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Abstract Internet. With an army of bots at the scale of tens of thou-
sands of hosts or even as large as 1.5 million PCs, the com-
Recently, peer-to-peer (P2P) networks have emerged fagational power of botnets can be leveraged to launchdarge
a covert communication platform for malicious programscale DDoS (Distributed Denial of Service) attacks, semdin
known as bots. As popular distributed systems, they all@pamming emails, stealing identities and financial informa
bots to communicate easily while protecting the botmastt#on, etc. For instance, it is reported that six botnets con-
from being discovered. Existing work on P2P-based botndtiute 85% of all spamming emails seen on the Internet [26],
mainly focuses on measurement of botnet sizes. In this warkg botnets have been used to launch DDoS attacks against
through simulation, we study extensively the structurexst P DNS service [13].

networks running Kademlia, one of a few widely used P2P As detection and mitigation techniques against botnets

protocols in practice. Our simul_atio_n testbed inCOrpOlSFtehave been stepped up in recent years, attackers are also con-
the actual_ code of a Tea! Kademlia cllen_t softvyare to aCh'evs‘?antly improving their strategies to operate these bstnet
great reallsm., and ¢stnbuted_ .event-_drlven simulatiochte The first generation of botnets typically employ IRC (In&trn
nigues to achieve high scalability. Using this testbed, nae-a Relay Chat) channels as their command and control (C&C)
lyze the scaling, reachability, clustering, and centsafitop- centers . Though simple and easy to deploy, the centralized
erties of P2P-based botnets from a graph-theoretical PeEgC mechanism of such botnets has made them prone to
spective. We further demonstrate experimentally and meorbeing detected and disabled. Against this backdrop, peer-
ically that monitoring bot activities in a P2P network isfilif to-peer (P2P) based botnets have emerged as a new genera-

cult, suggesting that the PP mechanism indeed helps m“}%n of botnets which can conceal their C&C communication.

hldethelrcommunlcatlon effe_cuvgl_y, F!nally, We_eva&ﬁtte Without a centralized C&C server, a P2P-based botnet does
effectiveness of some potential mitigation technique$, 88 ¢ o\ ffer from a single point of failure, and its traffic, whe

content poisoning, Sybll-bas_ed and Ecllpsg-based mIBBat e in the enormous normal P2P traffic in the Internet, is
Conclusions drawn from this work shed light on the struc‘e-Xtremely hard to detect

ture of P2P botnets, how to monitor bot activities in P2P _
networks, and how to mitigate botnet operations effegtivel ~ Current work on P2P-based bonets mainly focuses on

Keywords: Botnets, Kademlia, structural analysis, monitormeasuring existing P2P-based botnets, such as the highly
ing, mitigation publicized Storm botnet. In this work, we take one step fur-

ther to investigate the structural characteristics of Baked
botnets, explore the challenges of monitoring bot acésiti
inside a P2P network, and evaluate the effectiveness of sev-
eral attack techniques against P2P networks for botnet mit-
igation. Achieving all these goals calls for an experimenta
Botnets, which are networks of compromised machingsstbed with high flexibility and controllability. Towardsis
that are controlled by one or a group of attackers, haemd, we build a P2P-based botnet simulation testbed, which
emerged as one of the most serious security threats on tises the actual implementation code of a real P2P client soft

