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Abstract—With the advances of cognitive radio technologies,
Dynamic Spectrum Access (DSA) has received increasing
attention. For dynamic spectrum access, a good spectrum
assignment algorithm often considers the spectrum demands
of different devices and assigns contiguous and variable band-
width to them. However, if the DSA devices at a location belong
to two or more entities, a selfish entity may want to over-claim
its devices’ demands, in order to obtain more spectrum for
its own devices. Unfortunately none of the existing work has
addressed this incentive problem in assigning contiguous and
variable bandwidth to DSA devices.

To solve this incentive problem, we propose two spectrum
assignment mechanisms for DSA, one for single collision
domain and one for multiple collision domains. We prove that
our two mechanisms are truthful, i.e., they both stimulate
each entity to submit the true demands of its own devices.
We also prove that the mechanism for single collision domain
is optimal in terms of satisfying spectrum demands, and our
mechanism for multiple collision domains achieves constant-
ratio approximation of optimal spectrum assignment. Exten-
sive experimental evaluations of our mechanisms show that
they have very good performance.

I. I NTRODUCTION

With the advances of cognitive radio technologies, Dy-
namic Spectrum Access (DSA) has received increasing
attention. Using cognitive radio devices, users can dynam-
ically locate the unused spectrum and then appropriately
configure the radios to operate in the spectrum, such that
there is no (significant) interference to other users. With the
capability of flexible radio configurations, DSA provides
a promising resolution for the unsatisfied users to better
utilize the scarce spectrum.

We notice that, for DSA, there may be aproblem of
incentives, when allocating contiguous and variable band-
width of spectrum to devices based on their demands.
Specifically, to assign the spectrum to DSA devices at a
certain location, if the DSA devices at this location belong
to two or more entities, a selfish entity may want to over-
claim the demands of its devices, so that its own devices
can be assigned more spectrum. Therefore, there needs to
be a mechanism to stimulate the entities to submit the true
spectrum demands of their own devices.

Consider, for example, an office building shared by two
companies. Suppose that each company has three access
points that need to access the aforementioned spectrum.

Among the six access points, one has significantly higher
demands for spectrum than all other five because it is
located in a meeting room and thus is often used for
video conferences. In this scenario, if every access point
is assigned the same amount of spectrum, then clearly the
one located in the meeting room will be penalized, and the
quality of the related video conferences will become very
poor. On the other hand, if each access point is assigned
spectrum according to its demand, then each company will
claim higher demands for its own access points, so that
its own access points get more spectrum. Unless there is a
mechanism to stimulate companies to make truthful claims,
the selfish behavior of companies will lead to a competition
of making false claims of spectrum demands, and very
likely a failure of the spectrum assignment algorithm.

In this paper, we study the entities’ incentive problem
in contiguous and variable spectrum assignment of DSA.
Our objective is to design spectrum assignment mechanisms
that aretruthful (i.e., stimulate entities to claim the true
spectrum demands) and optimal in terms of satisfying spec-
trum demands. We emphasize that both our problem and
our objective are realistic, because in practice it is hard to
guarantee the DSA devices at each location all belong to the
same entity. Consequently, the mechanisms we design for
DSA spectrum assignment are of high practical importance.

It is not hard to see that the problem we consider here
is similar to the well knownproblem of commons[10].
One possible solution to the problem of commons is to
require a payment for use. Hence, for our problem, we
also propose solutions based on payments. The payments
we introduce arenot payments of real money; they are
payments of virtual money. Correspondingly, when more
than one entity’s devices need to have DSA simultaneously
at the same location, the bandwidth assigned to each entity
depends on how much virtual money the entity is willing
to pay for each unit of spectrum. The more unit price it is
willing to pay, the more bandwidth it is assigned. We will
present the implementation of virtual money in Section V
in details.

Our main results in this paper are two mechanisms for as-
signing contiguous and variable bandwidth of spectrum, in
different settings of DSA. Our first mechanism, called SAS,
is for Spectrum Assignment in Single collision domain.
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In a game theoretic model, we rigorously show that SAS
is truthful. In terms of satisfying spectrum demands, we
show that SAS isoptimal (see Section II for the definition
of optimality). Our second mechanism, called SAM, is for
Spectrum Assignment in Multiple collision domains. SAM,
is truthful just like SAS; moreover, SAM can be shown
to achieve aconstant-ratio approximationto the optimal
spectrum assignment.

It is worth noting that our work is closely related to, but
significantly different from the existing work on spectrum
auctions [11], [23], [14], [12], [25]. In spectrum auctions,
there is an existing spectrum owner who sells (part of)
its unused spectrum. In our problem, there is no seller of
the spectrum. Furthermore, spectrum auction only allows
bidding using per-channel price, while in this paper we
make sure that users are assigned a contiguous but variable
bandwidth, depending on the devices demand.

Our contributions can be summarized as follows:

• We are thefirst to study the incentive problem in as-
signing contiguous but variable bandwidth of spectrum
for DSA.

• For spectrum assignment in single collision domain,
we present a mechanism SAS. We rigorously show
that SAS is truthful and optimal.

• For spectrum assignment in multiple collision do-
mains, we present a mechanism SAM that can be
shown to be truthful and achieve a constant-ratio
approximation to the optimal spectrum assignment.

• We have done extensive experiments to evaluate the
our mechanisms and the results show that they have
good performance.

The rest of this paper is organized as follows. In Sec-
tion II, we present the technical preliminaries. In Sec-
tions III, we propose SAS. Section IV is dedicated to
our mechanism for multiple collision domains, SAM. We
present our evaluation results in Section VI. Finally, we
briefly review related literature in Section VII and then
conclude in Section VIII.

II. T ECHNICAL PRELIMINARIES

Suppose that there areK entities interested in DSA at
a location. Each entitye hasDe DSA devices, e.g., Wi-
Fi like access points, that need to be assigned spectrum.
Just as in [16], [8], [5], we assume that there is a spectrum
manager who is responsible for assigning spectrum to the
devices from different entities. Our objective is to establish
mechanisms that assign spectrum to such devices and
determine the amount of virtual money that needs to be paid
by each entity. (We use the phrase “spectrum assignment
mechanism” to emphasize that it is not just an algorithm
for assigning spectrum—it is also responsible for deciding
the payments.)

Assume that the frequency spectrum that can be used
for DSA at this location is(fl, fh), wherefh − fl = W .
Once we establish a spectrum assignment mechanism, this
spectrum assignment mechanism is executed periodically to
assign spectrum and determine payments.

For each deviced of each entitye, denote by(Le,d, He,d)
the spectrum assigned to this device by the spectrum
assignment mechanism. Letwe,d = He,d − Le,d. Clearly,
we,d stands for the bandwidth assigned to this device. There
is a restriction:Bℓ ≤ we,d ≤ Bu, whereBℓ and Bu are
constants. These constants are decided by various factors,
including the physical constraints, the FCC regulations, and
the policies.

