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ABSTRACT
We describe a pedagogic tool called JIVE (Java Interactive Visual-
ization Environment) for clarifying the dynamic behavior of Java
programs. The tool has the following main goals: provide clear
visualizations of execution state and call history, with varying lev-
els of granularity; show method calls within object contexts; sup-
port declarative queries over executions; and, support forward and
reverse stepping. JIVE employs extensions of UML object and
sequence diagrams to represent execution state and call history.
While these diagrams are normally used as design-time specifica-
tions, their use for depicting run-time behavior helps close the gap
between design and execution. We illustrate the use of JIVE for un-
derstanding typical data structure operations. JIVE has been tested
in programming language courses for the past three years.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—computer science education; D.2.5 [Software
Engineering]: Testing and Debugging—debugging aids.

General Terms
Object-Oriented Programming, Program Visualization, Debugging.

Keywords
JIVE, Object and Sequence Diagram, Debug Queries, Java.

1. INTRODUCTION
This paper describes a pedagogic tool (JIVE) that could help

students gain greater insight into the dynamic behavior of object-
oriented programs. Our goal is to show that JIVE can effectively
help students in two major problem areas: building clear men-
tal models of object-oriented executions and debugging their pro-
grams. Comprehending the structure of object-oriented systems via
source code, design time diagrams, or other static analysis tools is
significantly easier than understanding their dynamic behavior [5].
This gap is due in large measure to the nature of the object-oriented
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methodology, which promotes the definition of smaller methods
and more complex interactions among them. It also encourages the
use of dynamic dispatching and inversion of control patterns, mak-
ing flow of control very hard to follow through an inspection of the
source code.

Visualization of run-time states is an effective way of developing
a clear mental model of the dynamic behavior of object-oriented
programs [10, 7, 3]. Towards this end, we have found two types
of diagrams to be especially useful: object diagrams for the cur-
rent state, and sequence diagrams for the execution history [6]. Al-
though object and sequence diagrams are traditionally used in UML
to document use cases, the proposed visualization system (JIVE)
displays these diagrams at run-time, thereby facilitating a compar-
ison of design-time specifications with run-time behavior in a uni-
form notation and helping close the loop between design-time and
run-time. An important property of JIVE is that every point on the
sequence diagram is associated with the object diagram that would
have been in effect at that point in execution. Thus, the sequence
diagram serves as an effective temporal navigation tool, allowing
a student to jump to any point in the execution history and inspect
the object diagram at that particular time.

A fundamental problem with visualizations, however, is that they
tend to be become very large for even moderately-sized programs [5].
In order to be useful and effective for pedagogic purposes, a visu-
alization tool must allow compact views at varying granularities to
be constructed depending upon the interest of the user. One of the
main contributions of JIVE lies showing that declarative queries
together with object and sequence diagrams work in a symbiotic
manner to achieve scalable visualizations: queries help the student
to focus on specific regions of the diagrams, while the diagrams
provide a framework for reporting query answers. While previous
tools (see section 4) have focused on one or the other of these two
topics exclusively, the JIVE tool shows the benefit of integrating
these two techniques. In particular, sequence diagrams provide a
timeline which is especially useful for reporting answers to ‘when’
queries, e.g., “when did variable x first become negative?", “when
was the invariant x = y first violated?", etc. Likewise, queries such
as the above help students focus on points of interest in the se-
quence diagram.

JIVE is designed around two key principles: display views of the
object state and execution history, and support declarative queries
for searching through recorded executions. Views should represent
object-oriented semantics visually, e.g., inheritance, object mem-
bers and associations, method invocations within object contexts,
etc; views should also be intuitive and scalable, i.e., support multi-
ple levels of granularity/detail. Queries should be formulated through
a high-level interface; adequate visual context should be provided
to help in the interpretation of query results; forward as well as



Figure 1: JIVE’s user interface during a debug session. The object and sequence diagrams capture the current state of execution.

reverse stepping should be supported and views should be synchro-
nized so they display the correct execution state during stepping.