1 Introduction



ware for great realism, as well as distributed event-drivatown and hijack attacks than traditional botnets [30]. Dago
simulation techniques for high scalability. Using thighesl, et al. observed diurnal patterns that impact the propagatio
we analyze the structures of P2P-based botnets and evalsgieed of the botnet and thereby proposed a diurnal propa-
several monitoring and mitigation strategies. gation model to capture this phenomenon [11]. Recently, a
The key contributions we make from this work can betochastic activity network model has been used to charac-
summarized as followszirst, we analyze the scaling, reachterize peer-to-peer botnets in thebus software tool [25].
ability, clustering, and centrality properties of P2Pdxhs Our work in this paper relies on a P2P-based botnet simu-
botnets from a graph-theoretical perspectiv@econd we lation testbed, in which a P2P-based botnet is modeled us-
demonstrate, from both experimental and theoretical aspeing discrete-event simulation techniques. Unlike presiou
that monitoring bot activities in a P2P network is difficultwork, our simulation model uses actual implementation code
suggesting that the P2P mechanism indeed helps botnets lifla popular P2P cllient software to achieve great realism.
their C&C communication effectively.Third, we evaluate In thethird category, several techniques recently also been
the effectiveness of some existing well-known attacksrajai proposed to detect botnet existence: machine learning [20]
P2P, but now used for botnet mitigation, such as contesmtomaly detection [4], traffic or network activity stattsti
poisoning, Sybil-based mitigation, and Eclipse-basedanit analysis [16]. In this work, we explore the difficulty of mon-
tion. Conclusions drawn from this work shed many insighigoring bot activities in a P2P network and also evaluate ex-
on the structure of P2P botnets, how to monitor bot actiwitiésting attack techniques against P2P network on mitigation
in P2P networks, and also how to mitigate botnet operatioagainst botnet operations. Conclusions drawn from this are
effectively. complementary to existing botnet detection and mitigation
The remainder of the paper is organized as follows. Seechniques.
tion 2 presents related work. Section 3 provides some back-Kad is the first widely deployed peer-to-peer system based
ground on the Kademlia protocol and its variant Kad, whicbn a Distributed Hash Table. Stutzbach et al. were among
is used in our simulation-based study. Section 4 gives #re first to study the performance of lookup operation on
overview of the design of our P2P-based botnet simulatiddad [28]. Steiner et al. [27] investigated several attacks o
testbed. Next, Section 5 analyzes P2P-based botnets fridad, but they did not focus on the efficiency of the attacks,
a graph-theoretic perspective, including their scaliegch- especially in the context of botnets. Some results in their
ability, clustering, and centrality properties. Sectiodi§- paper were later contradicted by other work [17]. Finally,
cusses the challenges of monitoring bot activities in a P2Rtacks against DHT (Distributed Hash Table) P2P networks
network, both experimentally and theoretically. We furthehave long been discussed since the dawn of DHT-based net-
evaluate the effectiveness of three different mitigatecht works [7], [12]. However, they are mostly studied from a hy-
nigues against botnet operations in Section 7. Finally; Squothetical perspective, and there is little work that exgdo

tion 8 concludes the paper. their actual performance on real networks. Here we explore
the potential of employing these attacks for good use agains
2 Related Works botnets, and from a practical perspective.

Existing studies on botnets mainly fall under the follow3 Primer on Kademlia and Kad
ing three main categories: (i) Perform case-study of botnet
behaviors and structures; (ii) Model hypothetic botnets to Kademlia, a peer-to-peer (P2P) protocol, was proposed by
gain insights on their dynamics and defense schemes agaMaymounkov and Mazieres in [21]. Based on Distributed
them; (iii) Propose techniques for botnet detection and didlash Table (DHT), it provides a structured approach to P2P
ruption. In thefirst category, Freiling et al. [14] infiltrated a applications, where file storing and lookup operations @n b
real botnet to identify C&Cs and study bot commands. Rajafficiently performed with some resource-to-location map-
et al. [24] employed a multifaceted and distributed infnast  ping functions. In Kademlia networks, each node or resource
ture to study botnet behaviors. Others works focused on méa-g., file) is associated with a 160-bit identifier in a clacu
suring botnet size by various techniques such as by DNS reld- space of siz&'°. These IDs are generated in a pseudo-
rection [10] or DNS cache snooping [23]. Our work on anrandom fashion (usually with a cryptographic hashing func-
alyzing P2P-based botnets is inspired by some observatidios), so that they can be deemed as uniformly distributed in
made from real botnets. In tleecondcategory, Dagon et al. the ID space. The distaneebetween two IDsX andY is
analyzed intensively the impact of different botnet stuwes defined as the integral value of the bitwise-XOR result be-
on some network metrics such as inverse geodesic length [@leenX andY’, namelyX & Y. Each resource is stored on
In [29], Vogt et al. also used simulation to shed light on theodes whose IDs are closest to the resource’s ID based on
feasibility of using super-botnets for their command ana-cothis distance metric.
trol communication. Wang et al. proposed a hybrid peer-to- Routing in Kademlia is done in an iterative fashion based
peer botnet structure that is more robust against servér stan distances. A node, when searching for an ID (either a re-



source ID or a node ID), queries its neighbors for new nodes In Kad, keys are not just published on a single peer that is
whose IDs are closest to the target ID. Upon receiving the atlesest to that key, but instead stored on at most 10 difteren
swers, it continues to query those that are closer to thetargeers close to the key. Keys are periodically republished,
This process repeats until no closer node IDs can be fouenkry 5 hours for a source key and 24 hours for a keyword or
from the answer set. note key. Keys are removed from their resident peers if they