A spectrum assignment mechanism decides the spectrum
assignment and payments based on the devices’ spectrum
demands. We do not assume each device has a fixed
demand for spectrum, such that the entity owning this
device is completely happy when the device is assigned this
amount of spectrum or more, and is completely unhappy
when the device is assigned less spectrum. In stead, we
assume that, for each entitye, and for each deviced of
entity e, there is a valuation functionve,d(). The input of
this valuation function iswe,d, the bandwidth assigned to
device d. The output of this valuation function is entity
e’s valuation of this assigned bandwidth. Intuitively,ve,d()
represents the device’s spectrum demand across all possible
levels. We adopt the standard assumption from the literature
of economics [15] that every valuation functionve,d() is
strictly increasing and quasi-concave. We also assume that
there is a constant lower boundζ for ve,d(Bℓ), i.e., for all
e and alld, ve,d(Bℓ) ≥ ζ.

Hence, in order to allow the spectrum assignment mecha-
nism to make its decision, each entitye needs to first submit
its valuation function setVe = {ve,d()|1 ≤ d ≤ De}, which
consists of the valuation functions of all devices ofe. Then,
the spectrum assignment mechanism uses these valuation
function sets to compute(Le,d, He,d) for each entitye and
each deviced of entity e. In addition, the mechanism also
computespe for each entitye, wherepe is the payment
entity e needs to make for its use of spectrum.

As we have mentioned, our objective is to design spec-
trum assignment mechanisms. Ideally, a spectrum assign-
ment mechanism should satisfy the following requirements:

• Truthfulness. Every entity has incentives to submit its
true valuation function set. The formal definition of
truthfulness requires a game theoretic model. So we
leave the formal definition to Section II-A.

• No starvation. Every device involved is assigned some
bandwidth.

• Conditional Maximization of Total Valuation. The to-
tal valuation of all assigned spectrum should be the
maximum possible under the constraint that there is
no starvation. As we will see, this is NP-hard for
multiple collision domains. Consequently, for multiple
collision domains, we loosen this requirement to allow
approximations.

We say a mechanism isoptimal if it guarantees no
starvation and maximizes the total valuation under the
constraint of no starvation. We say a mechanism isconstant-
ratio approximately optimalif it guarantees no starvation
and achieves a constant-ratio approximation to the maxi-
mum total valuation under the constraint of no starvation.
Hence, for single collision domain, our objective is that
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the mechanism should be optimal and truthful; for multiple
collision domains, our objective is that the mechanism
should be constant-ratio approximately optimal and truthful.

Because single collision domain and multiple collision
domains are quite different in terms of spectrum assign-
ment, we have designed two spectrum assignment mech-
anisms in Section III and IV, respectively. In these two
sections, we assume that there is asecure implementation
of virtual money, such that payments computed by the
mechanism can be enforced.

A. Game Theoretic Model

To formally analyze the truthfulness of our mechanisms,
we need to establish a game theoretic model.

We model the spectrum assignment as a strategic game,
where the players are the involved entities. For each entity
e, its action in the game is the valuation function setVe

it submits. The payoff for each entitye is decided by the
action profile of all players, i.e., the profile of valuation
function sets of all entities. We denote this profile byV .
Formally, we have:

payoffe(V) =
∑

1≤d≤De

ve,d(we,d) − pe. (1)

Intuitively, this means that the payoff of entitye is equal
to entity e’s total valuation of the spectrum assigned to all
its devices minus the payment it needs to make for its use
of spectrum.

Given this game theoretic model, we can easily de-
fine truthfulness for a spectrum assignment mechanism: A
mechanism is truthful if and only if it is adominant strategy
equilibrium (DSE) [18] for all entities to submit their true
evaluation function sets. Intuitively, a DSE guarantees that
every player of the game has incentives to play the strategies
specified by the DSE regardless of other players’ behavior.
Below is our formal definition of truthfulness. (In this
definition, we useV−e to represent the profile of valuation
function sets of all entities other thane. Similar notations
are used throughout this paper.)

Definition 1. A spectrum assignment mechanism is said to
be truthful if it is a DSE for all entities to submit their true
valuation function sets, i.e., for any entitye, assumingV T

e is
the true valuation function set of entitye, for any valuation
function setV A

e submitted by entitye, for any profileV−e of
valuation function sets submitted by all entities other than
e,

payoff e(V
T
e , V−e) ≥ payoff e(V

A
e , V−e).

III. S INGLE COLLISION DOMAIN

In this section, we design and analyze a spectrum assign-
ment mechanism, SAS, for the situation in which all DSA
devices are in a single collision domain. Throughout this
section, we restrict our attention to the case in which

K
∑

e=1
De · Bℓ < W ≤

K
∑

e=1
De · Bu.

The reason for this restriction is: IfW >
∑K

e=1 De · Bu,
then we have a trivial mechanism that assigns each device
with spectrum of widthBu and charges a flat rate for each
device’s spectrum usage. IfW <

∑K
e=1 De · Bℓ, then the

requirement of no starvation cannot be achieved by any
spectrum assignment mechanism. Hence, the case we focus
on is the only case in which a non-trivial mechanism both
exists and is needed.

A. Design of Mechanism

The design of SAS is based on two main ideas: greedy
spectrum assignment and opportunity-cost-based payment.

Greedy Assignment The first idea is that we should
greedily assign the spectrum such that the total valuation is
maximized. Of course, we notice that we need to guarantee
no starvation before we maximize the total valuation. So
SAS first reserves a minimum bandwidth ofBℓ for each
device.

Then, the remaining bandwidth is assigned to devices.
Assume that there is a small constantǫ such that all
assigned bandwidths (and the constantsBℓ andBu) must be
multiples ofǫ.1 Hence, we assign the remaining bandwidth
in slices of sizeǫ. Suppose the remaining bandwidth can
be divided intoN such slices. SAS assigns theseN slices
to the devices such that their total valuation is maximized.

To achieve this goal, we discretize each submitted val-
uation functionve,d() to obtain a sequence of valuations:
be,d,1, be,d,2,. . . , be,d,(Bu−Bℓ)/ǫ, where

be,d,j = ve,d(Bℓ + jǫ) − ve,d(Bℓ + (j − 1)ǫ).

Intuitively, eachbe,d,j is a valuation of one slice of band-
width of size ǫ. To be more precise,be,d,j is entity e’s
valuation of thejth such slice assigned to its deviced. Note
that, becauseve,d() is strictly increasing and quasi-concave,

0 < be,d,1 ≤ be,d,2 ≤ . . . ≤ be,d,(Bu−Bℓ)/ǫ

Next, we put together all such valuations of slices (for
all entities e and all devicesd), and pick theN largest
from them. TheseN highest valuations correspond to the
N slices SAS assigns to devices. For example, ifN = 3
and the three largest valuations arebe1,d1,1, be2,d2,1, and
be1,d1,2, then we assign two slices of sizeǫ to deviced1 of
entity e1, and one slice to deviced2 of entity e2. The total
bandwidth assigned to a device is equal to all these slices
assigned to it plusBℓ.