2. OVERVIEW OF JIVE
JIVE is a dynamic analysis tool incorporating traditional debug-

ger features such as breakpoints, variable inspection, and stepping,
as well as advanced features such as dynamic visualizations of pro-
gram executions, forward and reverse stepping, and query-based
debugging. JIVE is currently implemented as an Eclipse plug-in.
Dynamic Visualizations. JIVE’s dynamic visualizations of a pro-
gram’s run-time state and method call sequence are extensions of
UML’s object and sequence diagrams, respectively. The object
diagram provides visual representations for objects, their internal
states, associations, and outstanding method calls (i.e., calls that
have not returned yet). An object is typically displayed as a yel-
low box with a title bar consisting of the object’s class name and
an instance number. A member table represents object state, with
each row displaying a field’s name, type, and value. An object
association is depicted as a gray arrow connecting a field of a re-
ferring object to a referenced object. An outstanding method call
is displayed as a method invocation box within the object on which
the method was called. The title of the invocation box consists
of a method name and an invocation number. Within the invoca-
tion box, a member table represents the state of the method’s local
variables. A blue arrow connects each invocation box to the invo-
cation box of the caller method, providing a unique view of the call
stack where every outstanding method call is represented within
its corresponding object context. The diagram also provides visual
representations for classes and inheritance. Further, JIVE supports
fine-grained control of the level of detail in the diagrams: member

tables may be suppressed, objects with outstanding method calls
may be displayed while other objects are minimized, all objects
may be minimized, etc. A complete discussion of JIVE’s object
diagrams appears in [6].

JIVE’s sequence diagram captures interactions between objects
at run-time. It consists of life lines placed horizontally across the
top of the diagram and activation boxes arranged vertically along
these life lines. Each life line represents a run-time object and is
labeled with the object’s class name and instance number. Each
activation box represents the execution of a method in the context
of the run-time object of the corresponding life line. Method calls
and returns are depicted as solid and dashed arrows, respectively.
Each call arrow is labeled with the name of the called method and
an invocation number. Because sequence diagrams quickly become
unwieldy, even for modestly sized programs, JIVE supports a num-
ber of techniques to reduce the amount of information displayed by
the diagram. For instance, horizontal folding hides all nested acti-
vation boxes of a given activation box. This allows users to focus
on the high-level meaning of the folded activation box rather than
on how the its internal behavior is implemented.

Figure 1 illustrates JIVE’s user interface during the execution of
a binary search tree (BST) driver program: the debug window (top
left), the source window (bottom left), the object diagram (cen-
ter), and the sequence diagram (right). We observe that the object
diagram has suppressed all member tables and that the sequence
diagram has folded (collapsed) the nested calls of two activation
boxes: insertNode : 2 and insertNode : 3. The call stack dis-
played on the debug window can also be seen in both the object
and sequence diagrams. In the object diagram, the top of the call
stack is represented by the invocation box with no incoming blue



(a) Prior to insert. (b) Creating the new node. (c) New node created. (d) New node connected.

Figure 2: Object diagrams illustrating a correct BST node insertion. Diagrams have been minimized to suppress member tables.

arrow (insert : 6 in BSTNode : 4); in the sequence diagram, the
innermost activation box at the dashed line corresponds to this out-
standing method call.
Reverse Stepping. JIVE records program executions in order to
support stepping in both forward and backward directions (a tool-
bar is provided at the top of both object and sequence diagrams).
After each step, JIVE updates the temporal context of the execution,
depicted as a horizontal dashed line cutting across all life lines of
the sequence diagram (see figure 1). Additionally, the object di-
agram is reconstructed in order to display the correct state of all
objects at the new temporal context. We observe that the sequence
diagram also serves as a temporal navigation tool: users may se-
lect and jump to any time point in the diagram– JIVE updates the
execution state accordingly.
Query-Based Debugging. JIVE supports eight different kinds of
template queries, including: Variable Changed, Method Called,
and Method Returned. In order to execute a template query, the
user must provide one or more required parameters. For instance, in
the Method Returned template query (see figure 5), the parameters
class name, instance number, and method name are all optional; the
return value is required only if the method return type is not void.
After a query is executed, JIVE displays each answer as a row in
the search results window and marks the corresponding time point
with a red box on the sequence diagram. If the user double-clicks
an answer on the search results window, the temporal context of the
execution is synchronized to the answer’s time point and the object
state is reconstructed just as in reverse stepping.

