,t · χ

t
i

⌊ |C|
K

⌋ + ǫ
. (5)

(c) If χt
i < ⌊ |C|

K
⌋, i keeps changing its strategy until it gets all its radios transmitting successfully; Ifχt

i = ⌊ |C|
K

⌋,

i keeps changing its strategy until it gets|C| mod K radios transmitting successfully.

no collisions.

ui =
T
∑

t=1

∑

c∈C

r · (Ai,c,t ·
∏

j∈Ni

(1 − Aj,c,t)) − β
T
∑

t=1

ki,t −

T
∑

t=1

(r − β) · ki,t · χ
t
i

⌊ |C|
K
⌋ + ǫ

=
T
∑

t=1

r · ki,t − β
T
∑

t=1

ki,t −

T
∑

t=1

(r − β) · ki,t · χ
t
i

⌊ |C|
K
⌋ + ǫ

=
T
∑

t=1

(r − β)

(

1 −
χt

i

⌊ |C|
K
⌋ + ǫ

)

ki,t.

For each playeri, if χt
i is smaller than or equal to⌊ |C|

K
⌋, it will get higher payoff if it increases

its number of radios to transmit packets (because⌊ |C|
K
⌋ andχt

i are both integers and we define

0 < ǫ < 1). On the other hand, ifχt
i > ⌊ |C|

K
⌋, the payoff will decrease as the playeri uses more

radios to transmit packets.

Formally, we have the following theorems. Theorem 1 shows that if our scheme is used, the

system will converge. Theorem 2 states that the converging states with certain properties are

NEs. Theorem 3 says with these properties, complete fairness is guaranteed.

Theorem 1:If SCF is used, the system will always converge to states which satisfy that,

for all player i, in all time slott,

ki,t =



















K if χt
i < ⌊ |C|

K
⌋

|C| mod K if χt
i = ⌊ |C|

K
⌋

0 o.w.

(6)
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Proof: To show that SCF will always reach the state that satisfies (6), we first notice that

(6) is achievable within the system capacity. By Eq. (6), only players in⌊ |C|
K
⌋ − 1 independent

sets useK radios and the player in1 the independent set of size⌊ |C|
K
⌋ use|C| mod K radios.

When players in the same independent set allocate their radios on the same set of channels, the

total number of channels without interference required by (6) is (⌊ |C|
K
⌋ − 1)K + |C| mod K,

which is no more than the number of channels in the system|C|. On the other hand, the system

will not stabilize in any state that does not satisfy (6), dueto the strategy changing conditions

in SCF (step (c)). Hence the probability of reaching the state satisfying (6) from any state is

positive.

Therefore, SCF always converges to states which satisfy (6).

Theorem 2:Any statea∗ which satisfies (6) is a Nash equilibrium.

Proof: Now we show that statea∗ which satisfies (6) is a Nash equilibrium, which guarantees

that players do not have incentives to deviate froma∗ unilaterally.

Let ui
′ denote the payoff ofi by taking other strategya′

i that does not satisfy (6).k′
i,t is used

in a′
i. Since interference will result in even lower payoffs for players, in the proof, we only

consider the best payoffs possible bya′
i, i.e., assuming that there is no interference bya′

i.

There are 3 possible cases.

Case 1.χt
i > ⌊ |C|

K
⌋. ui

′ − u∗
i =

∑T

t=1
(r − β)

(

1 −
χt

i

⌊ |C|
K

⌋+ǫ

)

ki,t ≤ 0, becauseχt
i and⌊ |C|

K
⌋ are

integers and thus χt
i

⌊
|C|
K

⌋+ǫ
> 1.

Case 2.χt
i < ⌊ |C|

K
⌋. ui

′ − u∗
i =

∑T

t=1
(r − β)

(

1 −
χt

i

⌊ |C|
K

⌋+ǫ

)

(k′
i,t − K) ≤ 0, since χt

i

⌊ |C|
K

⌋+ǫ
< 1

andki,t
′ − K ≤ 0.