Once the bandwidth assigned to each device is deter-
mined, it is easy to determine the spectrum assigned to
this device: SAS starts the assignment from frequencyfl

and assigns a continuous spectrum to each device, until
frequencyfh is reached.

Opportunity-Cost-based PaymentThe second idea is that
we should calculate the payment of each entity using the
opportunity cost of its assigned spectrum. This opportunity
cost of the assigned spectrum for entitye is calculated

1Since the precision of involved computing is limited, theremust be
such a small constantǫ.
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as follows. Imagine that SAS re-assigns the slices without
considering entitye. It is easy to see that, the set of slices
originally assigned toe’s devices will be replaced by the
same number of slices assigned to other entities’ devices,
and the assignment of other slices will remain unchanged.
Consequently, the opportunity cost is equal to the total
valuation of all the newly assigned slices that replace the
slices originally assigned toe’s devices.

Besides the opportunity cost we discuss above, SAS also
charges each entity for its devices’ use of the reserved min-
imum bandwidths of sizeBℓ. For each device, this charge
is the same—ζ, the constant lower bound forve,d(Bℓ).

Using the ideas above, we design SAS, the details of
which are shown in Algorithm 1.

In SAS,B′(1) denotes the1st element of a sequenceB′.
Similar notations are used throughout this paper.

Note that when we write the details of SAS, we are
sloppy with the sequencesB, B′, A, P, Pe. Specifically,
each element ofB should not only be a valuationbe,d,j;
it should also contain the corresponding index(e, d, j).
Since the elements ofB′, A, P, Pe all originate fromB,
they should similarly contain the indices. We choose to be
sloppy here in order to avoid too complex notations.

Algorithm 1 SAS: Spectrum assignment mechanism for
single collision domain

1: INPUT: Available Space(fl, fh); valuation function setUe from
each entitye, parameterζ, Bℓ, Bu and a small numberǫ.

2: OUTPUT: Assigned spectrum for each deviced of each entitye:
(Le,d, He,d), and pricepe for each entitye.

3: W ′ = W − Bℓ ·
∑K

e=1 De.

4: N ′ = Bu−Bℓ
ǫ

; N = W ′

ǫ
.

5: for each entitye do
6: pe = 0.
7: for each deviced do
8: for each slicej s.t. 1 ≤ j ≤ N ′ do
9: (Le,d, He,d) = (0, 0).

10: be,d,j = ve,d(Bℓ + jǫ) − ve,d(Bℓ + (j − 1)ǫ).
11: end for
12: end for
13: end for
14: Compose a sequenceB, usingbe,d,j for all e, d, j.
15: B′ = sort(B). //ordering from largest to smallest.
16: A = (B′(1), B′(2), · · · , B′(N)).
17: P = (B′(N + 1), B′(N + 2), · · · , B′(N + N ′)).
18: for eache do, Pe = P\{be,d,q |∀d,∀q, s.t.be,d,q ∈ P}. end for
19: s = fl.
20: for eache do
21: ne = |{be,d,q |∀d,∀q, s.t.be,d,q ∈ A}|.
22: if ne > 0 then
23: for eachd do
24: ne,d = |{be,d,q|∀q, s.t.be,d,q ∈ A}|
25: we,d = ne,d · ǫ + Bℓ.
26: (Le,d, He,d) = (s, s + ne,d · ǫ + Bℓ)
27: s = s + ne,d · ǫ + Bℓ.
28: end for
29: end if
30: pe =

∑m=ne
m=1 Pe(m) + De · ζ.

31: end for

B. Analysis of Mechanism

Now we formally analyze SAS. We first prove the
truthfulness of SAS. Then, we prove its optimality.

Theorem 2. In single collision domain, SAS is truthful.

Proof: Consider an arbitrary entitye. Given V−e, the
profile of valuation function sets submitted by all entities
other thane, consider two possible strategies of entitye:
The first strategy is that entitye submits its true valuation
function setV T

e , while the second is that entitye submits
an arbitrary valuation function setV A

e . Clearly, these two
strategies may lead to different values of variables in our
SAS mechanism, and thus different payoffs of entitye. For
convenience, we use superscriptT to denote the value of a
variable whenV T

e is submitted, e.g.,nT
e is the value ofne

whenV T
e is submitted; correspondingly, we use superscript

A to denote the value of a variable whenV A
e is submitted,

e.g., nA
e is value of ne when V A

e is submitted. Those
values that are not affected by entitye’s submitted valuation
function set remain without either superscript, e.g.,be′,d,j

for e′ 6= e. It is easy to get that

payoffe(V
T
e , V−e)

=
De
∑

d=1

vT
e,d(w

T
e,d) − pT

e

=
De
∑

d=1

vT
e,d(n

T
e,d · ǫ + Bℓ) −

nT
e

∑

m=1
PT

e (m) − De · ζ

=
De
∑

d=1

(vT
e,d(nT

e,d · ǫ + Bℓ) − vT
e,d(Bℓ)) −

nT
e

∑

m=1
PT

e (m)

+
De
∑

d=1

vT
e,d(Bℓ) − De · ζ

=
De
∑

d=1

nT
e,d
∑

m=1
(vT

e,d(mǫ + Bℓ) − vT
e,d((m − 1)ǫ + Bℓ))

−
nT

e
∑

m=1
PT

e (m) +
De
∑

d=1

vT
e,d(Bℓ) − De · ζ

=
De
∑

d=1

nT
e,d
∑

m=1
bT
e,d,m −

nT
e

∑

m=1
PT

e (m) +
De
∑

d=1

vT
e,d(Bℓ)

− De · ζ.

Similarly,

payoffe(V
A
e , V−e) =

De
∑

d=1

vT
e,d(w

A
e,d) − pA

e = . . .

=
De
∑

d=1

nA
e,d
∑

m=1
bT
e,d,m −

nA
e

∑

m=1
PA

e (m) +
De
∑

d=1

vT
e,d(Bℓ) − De · ζ.

Hence,

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e)

= (
De
∑

d=1

nT
e,d
∑

m=1
bT
e,d,m −

De
∑

d=1

nA
e,d
∑

m=1
bT
e,d,m)

− (
nT

e
∑

m=1
PT

e (m) −
nA

e
∑

m=1
PA

e (m)).