For routing purposes, each node maintains a routing taave not been republished within their respective lifetime
ble containing information about its neighbors, such as the
IDs, IP addresses, contact ports, etc. The routing table4s P2P-Based Botnet Simulation Testbed
organized as a tree of subtables caliéds each of which
stores information about nodes with the same ID prefix. The the gistributed architectures and existence of obfuseatio
contents of these bins are frequently updated whenever {ignniques such as encryption in P2P-based botnets not only
host node receives a query, to ensure that only informafiong,se 5 serious challenge to studying their operationak char
alive neighbors is stored. When a bin is full, new entries alg.eristics, but also hinder development of effective dege
added only if some old entries appear to be dead and can tig§emes to detect and even disrupt their operations. Cur-
be removed. In this sense, Kademlia prefers existing Nodest ork on P2P-based botnets mainly focuses on monitor-
to newly joined ones. Further deta|I§ regarding how routhgg, either passively or actively, behaviors of some emggti
tables are con;trl_Jcted can be foun(_:i in [21]. P2P-based botnets, such as the Storm botnet [18,19]. Al-

Kad is a variation of the Kademlia protocol that has beefioygh these bodies of work offer insights on how those bot-
adopted by the P2P community on several major P2P Ngkts operate underground in reality, they have the follgwin
works, including Overnétand eMule [1]. Beside using 128- gisadvantagesFirst, botnet monitoring usually takes place
bit IDs, Kad supports more types of messages than Kadeffsm a single or a few vantage points, thus cannot provide
lia, and also handles the routing process in a slightly dfié 5 fy|| and consistent picture of the entire netwoecond
fashion. More specifically, the search process in Kad ctsigesearchers who attempt to actively measure an existing bot
of two phases: net may interfere with each other, potentially render infar

. . - . tion collected highly biased. For instance, the Storm hiotne
¢ Routmg phase Similar t? the original K_ademllla rout- may have been overestimated due to interference from re-
ing protocol, the searching node asks its neighbors f

d | t 10 the kev ID i iterative fashi T%archers performing their poisoning mitigation scheme on
no els c ?st 0 the key hm an |_er|£:1 |(\j/e. asltlon. e botnet [19].Third, even without considering the interfer-
Z(S:EE ?(;? tehe ?heéoecilscfs,ggcpepeergrslg fgr iimelgcﬁnr?)% q e caused by other researchers, evaluating the perfoeman

T ‘a proposed mitigation scheme accurately on a real botnet
The messages used in this phase are KADEMLIARE brop g y

. S difficult because the effect is usually observed from one
OQfUKi(SjT and KADEMLIARESPONSE, in the parlanceor a few vantage pointgrourth, as an intelligent botmaster

may dynamically change his strategy to evade detectios, it i
difficult to evaluate the effectiveness of a countermeasuore
0%reeal botnet.Last but not leastperforming research on a

since the query starts, the searching node selects s | botnet involve ethical and leaal | that ft
nodes that have responded and then queries for {if&" botnet may involve ethical and iegal Issues that asno
lected by cyber-security researchers [6].

key. The messages used in this phase are key—specri]t?(%v. o
ith these challenges, it is thus necessary to have a
query messages, such as KADEMLBEARCHREQ testbed with such flexibility and controllability that werca

and KADEMLIA-PUBLISHREQ. use it to understand the operational dynamics of botnets and
Each unit of information stored in a Kad network is assddlS0 evaluate effectiveness of different mitigation sceem
ciated with a unique key (i.e. an ID). There are three malfPr this purpose, we develop a simulation-based virtualenv
types of keys. (1Bource Key A source key identifies the Fonment in which we can investigate P2P-based botnets ex-
content of a file and associates with information about tf{gnsively. In this simulation testbed, we simulate behvio
source node to download that file. Each instance of a fif§ P2P protocols with high fidelity. In contrast to some ex-
is associated with a unique source key (there can be mul§ling P2P simulators which often model P2P protocols at an
ple copies, thus multiple source keys). Kyword Key A abstract level, we use the implementation code of aMule [2],
keyword key identifies a textual keyword and associates wigh'€@l and popular P2P client software for eMule [1]. The
information of the source keys for files related to the key@Mule P2P clientimplements the Kad protocol, as described
word. (3)Note Key A note key identifies a comment related” Section 3. Itis noted that the Storm botnet uses a modified

to a specific file, and associates with information about a fi¢rsion of the Overnet protocol for communication, which
(i.e its source key). also implements the Kademlia algorithm. The code migrated

from directly from aMule, however, cannot work straightfor
10vernet was shut down due to copyright violations in late6200 wardly in a simulation environment because timers in aMule

e Item querying phase After a certain amount of time




are associated with real wallclock time but in the simulationodea’s routing table, an edge from vertaxo b is added to
time is virtual and simulated. To address this problem, whe graph.
intercept all time-related system calls and replace thetin wi
functions that use virtual simulation time. 5.1 Scaling Property