Case 3.χt
i = ⌊ |C|

K
⌋. If other players not in Case 3 follow the channel assignmentresults as

in (6), the number of channels that playeri can use without interference is at most|C| mod K

(i.e. k′
i,t ≤ |C| mod K). Also from χt

i

⌊
|C|
K

⌋+ǫ
< 1. We can obtain thatu′

i(a
′
i, a

∗
−i)−u∗

i (a
∗
i , a

∗
−i) ≤ 0.

Theorem 3:(Complete Fairness) Suppose thatT >> m. If SCF is used, every NE is com-

pletely fair.

Proof: First we note that in anym continuous timeslots, each independent set ID in

{1, 2, · · ·m} happens to equalχt
τ once, due to the definition ofχt

τ . So from (6), in any NE, for

each playeri, there is one time slot in which he uses|C| mod K radios. Also it is not difficult to
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get that for each playeri, he fully utilizesK radios in⌊ |C|
K
⌋ time slots. The payoff of each player

in any m continuous timeslots is(r−β)(K · ⌊ |C|
K
⌋+ |C| mod K). Given thatT >> m, T

m
is an

integer. Therefore, the payoff of each player in the entire game isT
m

(r−β)(K ·⌊ |C|
K
⌋+|C| mod K),

which implies complete fairness.

V. EVALUATIONS

In this section, we conduct simulations in GloMoSim [7] to study SCF. Maximal independent

sets are computed before the start of the game by the approximation algorithm in [14].

The simulations are done in a randomly generated network of20 pairs of nodes, as illustrated

in Fig. 2 (where each dot represents a pair). Each pair consists of two nodes20 meters apart.

Within each pair, the data flow is bidirectional at a constantrate. The length of each time slot

is set to be30 seconds.
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Fig. 2. The flow contention graph of the network.

We test our scheme SCF in two settings. In one setting, we let the number of channels

|C| = 12, channel capacityR = 54 Mbps, and the number of radiosK = 4. In the other setting,

we let |C| = 3, R = 11 Mbps andK = 2. We take the average of results over500 runs.

In Section V-A, we evaluate SCF by measuring the fairness of the stable states of the system,

and compare it with the fairness of NEs when there is no incentive-compatible schemes. In

Section V-B we measure the fairness in the processes of system convergence.

A. Evaluation of Fairness

To measure the fairness among players, we utilize Jain’s fairness index [15] as a quantitative

metric. Fairness index is a real number, ranging from0.05(worst) to1(best) for the system of20
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players. We measure the fairness indices of the system’s stable states achieved by SCF and the

average fairness indices of random NEs, which should be reached when there is no incentive-

compatible channel assignment scheme. We repeat the experiments with different traffic rates

. The results are shown in Fig. 3 and 4, where the curves for “SCF” represent the fairness

indices for SCF, and the curves for “No Protocol” represent the fairness indices when there is

no incentive compatible scheme. We can see that for both settings (|C| = 3, K = 2 and|C| = 12,

K = 4, respectively), SCF guarantees that the system has fairness indices very close to 1, or

even equal to 1. This verifies the effectiveness of SCF in achieving complete fairness, which

is much better than the average fairness indices of NEs when there is no incentive compatible

scheme.
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Fig. 3. Fairness index. (|C| = 3, K = 2, R = 11Mbps.)
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Fig. 4. Fairness index. (|C| = 12, K = 4, R = 54Mbps.)

B. System Convergence

We are not only interested in fairness of the stable states, but also interested in fairness of

the dynamic convergence process. In this subsection, we examine fairness of the processes the



12

system converges to a stable state. We keep track of the fairness index value for SCF when the

systems are converging to the stable state, and show the results in Fig. 5. In this experiment, the

traffic demand rate is80 Mbps. We can see that, within about1000 seconds, the fairness index

gets close to1.
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Fig. 5. Convergence of fairness index of SCF.

VI. CONCLUSION

In this paper, we study the fairness of non-cooperative multi-radio channel assignment in

multiple collision domains, and obtain two major results. The first major result is that, without

an incentive-compatible channel assignment scheme, the system is likely to converge to NEs that

are max-min unfair to the players. The second major result isan incentive-compatible scheme

we design for multi-radio channel assignment in multiple collision domains, and a formal proof

that the scheme guarantees complete fairness. Experimentsresults have verified the results of

theoretical analysis.
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