Let B′T
e (resp.,B′A

e ) be the subsequence ofB′T (resp.,
B′A) that consists of all elementsbe,d,j for all d and allj.
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By our SAS mechanism, clearly we have that

De
∑

d=1

nT
e,d
∑

m=1
bT
e,d,m =

nT
e

∑

m=1
B′T

e (m). (2)

On the other hand,
∑De

d=1

∑nA
e,d

m=1 bT
e,d,m is the sum ofnA

e

elements ofB′T
e . Let MA be the set of indices for these

elements. Then, we have|MA| = nA
e and that

De
∑

d=1

nA
e,d
∑

m=1
bT
e,d,m =

∑

m∈MA

B′T
e (m). (3)

Now let B′
−e be the sequence we obtain by removing

all elements ofB′T
e from B′T . Note that when we remove

all elements ofB′A
e from B′A, we get the same sequence

B′
−e. It is not hard to see

nT
e

∑

m=1
PT

e (m) =
N
∑

m=N−nT
e +1

B′
−e(m); (4)

nA
e

∑

m=1
PA

e (m) =
N
∑

m=N−nA
e +1

B′
−e(m). (5)

Combining (2)(3)(4)(5), we get that

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e)

= (
nT

e
∑

m=1
B′T

e (m) − ∑

m∈MA

B′T
e (m))

− (
N
∑

m=N−nT
e +1

B′
−e(m) −

N
∑

m=N−nA
e +1

B′
−e(m))

We distinguish two cases:
Case A:nT

e ≥ nA
e .

payoffe(V
T

e , V−e) − payoffe(V
A
e , V−e)

= (
nA

e
∑

m=1
B′T

e (m) − ∑

m∈MA

B′T
e (m))

+
nT

e
∑

m=nA
e +1

B′T
e (m) −

N−nA
e

∑

m=N−nT
e +1

B′
−e(m)

≥ 0 + (nT
e − nA

e )B′T
e (nT

e )

− (nT
e − nA

e )B′
−e(N − nT

e + 1)

= (nT
e − nA

e )(B′T
e (nT

e ) − B′
−e(N − nT

e + 1))

The inequality above is due to the fact thatB′T
e andB′T

−e

are both sorted from the largest to the smallest. From SAS,
we can see thatB′T

e hasnT
e elements inAT , i.e., in the

top N elements ofB′T . Hence,

B′T
e (nT

e ) ≥ B′T (N).

This implies thatB′
−e hasN − nT

e elements in the topN
elements ofB′T . Hence,

B′
−e(N − nT

e + 1) ≤ B′T (N).

Combining all the above three inequalities, we get that

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e) ≥ 0.

Case B:nT
e < nA

e . We partitionMA into two subsets
MA,1 (|MA,1| = nT

e ) andMA,2 (|MA,2| = nA
e −nT

e ), such
that the elements with indices inMA,1 are the largestnT

e

elements with indices inMA.

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e)

= (
nT

e
∑

m=1
B′T

e (m) − ∑

m∈MA,1

B′T
e (m))

− ∑

m∈MA,2

B′T
e (m) +

N−nT
e

∑

m=N−nA
e +1

B′
−e(m)

≥ 0 − ∑

m∈MA,2

B′T
e (m) + (nA

e − nT
e )B′

−e(N − nA
e + 1)

Again, the inequality above is due to the fact thatB′T
e and

B′T
−e are both sorted from the largest to the smallest. Recall

that B′T
e hasnT

e elements in the topN elements ofB′T .
Hence,{B′T

e (m)|m ∈ MA} has at mostnT
e elements in

the topN elements ofB′T . Consequently,{B′T
e (m)|m ∈

MA,2} has no element in the topN elements ofB′T , which
implies that, for allm ∈ MA,2,

B′T
e (m) ≤ B′T (N).

On the other hand, similar to Case A,B′
−e hasN − nT

e

elements in the topN elements ofB′T . SinceN−nA
e +1 <

N − nT
e + 1,

B′
−e(N − nA

e + 1) ≥ B′T (N).

Combining all the above three inequalities, we get that

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e) ≥ 0.

To summarize, for both Case A and Case B we have
shown that

payoffe(V
T
e , V−e) ≥ payoffe(V

A
e , V−e).

Hence, all entities submitting true valuation function sets is
a DSE, which means SAS is truthful.

Theorem 3. (Optimality) In single collision domain, SAS
achieves optimality.

Proof: SAS clearly guarantees no starvation. So we
only need to show that it maximizes the total valuation
subject to the constraint of no starvation.

Let Ψ = {we,d|∀i, ∀d} be the spectrum assignment
result of SAS. LetΨ′ = {w′

e,d|∀i, ∀d} be the spectrum
assignment result of an arbitrary different mechanism, such
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that there is no starvation. It is easy to get that

∑

e

De
∑

d=1

ve,d(we,d) −
∑

e

De
∑

d=1

ve,d(w
′
e,d)

=
∑

e

∑

1≤d≤De

w′
e,d

=we,d

(ve,d(we,d) − ve,d(w
′
e,d))

+
∑

e

∑

1≤d≤De

w′
e,d

<we,d

(ve,d(we,d) − ve,d(w′
e,d))

+
∑

e

∑

1≤d≤De

w′
e,d

>we,d

(ve,d(we,d) − ve,d(w′
e,d))

=
∑

e
(

∑

1≤d≤De

w′
e,d

<we,d

(ve,d(ne,d · ǫ + Bℓ) − ve,d(n
′
e,d · ǫ + Bℓ))

+
∑

1≤d≤De

w′
e,d

>we,d

(ve,d(ne,d · ǫ + Bℓ) − ve,d(n
′
e,d · ǫ + Bℓ)))

=
∑

e
(

∑

1≤d≤De

n′
e,d

<ne,d

ne,d
∑

m=n′
e,d

+1

be,d,m − ∑

1≤d≤De

n′
e,d

>ne,d

n′
e,d
∑

m=ne,d+1

be,d,m)

It is also clear that,

∑

e

∑

1≤d≤De

n′
e,d

<ne,d

ne,d
∑

m=n′
e,d

+1

B′(N) =
∑

e

∑

1≤d≤De

n′
e,d

>ne,d

n′
e,d
∑

m=ne,d+1
B′(N)

(6)
From SAS, we can see that

∑

e

∑

1≤d≤De

n′
e,d

<ne,d

ne,d
∑

m=n′
e,d

+1

be,d,m ≥ ∑

e

∑

1≤d≤De

n′
e,d

<ne,d

ne,d
∑

m=n′
e,d

+1

B′(N),

(7)
and that

∑

e

∑

1≤d≤De

n′
e,d

>ne,d

n′
e,d
∑

m=ne,d+1
be,d,m ≤

∑

e

∑

1≤d≤De

n′
e,d

>ne,d

n′
e,d
∑

m=ne,d+1
B′(N).

(8)
From equations (6) (7) and (8), we can obtain that

∑

e

De
∑

d=1

ve,d(we,d) − ∑

e

De
∑

d=1

ve,d(w′
e,d)

=
∑

e
(

∑

1≤d≤De

n′
e,d

<ne,d

ne,d
∑

m=n′
e,d

+1

be,d,m

−
∑

1≤d≤De

n′
e,d

>ne,d

n′
e,d
∑

m=ne,d+1
be,d,m) ≥ 0.

Therefore, SAS achieves optimality.

IV. T RUTHFUL AND APPROXIMATELY OPTIMAL

MECHANISM FORMULTIPLE COLLISION DOMAINS

In the previous section, we have proposed a spectrum
assignment mechanism for single collision domain and
proved its truthfulness and optimality. However, if we
consider multiple collision domains, the problem becomes
extremely challenging. In fact, even if all entities claim
the true spectrum demands, there is little hope that we can
achieve optimality.