3. DYNAMIC VISUALIZATIONS
In this section, we present a two-part example showcasing the

potential of JIVE’s dynamic visualizations in clarifying the runtime
structure and behavior of object-oriented programs. The example
is based on a student submission of a typical exercise in an un-
dergraduate course in data structures: implementing the insert and
remove operations of a binary search tree (BST). This particular
submission implemented the insert operation correctly but the re-
move operation incorrectly.

In each part of the example, we present a sequence of object
diagrams in a storyboard fashion to visually describe the more in-

teresting steps of the operations. We complement the discussion
by relating the diagrams to relevant sections of the execution’s se-
quence diagram. In the remove operation part of the example, we
further show that JIVE can be used to visually identify the error in
the program and, subsequently, to help locate the cause of the error
using query-based debugging.

Both BST operations are implemented by the BSTNode class.
The class provides the usual fields representing node data, right and
left subtrees. The Model class is a front-end to manipulate the tree
exposing the insertNode and removeNode methods. The Driver
class is the driver program: it inserts nine nodes into the tree (50,
30, 40, 70, 100, 10, 60, 65, 55) and removes one (30). The first part
of the example illustrates a correct insertion and the second a failed
removal attempt.

Figure 3: Object diagram prior to the BST insert operation.



(a) Minimum value in the right subtree. (b) Remove the node with minimum value. (c) Orphaned subtree.

Figure 4: Object diagrams illustrating an incorrect BST node removal. Diagrams are focused on the outstanding method calls.

3.1 Visualizing a BST Insertion
We illustrate a BST insertion starting from a state of execution

in which four values have been previously inserted into the tree:
50, 30, 40, and 70. The object diagram of figure 3 provides a de-
tailed view of the state of execution prior to the insertion of the
new value: the static context of the Driver class has a single out-
standing method call (main : 1) and a static variable (bst) refer-
encing the model instance (Model : 1); the model instance’s tree
field references the BST root (BSTNode : 1); the BST root has left
and right subtrees, and the BSTNode : 2 node has a right subtree.
Gray arrows connect each of the referencing BSTNode fields to their
corresponding referenced objects. The BST invariant can be easily
verified for this instance: the data value at each BST node is larger
(resp. smaller) than every data value on the left (resp. right) sub-
tree. Further, the global structure of the BST can actually be seen
on the object diagram.

Next, we illustrate the insertion of value 100 into the BST. The
object diagrams in figure 2 clarify the behavior of the program dur-
ing the insertion. The level of detail of the object diagrams has
been reduced so they only display object identifiers, associations,
and outstanding method calls, but no member tables. This helps us
focus on the object interactions during insertion, rather than on the
program state. The source code for the insert operation can be seen
in the source window of figure 1.

Object diagram 2(a) is the minimized version of the one in fig-
ure 3. This minimized diagram provides a higher-level view of
the associations involving the objects. Diagram 2(b) reflects a call
to insertNode on the model object made from main : 1, causing
nested calls to insert on BSTNode : 1 and on BSTNode : 4. From
figure 3, we know that the value 100 must be inserted as the right
subtree of this node. As expected, BSTNode : 4 instantiates a new
node by calling the BSTNode constructor (< init>: 5). The con-
structor call has not yet completed.

Figure 2(c) shows the state of the program immediately after
node BSTNode : 5 was created but before it is assigned to one of
the subtrees of node BSTNode : 4. At this point, BSTNode : 5 has
no associations with other objects (it has no incoming or outgoing
association links).