As we port code from a real P2P client software, we sim-
ulate all details of the P2P protocol without any abstractio Many real-world networks, such as the world wide web
Although this provides great realism in our simulation)sica (WWW) and social networks, have been shown to be scale-
brings the scalability challenge: simulating a botnet &t thiree networks, whose degree distributions follow the power
scale of a realistic one (e.g., a botnet with tens of thousahd law. We are interested in whether a network built on the
bots like the Storm botnet) is so computationally prohilgiti Kademlia protocol is also a scale-free network. In Figures
that it cannot be finished on a single commodity PC withih(a) and 1(b), we depict the cumulative distribution of the
a reasonable amount of time. To improve the scalability #f-degree and out-degree of graplV, E), respectively. Vi-
our botnet simulator, we resort to distributed simulatiecht  sually, if the degree distribution follows a power law distr
niques. Our botnet simulator is developed on top of PRIMBUtion, the curve should appear linearly. From the figures,
SSF [22], a distributed simulation engine based on conseritaseems that both the indegree and outdegre@(df, £') do
tive synchronization techniques. Our distributed computi not follow the power law.
platform consists of 30 machines, each with 2 Pentium llI

CPUs and 4Gb RAM. Using this platform, our botnet simr In degree CCOF Lo ut degree CCDF
lator can simulate botnets with hundreds of thousands af ;1 107
within hours. R0 20
. . .. . N N

The simulation testbed offers great controllability wieh 1< , - X103
gard to how the botmaster of a bot dynamically changes o | -+ ! * o
ational strategies. For instance, a botnet using the Kade - i 107 )
protocol may not strictly stick to the original protocol;-it ~ 10" 10° (D:tle%iee) 10" 10° 10° \ (Degree) 10°
stead, it can tweak some protocol behaviors for its own good. (a) In-Degrees (b) Out-Degrees

Modeling different botnet operational strategies canlpasi
done in our virtual botnet testbed. On the other hand, evalu- Figure 1. CDF of the Degrees (log-log scale)

a_tlng th.e performance of a specmc mmg_atlon scheme in the To verify this observation rigorously, we apply the statist
simulation testbed does not interfere with the normal oper:

dal method developed by Clauset et al. [8], which is based on

ation of an existing b_otnet, and we do not need_to Cons'dl%raximum likelihood methods and the Kolmogorov-Smirnov
those legal and ethic issues that result from working onla redatistic Using this technique, we observe thatjhalue

bo.tnet. !n the foIIQW|ng sect|on§, we ;hall present re?‘“‘“s which is used to measure the goodness-of-fit, is 0 for both the
using this simulation testbed to investigate chqracteﬂstf in-degree and out-degree distributions. This further covsi
P2P-based botnets and defense schemes against them. that neither indegree nor outdegreeV, ) follows the
power law.
5 Structural Analysis
5.2 Reachability and Clustering Property
As the P2P protocol is the bedrock of a P2P-based botnet,
operations of such a botnet and the corresponding defensd-igure 2(a) shows the complementary cumulative density
schemes are inevitably implicated by its distinguishing PXunction (CCDF) of the fraction of the reachable population
structure. In this section, we analyze the characteristics from each node (out-reachability). In the network, 80% of
P2P networks. If the whole P2P network is used exclusivedyl the nodes can reach 60% or more of the node population,
for botnet operations, the properties of the P2P network pigut only 10% of the nodes can reach more than 68% of the
sented in this section offer insights on the structure ohsuc node population. Interestingly, none of the nodes can reach
P2P-based botnet; otherwise if a botnet uses only an existimore than 70% of all possible destinations. This observa-
P2P network to hide its communication (e.g., the Storm bdten, however, does not hold for in-reachability, which siso
net which used Overnet for its command and control), cothe fraction of nodes that can reach one specific destination
clusions drawn from the structural analysis of P2P networR$ie CCDF of in-reachability is also depicted in Figure 2(a).
will used later to decide which nodes we should monitor td/e note that nearly 20% of the nodes can be reached from
detect botnet traffic. In the following discussion, we pemfo more than 90% of the population and some nodes can even be
structural analysis on a P2P network with 20,000 nodes framached by all the other nodes. This implies that the P2P net-
a graph-theoretical perspective. Given this network, wefo work can still work well if the resources are stored on these
adirectedgraphG(V, E) as follows: each node in the net-nodes with high in-reachability. Figure 2(b) shows the cu-
work is also a vertex in grapf and if a node appears in mulative distribution of the average path length to reahab