Theorem 4. In multiple collision domains, it is NP-hard
to compute a spectrum assignment that maximizes the total
valuation subject to the constraint of no starvation.

We skip the proof of this theorem, which is similar to
other NP-hardness results for spectrum assignment, e.g.,
[22]. Given this theorem, we have to weaken our objective
for multiple collision domains. Our weakened objective is
to find a mechanism that is both truthful and constant-ratio
approximately optimal.

A. Design of Mechanism

Assume that the interference graph is given as input.
We build SAM, a truthful and constant-ratio approximately
optimal mechanism for multiple collision domains, based
on two ideas: greedy pair-wise spectrum assignment and
highest-conflicting-valuation payment.

Just like SAS, SAM also assigns spectrum in two steps:
The first step is still to guarantee that there is no starvation.
The second step is also a greedy assignment, but it differs
from SAS in that it assigns spectrum slices in pairs. Below
are more details of these two steps.

In the first step, SAM reserves a continuous spectrum
of bandwidthBℓ for each device, such that there is no
interference between any two devices (Algorithm 2 line 5-
11). In other words, any two neighbors in the interference
graph are assigned two spectra that do not overlap. (Here-
after, we often use “neighbor” to refer to a neighbor in the
interference graph.) Also we make sure that the devices
belonging to the same entity are not assigned adjacent
spectra.

In the second step, SAM “grows” each device’s spectrum
under the four following restrictions:

(1) A device cannot be assigned any spectrum slice that
overlaps with the spectrum reserved in the first step for any
of its neighbors.
(2) The spectrum of a device must grow insymmetric pairs
of spectrum slices. Specifically, suppose that, in the first
step, SAM has reserved(CFe,d − Bℓ

2 , CFe,d + Bℓ

2 ) for a
device whereCFe,d is its center frequency. Then, in the
second step, after assigning symmetric pairs of spectrum
slices to this device, the device’s spectrum can only grow
to (CFe,d − Bℓ

2 − nǫ, CFe,d + Bℓ

2 + nǫ), wheren ≥ 0 is an
integer.
(3) The growth of a device’s spectrum must start from
the symmetric pair closest to its reserved spectrum in the
first step, and gradually go to farther symmetric pairs.
Once SAM decides not to assign a symmetric pair to
the device, the growth must terminate. For example, for
device (e, d), the growth of this spectrum goes in the
order: (CFe,d − Bℓ

2 − ǫ, CFe,d + Bℓ

2 + ǫ), (CFe,d − Bℓ

2 −
2ǫ, CFe,d + Bℓ

2 + 2ǫ),. . . If SAM decides not to assign the
symmetric pair(CFe,d − Bℓ

2 − 2ǫ, CFe,d − Bℓ

2 − ǫ) and
(CFe,d + Bℓ

2 + ǫ, CFe,d + Bℓ

2 + 2ǫ) to the device, then the
growth terminates and thus the spectrum slice pairs farther
than this pair will not be assigned to this device.
(4) SAM decides whether to assign a symmetric pair of
spectrum slices to a device based on the valuation of the
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(e1, d1)

(e2, d2)

Bℓ3ǫ 3ǫ

5ǫ 5ǫBℓ

︸ ︷︷ ︸

Reserved
in first step

Symmetric pair P2

Symmetric pair P1

︸ ︷︷ ︸

Reserved
in first step

Fig. 1. Example for the4th restriction.

spectrum slices pair (i.e., how much the valuation of spec-
trum can increase for this device if this pair is assigned).
Specifically, a symmetric pair is assigned to a device only
if this device’s valuation of this pair of spectrum slices
is greater than2 its neighbors’ valuations of allconflicting
pairs. Here a conflicting pair is just a symmetric pair of
spectrum slices for a neighbor (not for this device) that
overlaps with this symmetric pair.

In Figure 1, we illustrate the fourth restriction using
an example. Here entitye1’s device d1 and entity e2’s
deviced2 are neighbors. Deviced1 has a symmetric pair
P1 and deviced2 has a symmetric pairP2. For P1, P2 is
a conflicting pair. In order for SAM to assignP1 to d1,
we must have that the valuation ofP1 is greater than the
valuation ofP2, i.e., ve1,d1(Bℓ + 8ǫ) − ve1,d1(Bℓ + 6ǫ) >
ve2,d2(Bℓ + 12ǫ)− ve2,d2(Bℓ + 10ǫ).

Once the growths of all devices’ spectra are completed,
SAM calculates the payment each entity needs to make
for its use of spectrum: This payment is equal to the sum
of payments the entity needs to make for each symmetric
pair of spectrum slices assigned to each of its devices,
and for the spectrum reserved in the first step. For each
pair assigned to a device, the amount of payment due is
determined by the device’s neighbors belonging to other
entities. We consider the valuations of conflicting pairs from
such neighbors and use the highest such valuation as the
payment due.

In the example illustrated in Figure 1, assume thatd2 is
the only neighbor ofd1 and thate1 6= e2. Then the payment
due for usage ofP1 is the valuation ofP2: ve2,d2(Bℓ +
12ǫ)− ve2,d2(Bℓ + 10ǫ).

The entire SAM mechanism is shown in Algorithm 2.

B. Analysis of Mechanism

We have the following theorems regarding the truthful-
ness and approximation to optimality of SAM.

Theorem 5. In multiple collision domains, assuming that
∆ > Dmax and ∆ > 2D′

max − 1, where Dmax is the

2For simplicity of presentation, we assume there is no tie in valuations
of symmetric pairs. If there is a tie, we can easily break the tie, e.g., by
the identities of devices. However, we don’t include these details in this
paper because the notations and formulae would become too complicated.

Algorithm 2 SAM: Truthful and constant-ratio approxi-
mately optimal mechanism for multiple collision domains

1: INPUT: Available Space(fl, fh); valuation function setVe from
each entitye; the set of neighbors of(e, d): Neighbr(e, d); parameter
ǫ, ζ, Bℓ, Bu, ∆.

2: OUTPUT: Assigned spectrum for each deviced of each entitye:
(Le,d, He,d), and pricepe for each entitye.

3: s = W
∆

. N ′ = Bu−Bℓ
2ǫ

.
4: for each device(e, d) do
5: for each integerx s.t.,1 ≤ x ≤ ∆ do
6: if ∀(e′, d′) ∈ Neighbr(e, d), fl + (x − 1

2
) · s 6= CFe′,d′ and

∀d′′ 6= d, s.t., |fl + (x − 1
2
) · s − CFe,d′′ | 6= s then

7: CFe,d= fl + (x − 1
2
) · s.

8: Le,d = CFe,d − Bℓ
2

; He,d = CFe,d + Bℓ
2

.
9: Break.