The object diagram in figure 2(d) depicts a state in which BSTNode : 4
has established an association with BSTNode : 5, effectively con-

necting it to the BST. The modified BST provides strong visual
evidence for the correctness of the insertion. However, in order to
verify that the BST invariant is preserved, we must expand the ob-
ject diagram and check that the new node was actually inserted as
the right subtree of BSTNode : 4.

The call sequence for the insert operation can be observed in fig-
ure 7– it is the topmost expanded block of activation boxes starting
at insertNode : 5 within main : 1. In particular, the outstanding
method calls described for the object diagram in figure 2(b) is rep-
resented by some execution point within the < init>: 5 activa-
tion box on the BSTNode : 5 life line. The two representations are
complementary– the object diagram clarifies the object context and
local state of each method invocation while the sequence diagram
provides a high-level view of the sequencing and nesting call pat-
terns over time.

3.2 Visual Debugging a BST Removal
We now illustrate the behavior of an incorrect implementation of

the BST removal operation. We assume that the current program
state is obtained by inserting additional values to the BST depicted
in figure 3, resulting in a BST with nine nodes. The object diagrams
in figure 4 show how the program behaves as it attempts to remove
value 30 from the BST. The level of detail of the diagrams has been
reduced even further so that all objects are displayed as a single
points, except those serving as context for some method in the call
stack, in which case their respective outstanding method calls are
also displayed.

From figure 3, we know that node BSTNode : 2 contains value
30 and, from the object diagram 4(a), we see that BSTNode : 2 has
two children. In this BST implementation, the remove operation is
expected to proceed by first changing the value of BSTNode : 2 to
the minimum value of this node’s right subtree, and then the node
containing this minimum value should be removed from the tree.

In object diagram 4(b), a sequence of six outstanding method
calls is shown within their corresponding static/object contexts.
These calls represent a call stack with its top represented by the
call minimum : 2 on BSTNode : 8 and its bottom by the static call
main : 1 on the Driver class. We can infer from the diagram that
the removeNode call on the model object called remove on the
BST root; remove was called recursively down the BST until the



node with the value to remove was found. In the diagram, no call
to remove is shown past BSTNode : 2, so this node was (correctly)
identified as the one having the value to be removed. BSTNode : 2
called minimum on its right subtree (BSTNode : 3), which caused
yet another call to minimum on subtree BSTNode : 8. The value to
be returned by minimum would suffice to update the data field of
BSTNode : 2. However, in order to complete the removal, the sub-
tree rooted at BSTNode : 8 has to be removed.

The object diagram 4(b) illustrates the attempted removal of the
subtree rooted at BSTNode : 8, after both calls to minimum returned
and BSTNode : 2 called removeMinimum on BSTNode : 3. This call
caused yet another call to removeMinimum on BSTNode : 8. Hence,
we expect BSTNode : 8 to be effectively removed from the BST.
However, the object diagram 4(c) shows that the entire subtree
rooted at BSTNode : 3 was disconnected from BSTNode : 2 after
all calls to removeMinimum and remove returned. At this point,
removeNode has not yet completed, but the orphaned subtree in
the object diagram provides sufficient visual evidence that the re-
moval is incorrect. In particular, the right subtree of BSTNode : 2
must have been replaced with null, as this node has just one out-
going association link. It is straightforward to expand the object
diagram and verify that this is indeed the case. It is also important
to check whether the value of the data field for this node has been
updated correctly.

The removal operation is depicted in the sequence diagram of
figure 7– it is the expanded block of activation boxes at the bottom
of the figure, starting at removeNode : 1 within main : 1. All nine
insertions prior to the removal attempt are represented in the dia-
gram. All except insertNode : 5 have been folded (collapsed) so
that their implementation details are omitted. The dynamic behav-
ior of the removal operation is clearly visible: removeNode : 1 calls
remove recursively on BSTNode : 1; the deepest call of remove

calls minimum and then removeMinimum on BSTNode : 3. Note
that a visual inspection of the call pattern of the remove operation
does not provide further clues to help locate the error in the BST
removal operation.