nodes. The average path length of the overall network is only Eigenvector Centrality. A more sophisticated measure
2.5 hops, suggesting that the average path length between bf node importance is the eigenvector centrality. While de-
nodes is very small if there exists such a path. gree centrality gives a simple count of the number of connec-
tions a vertex has, eigenvector centrality acknowledgast th
all connections are of equal importance. Nodes connected to
Reachable Fraction Node Average Path Length more significant nodes, however, have more influence than

. ~ out Reachabiliy Y those connected to less significant nodes. This effect can be
represented by defining the centrality of a node to be propor-
305 505 tional to the average centrality of its neighbors. Undes thi
Q O . .
© definition, the centrality measures of all the nodes form an
\ — U Reachabiiy] eigenvector of the network adjacency matrix. This approach
05 ) 22 24 26 28 hasshown to be an effective measure in many situations, for
Reachable Fraction Average Path Length example in studies of the Internet topologies [15], finding
(2) CCDF Reachable (b) CDF of Node Averag§sters in information retrieval context [3], or rankingv
Fraction Path Length pages [5].

At the first glance, it seems that the same spectral analy-
sis techniques used to study the Internet topologies [15%5] ca
be easily adapted to our network. This is not true because,
unlike the Internet model in that paper, the P2P network is

The network is also highly clustered as can be seen frafirected. Furthermore, the computation cost of the splectra
Figure 4(a), which shows the individual clustering coeffiti analysis method poses a serious challenge for studying larg
of each node. Almost 95% of all the nodes have clusterirgale networks (even the Internet topology studied in [15]
coefficient more than 0.3, and the average network clugferiwas only a small fraction of the real Internet). These twe fac
coefficientis 0.4136. This is much higher than the theoattictors render spectral analysis an unsuitable tool for ow.cas
value 0.027 in an Erdos-Renyi random graph with the same To circumvent this problem, we instead use the method

Figure 2. CDF and CCDF of the Path Length
and Reachable Fraction

number of nodes and edges. employed for ranking Web pages [5] to compute centrality
measure. The ranking method is the following: Jtis the
20000 Nodes 55X ,PageRank, 20000 Nodes directed adjacency matrix. For each nadeefine the out
§0_6 E ‘2’ degree ofi asdy,. (i) = |j : a;; = 1|. Now consider the
%(ML Sls stochastic matri¥ wherep;; = 7775 + (=) The eigen-
‘é — 5 vector with eigenvalué of P gives the ranks of the nodes.
502 %O_SL Note that since each of the nodes in our network has non zero
3 & outdegree, we have no dangling nodes, one important condi-
© 00 0.5 1 15 2 00 0.5 1 1.5 2 ti f : H H
Rank <10 Rank (1o¢ ton for the existence of this vector._ Flgure. 4(b) shows the
(a) Clustering Coefficients (b) PageRank PageRank values of the nodes against their ranks. We note

from the figure that the PageRank measure decays rapidly
with the node rank, suggesting that a small fraction of nodes
bear very high PageRank value compared to the remaining
ones.
Betweenness Centrality. The betweenness centrality of
. vertexi is defined as the fraction of geodesic paths between
5.3 Centrality Property other vertices on which it falls. That is, we find the shortest
path (or paths) between every pair of vertices in the network
In this section, we studies various measures to identifind then derive the fraction of paths on which verteap-
important nodes in a P2P network. The goal is to find gogskars. In the P2P network, however, the geodesic paths do
metrics to identify strategic points. From a practical pes not reflect the actual routing paths, as explained in Se@tion
tive, they should also be easy to use, yet able to give a faiffy make betweenness a more reasonable centrality measure
accurate picture of critical nodes. We consider common méa-our context, we define it based on the concemjudry set
sures widely used in other domains. from a source to a destination, which gives the set of nodes
Degree centrality. We already showed the distribution ofthat will be queried by the source node in order to get to the
the in- and out-degrees in Figure 1. In many networks degréestination. The betweenness centrality is thereby defined
is an effective measure of the importance of a node. In thige fraction of query set between other vertices that contai
Internet, for example, nodes with more connections typjcali. Figure 3(a) plots the betweenness measures against node
tend to receive more connections by new nodes. ranks in the network. From the figure, we observe a similar