10: end if
11: end for
12: for each integerj s.t. 1 ≤ j ≤ N ′ do
13: be,d,j = ve,d(Bℓ + 2 · jǫ) − ve,d(Bℓ + 2 · (j − 1)ǫ).
14: end for
15: end for
16: for each device(e, d) do
17: for (t = 1; t ≤ s−Bℓ

ǫ
; t + +) do

18:

if be,d,t >
e′ 6=e
max

(e′,d′)∈Neighbr(e,d)

&|CFe,d−CFe′,d′ |=s

b
e′,d′,(

s−Bℓ
2ǫ

−t+1)

19:

then pe,d,t =
e′ 6=e
max

(e′,d′)∈Neighbr(e,d)

&|CFe,d−CFe′,d′ |=s

b
e′,d′,(

s−Bℓ
2ǫ

−t+1)
.

20: else Break.
21: end if
22: end for
23: ne,d = t − 1.
24: Le,d = Le,d − ne,dǫ; He,d = He,d + ne,dǫ.
25: end for
26: for each entitye do
27: pe =

∑De
d=1

∑ne,d

m=1 pe,d,m + De · ζ.

28: end for

maximum degree among all nodes in the interference graph
and D′

max is an upper bound for a node’s number of
neighbors from the same entity, SAM is truthful.

Proof: Consider an arbitrary entitye. Given V−e, the
profile of valuation function sets submitted by all entities
other thane, consider two possible strategies of entitye, i.e.,
submitting its true valuation function setV T

e and submitting
an arbitrary valuation function setV A

e . Notations such as
V T

e , nT
e , V A

e andnA
e are defined similarly to in the proof

of Theorem 2. (Recall that subscriptT means the value is
for the scenario thate submitsV T

e and subscriptA means
the value is for the scenario thate submitsV A

e .) Those
values that are not affected by entitye’s submitted valuation
function set remain without either superscript, e.g.,be′,d,j

for e′ 6= e.
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We can easily get that

payoffe(V
T

e , V−e)

=
De
∑

d=1

vT
e,d(w

T
e,d) − pT

e

=
De
∑

d=1

vT
e,d(n

T
e,d · ǫ + Bℓ) −

De
∑

d=1

nT
e,d
∑

m=1
pT

e,d,m − De · ζ

=
De
∑

d=1

nT
e,d
∑

m=1
(vT

e,d(mǫ + Bℓ) − vT
e,d((m − 1)ǫ + Bℓ))

−
De
∑

d=1

nT
e,d
∑

m=1
pT

e,d,m +
De
∑

d=1

vT
e,d(Bℓ) − De · ζ

=
De
∑

d=1

nT
e,d
∑

m=1
bT
e,d,m −

De
∑

d=1

nT
e,d
∑

m=1
pT

e,d,m +
De
∑

d=1

vT
e,d(Bℓ) − De · ζ.

Similarly, we can obtain that

payoffe(V
A

e , V−e)

=
De
∑

d=1

nA
e,d
∑

m=1
bT
e,d,m −

De
∑

d=1

nA
e,d
∑

m=1
pA

e,d,m +
De
∑

d=1

vT
e,d(Bℓ) − De · ζ.

Hence,

payoffe(V
T

e , V−e) − payoffe(V
A

e , V−e)

=
De
∑

d=1

(
nT

e,d
∑

m=1
bT
e,d,m −

nA
e,d
∑

m=1
bT
e,d,m − (

nT
e,d
∑

m=1
pT

e,d,m

−
nA

e,d
∑

m=1
pA

e,d,m))

Our mechanism states that each

pe,d,m =
e′ 6=e
max

(e′,d′)∈Neighbr(e,d)

&|CFe,d−CFe′,d′ |=s

b
e′,d′,(

s−Bℓ
2ǫ

−m+1)
.

Since for eachm, , s−Bℓ

2ǫ − m + 1 is a fixed number and
not affected bye’s submitted valuation function set,pe,d,m

remains the same regardless of whethere submitsV T
e or

V A
e .
Then∀m s.t. 1 ≤ m ≤ min(nT

e,d, n
A
e,d) we have

pT
e,d,m = pA

e,d,m

. We distinguish two cases.
Case A.nT

e,d ≥ nA
e,d.

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e)

=
De
∑

d=1

(
nT

e,d
∑

m=nA
e,d

+1

bT
e,d,m −

nT
e,d
∑

m=nA
e,d

+1

pT
e,d,m)

=
De
∑

d=1

(
nT

e,d
∑

m=nA
e,d

+1

(bT
e,d,m − pT

e,d,m))

≥ 0

The inequality above is due to the fact that, for anym ≤
nT

e,d, we must havebT
e,d,m ≥ pT

e,d,m.

Case B.nT
e,d < nA

e,d.

payoffe(V
T
e , V−e) − payoffe(V

A
e , V−e)

=
De
∑

d=1

(−
nA

e,d
∑

m=nT
e,d

+1

bT
e,d,m +

nA
e,d
∑

m=nT
e,d

+1

pA
e,d,m)

=
De
∑

d=1

nA
e,d
∑

m=nT
e,d

+1

( max
(e′,d′)∈Neighbr(e,d)

&|CFe,d−CFe′,d′ |=s

b
e′,d′,(

s−Bℓ
2ǫ

−m+1)

−bT
e,d,m)

≥ 0.

This inequality holds because∀m s.t.,m > nT
e,d,

bT
e,d,m ≤ max

(e′,d′)∈Neighbr(e,d)

&|CFe,d−CFe′,d′ |=s

b
e′,d′,(

s−Bℓ
2ǫ

−m+1)
.

Therefore, it is a DSE for all entities to submit their true
valuation function sets.

In addition to truthfulness, we can also prove the follow-
ing theorem:

Theorem 6. In multiple collision domains, suppose that
TOV is the total valuation of the spectrum assigned to the
devices computed by SAM, andOPT is the maximum total
valuation under the constraint of no starvation, then there
is a constantΦ > 1 such thatOPT ≤ Φ · TOV.

Proof: Consider a system that has to be allocated
spectrum with a total bandwidth ofW . Let we,d be the
bandwidth allocated to device{e, d} under the allocation by
SAM, and letTOVe,d be the valuation of spectrum assigned
to device{e, d} under the allocation by SAM. Then, we
have

TOVe,d = ve,d(we,d).

Let w′
e,d be the bandwidth assigned to device{e, d} by

the steps in line 4-15 of SAM. It is not difficult to see
that w′

e,d ≥ Bℓ. Let w′′
e,d be the bandwidth assigned to

device{e, d} by greedy assignment in line 16-25 of SAM.
Since the valuation function is an increasing quasi-concave
function, we can obtain that

TOVe,d

OPTe,d
=

ve,d(we,d)

ve,d(w∗
e,d)

=
ve,d(w

′
e,d + w′′

e,d)

ve,d(w∗
e,d)

≥
ve,d(Bℓ + w′′

e,d)

ve,d(W )
.

Defineν = min
e,d

ve,d(Bℓ) andρ = max
e,d

ve,d(W ).