In order to locate the cause of the error in the BST removal,
we explore the hypothesis that the right subtree of BSTNode : 2 was
assigned null during the call remove : 2. Because the field assign-
ment occurs only after removeMinimum returns, the value returned
by this method may very well be the root cause of the error. JIVE
allows us to ask both questions using template queries. Figure 5
shows a Method Returned template query for which the appropri-
ate parameters have been filled. In particular, the template query

Figure 5: Search for null values returned from removeMinimum.

Figure 6: All null values returned from removeMinimum.

will search for all points in execution at which a null value was
returned by a method named removeMinimum of class BSTNode.

The template query of returns two answers that are displayed
both in tabular form (figure 6) and on the sequence diagram as
red boxes (figure 7). The answers show that both nested calls to
removeMinimum returned null. The first return seems to be cor-
rect since BSTNode : 8 is to be removed from the tree. However,
BSTNode : 3 also returns null, which is unexpected. Hence, we
conclude that the removeMinimum is the likely cause of the error
and move on to the source code to fix it.

4. RELATED WORK
We highlight below some of the more well-known tools for pro-

gram visualizations. Not all support dynamic program visualiza-
tions and, however, those that provide are not as comprehensive as
JIVE in their support. To the best of our knowledge, none of the
tools support query-based debugging.

BlueJ [1] is an environment for teaching object-oriented pro-
gramming in Java. A class view shows relationships among classes
and an object dock displays all initialized objects. BlueJ also pro-
vides an integrated debugger featuring an object inspector that al-
lows users to view an object’s state during debugging. DrJava [2]
is a pedagogic environment for Java that helps students focus on
designing, running, and debugging their Java programs rather than
on learning how to use a complex development environment. The
tool provides no dynamic visualizations of the execution.

Jeliot 3 [8] is a tool aimed at novice students that animates the ex-
ecution of a program while providing an intuitive representation for
the data and control flows of the program. This version of the tool
introduces object-oriented concepts and supports visualizations of
object instances and inheritance.

DDD [11] is a front-end for command-line debuggers that pro-
vides interactive graphical displays for data structures. The dis-
plays are not specialized for particular data structures, allowing
DDD to visualize the run-time state of any program. In contrast,
jGrasp [4] provides specialized viewers for a variety of data struc-
tures. The views are generated automatically and updated dynam-
ically as users step through the code. JAVAVIS [9] helps students
understand Java programs by representing executions as dynami-
cally changing object and sequence diagrams. It focuses mostly on
sequential programs, providing minimal support for concurrency.

5. CONCLUSION AND FURTHER WORK
We have shown how JIVE’s object and sequence diagrams can

provide a clear mental model of the dynamic behavior of object-
oriented programs. We also described ways of depicting them in a
more compact way to facilitate scalability for large executions. We
showed that template queries can simplify the task of locating an
error, and the sequence diagram helps students contextualize and
interpret query answers. Our main conclusion is that declarative



Figure 7: Sequence diagram for the BST driver program reporting two answers of a debug query.

(template) queries not only facilitate efficient search through the
execution history, they also help the visualization system focus on
what is to be displayed.

The paper also illustrated the use of JIVE in understanding typ-
ical operations in an undergraduate data-structures course– binary
search tree insertion and removal. The object diagrams for the in-
sertion and removal were presented as a storyboard with each di-
agram representing the program state at an interesting step of the
operation. We further showed that diagrams help identify program
errors, for example, by detecting an incorrect visual pattern in the
object diagram.

The current Eclipse plug-in version of JIVE is a substantial im-
provement over its predecessor, which was a stand-alone version
with many restrictions on the input programs. This plug-in version
has been used in graduate programming language courses in our
department for the past three years. Although further work is in
progress, motivated by the need to deal with large program execu-
tions, the current system is stable and suitable for use in undergrad-
uate courses. JIVE is currently available from http://www.cse.
buffalo.edu/jive.
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