Figure 4. Clustering Coefficients and PageR-
anks
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gx10” can estimate the measure that is hard to compute based on
the more simple measure. We compute the correlation coef-
L ficients between these centrality measures with signifieanc
level 5% and the results are shown in Table 1. There are
’ three interesting strong correlations: between betwesnne
and routing centrality, between closeness and out-degree ¢

01 trality, and between betweenness and in-degree centradity

26 %
confirm this, two of these correlations are further depiated
(a) OutDegree vs. (b) Betweenness vs. Figure 5
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[e2]
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Figure 5. Centrality Correlations 6 Monitoring

To detect bot behaviors hidden in a P2P network, we need
pattern to PageRank centrality: only a small number of nodgsmonitor P2P traffic for some distinguishing features df bo
appear frequently in the query sets of all source-destinatinets. The monitors can be placed at the enterprise gateway or
pairs. For instance, only 20 nodes appear more than 0.53% backbone routers. Given the scale of current P2P net-
of the paths between all source-destination pairs. Thisiseeworks and the intensive P2P traffic, it is extremely difficult
intuitive as P2P protocol is designed to be fully distrilibse if not impossible, to monitor all P2P traffic. We thus con-
that each node in the network should have equal importansgler the following problem: suppose that we already know

Closeness Centrality. The closeness centrality of vertexthe topology of a P2P network through crawling, find the
1 is defined as the mean distance from veitéxevery other nodes to monitor so that botnet communication traffic can
reachable vertex. We have already showed the cumulative checked as much as possible. To answer this question, we
distribution of the average distance per node in Figure.2(gJmulate a P2P network whose a portion are bots. The bot-
Figure 3(b) shows these distances against their ranks.  master publishes bot commands as keywords in the network.

Routing-based Centrality. We define another metric Other bots, meanwhile, search for the bot command based on
called therouting weightbased on the actual routes in thehe keyword ID they already knew in advance (hardcoded) or
network. These actual routes are computed in accordame® easily be computed (e.g, in the case of Peacomm bots).
with the Kademlia routing protocol. For each route of length We record all queries generated by these bots during the
L (excluding the source and target node), we defirmuéing routing phase and rank the nodes in the network based on the
weightfor each node in the route ab:+ % Herei is the or- traffic (number of queries) each node receives. Monitoring
der of the current node, starting frdimwith the node nextto malicious traffic provides a venue to detect botnet command
the target, and increases towards the nodes near the souxne.control since each routing query packet carries a unique
The intuition behind this scheme is to put more weight okeyword ID. If we know a keyword ID has been used for bot
nodes that appear close to the source, yet still taking icho @ommunication in advance, a surge of query packets associ-
count the number of routes they are on. The application afed with this ID is a good indicator of intense bot actiwtie
this metric will be explained further in the following semtis. Due to the dynamics of routing queries in a P2P network,

one may wonder whether it is possible to use centrality mea-

Correlations between different centrality measuresls sures discussed in Section 5 to predict the importance of the
there any relation between the above measures? Some ofrtbdes. This knowledge can then be used for monitoring traf-
above centrality measures can be computed easily, white diilc efficiently. To address this question, we first define the
ers require significant efforts. From a practical perspecti overlapping ratiometric as follows. Given two rankings of
if there are strong connections between two measures, @atithe nodes in the P2P network, their overlapping ratio for



Table 1. Correlation Coefficients Between Centrality Measu res
Closenesy Betweenness Routing | In-Degree| Out-Degree| PageRank

Closeness | 1.0000 -0.1112 -0.3684 | -0.2572 -0.6392 0.4261
Betweenness -0.1112 1.0000 0.7744 | 0.6933 0.0722 -0.3127
Routing -0.3684 0.7744 1.0000 | 0.8540 0.4383 -0.4751

In-Degree -0.2572 0.6933 0.8540 | 1.0000 0.3606 -0.3217
Out-Degree | -0.6392 0.0722 0.4383 | 0.3606 1.0000 -0.5144
PageRank | 0.4261 -0.3127 -0.4751| -0.3217 -0.5144 1.0000

the topn nodes is given by the fraction of common nodesbserved minimum and maximum over the 10 sample runs.
that appear in the top nodes of both rankings. For instance,

if 20 nodes appear among the top 100 ones of both rankings,
the overlapping for the top 100 is 20%. o I

0.12

0.24

0.22 .].