Let w∗
e,d be the bandwidth allocated to the deviced of

entity e under the optimal allocation and letOPTe,d be the
valuation of spectrum assigned to the deviced of entity e,
under the optimal allocation.

Clearly, we have

OPTe,d = ve,d(w
∗
e,d).
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Now we assume there areK devices in the system, and
consider the total valuation for the system.

TOV

OPT
=

∑

e

∑

d ve,d(w′
e,d + w′′

e,d)
∑

e

∑

d ve,d(w∗
e,d)

≥
∑

e

∑

d ve,d(Bℓ)
∑

e

∑

d ve,d(W )

≥ K · mine,d ve,d(Bℓ)

K · maxe,d ve,d(W )

=
ν

ρ
.

Thus, we haveOPT ≤ ρ
ν TOV.

V. I MPLEMENTATION OF V IRTUAL MONEY

Recall that all our spectrum assignment mechanisms are
based on virtual money. We propose that each DSA device
should be preloaded with a constant amount of virtual
money. Each device consumes the virtual money stores in
it when it is assigned some spectrum to use. When the
virtual money is used up in a device, if the device owner
still needs to access more spectrum, she can choose to
purchase additional virtual money using real money and
reload some virtual money into the the device through the
connection with the central bank of virtual money. (The
device owner can also buy virtual money early, before using
up the preloaded virtual money.) In this section, we present
an approach to implement virtual money using reverse hash
chains, which has low computational overheads but can
provide a reasonable security guarantee.

Approach Using Reverse Hash ChainsThe main idea
of our approach is to use a reverse hash chain. Recall
that, each device is preloaded with an amount of virtual
money. Suppose the amount of preloaded money ism. Let
(kprv, kpub) be a pair of keys for the central bank of virtual
money, wherekprv is the private key andkpub is the public
key. (We assume thatkpub is known to every device.) To
implement the preloading of this amount of virtual money,
we store a tuple< ri, H

m(ri), Skprv
() > in each devicei,

whereri is a random number only known to the device,H()
is a well-known cryptographic hash function (e.g., SHA-
512), andS() is a digital signature algorithm. Intuitively,
(ri, H(ri), H2(ri), . . . , Hm(ri)) forms a hash chain of
lengthm, which represents the amount of preloaded virtual
money. The devicei does not need to keep the entire hash
chain; in stead, it only keeps the headri, the tailHm(ri),
and the central bank’s signature on the tail.

The first time a devicei uses DSA, it broadcasts
< Hm(ri), Skprv

(Hm(ri)) >, i.e., the tail of the hash
chain and the signature on the tail, to all other devices.
Upon receipt of this message, each device verifies that the
signature is valid usingkpub, and then makes a record of
the received tail. Note that each device maintains a record
of the current tail for each other device.

When devicei needs to make a payment ofµ (µ ≤ m),
it does so by revealing to the public the subchain of length

µ at the current tail, and then removing this subchain from
its current chain. To be more precise, assuming the current
tail kept by devicei is Hm′

(ri), devicei simply broadcasts
Hm′−µ(ri) to all devices, and then replaces the current tail
in its record withHm′−µ(ri).

Correspondingly, when devicej receives hash valueϕi

from devicei for a payment of amountµ, assuming the
current tail for devicei in AP j’s record isϑi, devicej
needs to verify thatϑi = Hµ(ϕi). After the verification,
device j replaces the current tail for devicei in its own
record withϕi.

Fast Computing of Hash-Chain Tail The above approach
for implementing virtual money requires frequent comput-
ing of hash-chain tails. For example, when devicei needs
to make a payment ofµ, it needs to computeHm′−µ(ri).
If m′ − µ is large, it may take some time to compute
Hm′−µ(ri) from ri. We propose a simple way to expedite
this computation: For a constantLEN, devicei should also
be preloaded withHLEN(ri), H2·LEN(ri), H3·LEN(ri),. . . ,
in addition to the head and tail of the hash chain and the
signature on the tail. In this way, when devicei needs to
computeHm′−µ(ri), the device only needs to compute it
from HM·LEN(ri), whereM · LEN is the largest multiple of
LEN less than or equal tom′ − µ. Consequently, devicei
needs much less time to computeHm′−µ(ri).

VI. EVALUATIONS

We evaluate our spectrum assignment mechanisms in
various settings using GloMoSim [1]. We carry out three
sets of experiments for different objectives.

• The first set of experiments evaluate how the payoff
of an entity is affected by its possible cheating actions
(in claiming its valuation function set). The results
demonstrate that, when either SAS or SAM is used,
entities’ cheating actions never increase their own
payoffs.

• The second set of experiments evaluate the total valu-
ation of assigned spectrum in the system. The results
demonstrate that, in a single collision domain, when
a cheating entity appears, SAS can prevent the total
valuation of assigned spectrum from decreasing; In
multiple collision domains, SAM also achieves good
efficiency in spectrum utilization.

• The third set of experiments are on the overheads
introduced by the payment scheme. The results have
confirmed the efficiency of our scheme.

A. Experiments Setup

The experiments are performed on a laptop with 2.0GHz
Centrino CPU and 1.96GB RAM. We modify GloMoSim
to enable the use of variable spectrum width, by setting
the MAC layer parameters described in [3]. The payment
scheme is implemented with SHA-512 from Cryptopp
Library 5.2.1 [4].

Unless specified otherwise, we assume that3 entities,
each of whom has2 devices, are randomly located in
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an area of300 × 300 m2 (for single collision domain
experiments), or600 × 600 m2 (for multiple collision
domains experiments). The transmission power of each
device is16dBm. The path loss is set to free space. In all
experiments except those in Section VI-C, we assume that
the available band is48MHz in DTV whitespace (644MHz-
692MHz). All traffic is single hop UDP flows that are
always backlogged. We set the packet size to 1500 Bytes.

In our experiments, we assume each valuation function
is in one of the following two forms:

ve,d(we,d) =

{

βe,d log(1 + γe,d · we,d) if we,d < 1/γe,d

βe,d log 2 if we,d ≥ 1/γe,d.
(9)

ve,d(we,d) =

{

βe,d
√

γe,d · we,d, if we,d < 1/γe,d

βe,d

√
2 if we,d ≥ 1/γe,d.

(10)
The difference in devices’ valuation functions is reflected
by the difference in the values ofβe,d and γe,d. When
entities submit their valuation function sets, they may cheat
by changing their values ofβe,d andγe,d. When an entity
is truthful, it should use the true values ofβe,d and γe,d,
denoted byβ⋆

e,d andγ⋆
e,d. We assumeγ⋆

e,d = 1/(Ne,d∗1M),
whereNe,d ∗ 1M is the spectrum demand of device(e, d).
In experiments, we randomly set eachNe,d as an integer
in [1, 20]. We setBℓ = 6MHz, Bu = 40MHz, ǫ = 1MHz
andζ = 0.1/MHz.