0.2
0.18

We next discuss possible strategies from the botmaster's:
point of view. As described in the previous section, a pegeree J[ 016 I }
goes through two phases to publish (or query for) a key: rot® i I o t
ing phase for finding nodes closer to the key, and publish {of™ Jr ,[ 0
guery) phase when some responded nodes are requestedofcz) o t 1
publish (or query for) the key. In practice, the set of nodes CLO BTW RT D 0D PR ~ ClOBW RT D OD PR
involved in the second phase is much smaller than the set of  (a) 1000 nodes (b) 2000 nodes
responded nodes in the first phase. We also observe one key
feature of the protocol: keywords are published ipassive Figure 6. Overlapping ratios under strategy 1
fashion, namely only the original node publishes keywords,
whereas other nodes only passively accept the keyword with-
out republishing it elsewhere. Consequently, bot commands

Overlapping ratio

will only be published by bots, not by regular benign Kad ** -
clients. Thus the prevalence of a bot command in the net-" ]l 0z i
work depends only on how the bots publish it. As the charice ' § o
of finding a keyword successfully is proportional to its &vag ]l ][ & Zli { _]_ ]l
ability in the network, the bot master can design the botsiin,,, ]l 2 o
such a way that the prevalence of the keyword in the network, t J[ O%; }
is significantly improved, although such behavior does not o T 008 L OJTD -
conform to the standard Kad protocol. In our study, we con-
(a) 1000 nodes (b) 2000 nodes

sider three different strategies by the botmaster in terins o
the aggressive levels with which bots publish/query the-com
mand keyword: in the publish/query phase, a bot selects only
a small set of responded nodes as in the standard protocol

(strategy }, 50% of all responded nodestfategy 2, or all From these plots, it can be seen that none of the standard
responded nodestfategy 3. centrality measures provide good prediction on those impor

In the experiments, we consider two different stable rouf@nt nodes in terms of their routing query traffic, regarslles
ing table snapshots. From each snapshot, we select 10 §&ie strategy applied by the botmaster. In fact, their per-
of random bot nodes and simulate the communication withfirmance is close to the case when the nodes are randomly
1.8 hour. In each simulation, we select a set oftopodes Se€lected, as can be seen from the following lemma.
that receive the most querying bot traffic and compare it with
top m nodes defined by gach centra[ity measure. The P§lemma 6.1. Let X be a fixed set of size: in a space
formance of each centrality measure in terms of the overlaj\),— IN| = n > m. LetY be another set of the same size

ping ratio for the top 1,000 and 2,000 nodes is depicted 7Iected randomly fronV. The expected number of common
Figures 6, 7, and 8, under the three strategies, requptivg .

e ements betweel, Y can computed as:
In this figures, CLO, BTW, RT, ID, OD, and PR stand for W pu

the closeness, Betweenness, Routing-based, Indegree, Out
degree, and PageRank centrality measures, respectively. A
each data point, we give the mean overlapping ratio and its

Figure 7. Overlapping ratios under strategy 2

E|XNY| = ’%2 1)
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Figure 8. Overlapping ratios under strategy 3

Proof. Denotec = | X NY|. We have:

Eld] = Y kPlc=
k=0
m (1)

O

Plug in the value ofv = 20000, m = 1000 andm =
2000, we haveFE[| X NY|] = 50 and E[|X N Y]] = 200,
respectively. From these numbers, it can be seen that all camount of observed traffic by these nodes is still small as
trality measures except Betweenness do not yield better gown in Figure 10(b).
sults than a random approach.
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Figure 9(a) shows this relation (averaged over 10 different
bot sets). It can be seen that for each key, its query traffic is
disproportionally distributed. For example, nearly 80%lbf
traffic is observed (received) by 10% of the population (2,00
nodes out of 20,000 in our case). This is further confirmed in
Figure 9(b), which shows the histogram of the number of ob-
served queries by each node. It is noted that for the majority
of the nodes, they only observe a few queries.

In Figure 10(a), we depict the number of common nodes
shared among the top ones across the scenarios with differ-
ent bot sets; the fraction of traffic observed by these common
nodes against their numbers is shown in Figure 10(b). These
results show one important characteristic of Kad networks:
the routing query traffic is very dynamic and is significantly
affected by where those querying peers are distributedein th
network. As a result, centrality measures discussed in Sec-
tion 5 all perform poorly in predicting those important nede
Table 2 shows the number of common elements across all 10
scenarios with different bot sets that can be predicted bly ea
centrality measure. It can be seen that the betweenness cen-
trality outperforms all others but is still only able to cap
a small number of common nodes. However, even if there is
a measure that can capture most of the common nodes, the