B. Truthfulness and Payoffs

In this set of experiments, we study the truthfulness
of our mechanisms. In particular, we evaluate how the
cheating behavior of entities affects their own payoffs. In
each experiment, one random entity is picked to be the
cheater; its claimed valuation function set has eachβe,d

(resp.,γe,d) randomly chosen between 0 and3β⋆
e,d (resp.,

3γ⋆
e,d).3 We measure the payoff of the cheating entity in

each experiment and also the same entity’s payoff when
the entity behaves honestly. The difference is the entity’s
payoff change for cheating. If the change is positive, then
cheating benefits the entity; otherwise, cheating does not
benefit.

Payoffs in SASWe perform the above experiments on SAS,
with 1000 runs using valuation functions in the form of (9)
and another 1000 runs using valuation functions in the form
of (10). From Fig. 2 (a) we can observe that the payoff
change when cheating is never positive. In other words,
entities never benefit from, and usually lose for, cheating.
The average payoff loss when cheating is18.94. Similar
observations can be made from Fig. 2 (b). In this case, the
average payoff loss when cheating is14.62. Overall, the
truthfulness of SAS is verified.

Payoffs in SAM We also perform similar experiments on
the two mechanisms for multiple collision domains. Fig. 3

3We have this random choice of cheater and cheater’s action because it
is hard to predict who will be the cheater and how the cheater will behave
in reality. By repeating this experiment for many times, we hope that at
least some of the randomly picked cheating actions will be consistent with
real cheaters’ actions in reality.
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Fig. 2. Payoff change for SAS. It shows that the payoff changewhen
cheating is never positive when SAS is used.

shows the results for SAM. We can see that, if SAM is used,
an entity’s cheating can never benefits itself (i.e., there is
no positive payoff change for cheating). Consequently, the
truthfulness of SAM is verified.
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Fig. 3. Payoff change for SAM. It shows that there is no positive payoff
change for cheating when SAM is used.

C. Total Valuation

The second set of experiments are to evaluate our two
mechanisms in terms of satisfying spectrum demands.

For single collision domain, we measure the total valu-
ation of assigned spectrum for SAS and compare it with
the case that there is no payment scheme enforced in
the system and one entity cheats in its submission of
valuation functions. The result distributions shown in Fig.
4 demonstrate that SAS which achieves optimal spectrum
utilization can significantly increase (7.62% on average) the
total valuation of assigned spectrum with the presence of
one cheating entity.
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Fig. 4. Total valuation of assigned spectrum in single collision domains.

For multiple collision domains, we measure the total
valuations of assigned spectrum for SAM in two different
bands, the 2.4GHz ISM band and the DTV whitespaces,
respectively. We assume that there are 80MHz available
bandwidth in the 2.4GHz ISM band, and 48 MHz available
bandwidth (644MHz-692MHz) in DTV whitespaces. Fig.
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5 shows the distributions of total valuation of assigned
spectrum of 100 runs, for our mechanism SAM. In the
figure, we can see that, for both the 2.4GHz ISM band
and the DTV whitespace, the total valuation of assigned
spectrum in the system remains at a high level. Since the
there are more bandwidth available in 2.4GHz ISM band,
system-wide total valuation is higher than that of DTV
whitespace.
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Fig. 5. Total valuation of assigned spectrum in multiple collision domains.

D. Computational Overhead

In this set of experiments, we evaluate the computational
overhead introduced by our payment scheme. In particu-
lar, we distinguish two types of computational overhead,
namely the overhead for computing the hash value in
order to make a payment and the overhead for verifying a
payment, and evaluate both of them. In these experiments,
the amount of preloaded virtual money is1000; LEN = 100

for fast computing of hash-chain tails; the key length is
1024 bits.

For the first type of overhead, we measure the average
amounts of time for a device to compute a payment using
different methods: the basic method of directly computing
the hash value from the head of the hash chain, and the
fast hash-chain tail computation method given in Section V.
The results in Fig. 6 show that the basic method is pretty
fast, but the fast hash-chain tail computation method is even
faster. We also observe that for the basic method, making
later payments is faster than making earlier payments.
The reason is that the length of the hash chain decreases
over time, and thus making later payments requires fewer
numbers of hashing.
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Fig. 6. Average computational overhead for making a payment.

We also evaluate the overhead for verifying a payment.
From the results of 100 runs, we find that the average
time for verifying a payment is 3.50 ms, and the standard
deviation is about0.32ms.

VII. R ELATED WORK

DSA has been studied extensively [13], [22], [3], [8],
[16], [2]. In the KNOWS [22], [21], [17] project, the
concept of time-spectrum block is introduced and close-
to-optimal central and distributed spectrum allocation algo-
rithms [22] are proposed. In [16], Moscibroda et al. design
algorithms to assign dynamic channel width that matches
the traffic load. Their results show that load-aware dynamic
spectrum allocation can significantly improve the spectrum
utilization. Another important recent contribution [5] in
DSA is on DTV whitespaces. In this work, in addition
to providing some basic design rules and an architecture,
Deb et al. also present a demand-based dynamic spectrum
allocation algorithm that achieves high performance.

Our work differs significantly from the above works,
because we study the incentive problem, which is not
considered in any of the above works.

Incentives are also considered in existing works on
spectrum auctions [11], [24], [23], [14], [12], [25]. In [23],
Zhou et al. propose a truthful and computationally ef-
ficient auction scheme; in [25], Zhou and Zheng make
an important improvement by considering the incentives
of the spectrum seller. Another truthful spectrum auction
scheme is presented in [12] for generating more revenue
from the auctions. Although our work may appear to be
similar to spectrum auctions in some aspects, there are
fundamental differences in the settings. Spectrum auctions
are on licensedaccess to the spectrum, where the seller
is the license holder, and the bidders must purchase the
spectrum they want to access from the seller. In contrast,
in the scenario we consider, there is no seller of spectrum.
Spectrum auction sell spectrum in units of channels and
thus only allows bidding using per-channel price, but our
work guarantee that users are assigned a contiguous but
variable bandwidth, depending on the users demand.

There are also a number of works on non-cooperative
channel assignment problem in wireless networks [9], [19],
[6], [20], [7]. For multiple radio devices, Felegyhazi et
al. [6] introduce a strategic game model and obtain elegant
theoretical results. After this work, Wu et al. [20] proposea
solution based on strictly dominant strategies, and Gao et.
al. [7] obtain interesting results in multi-hop networks. As
we have mentioned, all these works are on assignment of
fixed-width channels, rather than on assignment of general
spectrum.

VIII. C ONCLUSION AND FUTURE WORK

In dynamic spectrum access, there may be an incentive
problem if the DSA devices are owned by multiple entities.
To solve this problem, we propose two spectrum assignment
mechanisms with provable properties, for single collision
domain and multiple collision domains, respectively.

To summarize, we are the first to study this important
problem. So, there are many possible ways to further
improve our mechanisms, e.g., better approximation mech-
anisms for multiple collision domains, or better methods to
implement the mechanisms.
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