Bot communication interdiction. The results from the
above section show that the set of traffic-critical nhodes de-
pends on the locations of the bots. Note that given the rout-
ing tables of all nodes in the network, one can roughly esti-
mate the path between any source node and destination key
(or nodes). In some cases, we can collect a list of suspicious
nodes that are or may be bots. An interesting question is: if
we know the paths among these nodes, which nodes should
we monitor so that communication traffic generated between
these suspicious nodes can always be interdicted? We formu-
late it as the following problem:

Problem 1. (Bot Communication Interdiction — BCI)

Given a set of communication pat#s = {p1,p2,...,pn}

in a directed graplz = (V, E), where each path; is an
ordered list< v;q,--- > of nodes inV. A subsetl C V in-

terdicts a pathp; if Jv; € I andv; € p;. Find the minimum
interdiction setl for P such that/p; € P, I interdictsp;.

Here, each path represents a communication path esti-
mated between two suspicious nodes. One would hope to
find the smallest set of nodes that lay on all of these paths
o that the monitoring cost can be minimized. This problem,
unfortunately, is intractable, as shown by the followingadh
rem.

Theorem 6.2. The general version @&Cl is NP-hard.

However, is it possible that the traffic is well distributed
over the whole network, rendering any ranking methods ifrroof. We reduce HrTING SET to BCI. Consider an in-
effective? To answer this question, we look at the traffic olstance of the decision version of t1ING SET where we are
served by topn nodes with heaviest traffic when varies.

given a collectiorC of subsets of a finite s&t, and a positive



Table 2. Number of common nodes among the top ~ m under different rankings

m Total number of common nodels Closeness Betweennesg Routing | In-Degree| Out-Degree| PageRank
1000 127 2 46 29 23 12 26
2000 535 40 219 152 142 75 152
integerk. A hitting set forC is defined as a subs8t C S, Poisoning Atack Performance o Y —
such thatS’ contains at least one element from each subsig o 204 /
C. Itis NP-hard to determine if there is a hitting set of Si 510 5.
at mostk. g |/ g —
An instance of BCI is constructed as follows. For ez | -
elementinS, create a corresponding vertexiin From each o |/ 5" “hes
Subsetﬁi S C, create a patbz ConSiSting of elements |511 < socl; 200 400 600 800 1000 * %500 1000 1500 _ 2000 25.(;0:100;000
Initially Poisoned Nodes Time(s)

The order of the vertices ip; is not important for our proof.
Itis straightforward to see thatifiTING SET has a hitting set
of size at mosk if and only if BCI has an interdiction set of
size at mosk. O

(a) Avg. num. of bots poisoned (b) Frac. of bots poisoned

Figure 11. Performance of Poisoning Schemes

7 Mitigation can be seen that although the nodes chosen based on the be-

tweenness centrality measure are not efficient from thédraf

In the previous section, we have shown that monitoringonitoring perspective, they are still effective in poisan
bot activities in P2P networks is a challenging task. In th@e bots. For instance, using only 10 initially poisonede®d
Section, we shall use simulation to further explore effexsti we can poison on average 25% of the total number of bots
ness of defense schemes against botnet operations that figysre than 500 bots), regardless of their locations. Wit 10
already been proposed in the literature. The three schem@gles, we can poison more than half of the bots. However,
discussed here include content poisoning, Sybil-basel mit js more costly to poison a large portion of the bot popula-
gation, and Eclipse-based mitigation. tion. After 400 nodes, the size of the initially poisoned set
just makes little difference in the final number of poisoned
bots.

To understand the impact of the size of the initially poi-

As bot command keys are used by bots to search new co¥ned set on the speed of the poisoning process, we show the
mands in a P2P-based botnet, they are actually one Achill&ction of poisoned bots (over all poisoned bots evenyuall
heel of such botnets: once these keys are known, we canifh€ach scenario) against the simulation time in seconds un-
ject benign contents with the same key into the network §tgr different sizes of the initially poisoned set, denotgd b
that some bots may not receive the original bot commands. It is noted that higher number of initially poisoned nodes
This technique is thus callgubisoning attackand was first helps speed up the poisoning process, but again the differen
experimented in [17]. becomes smaller when the size is sufficiently large.

In our simulation, we publish the bot command key with
benign contents on a set of nodes. Bots that make search®e2 Sybil-Based Mitigation
guests to these special nodes are considered to be “pofsoned
with the content we provided. This is because the poisoned
nodes reply to any request for the bot command with the con-
tent they have (which we provided). One interesting quastio

7.1 Poisoning-Based Mitigation

Table 3. Sybil-based Mitigation Scenarios

that follows is how effective this method is, with respect to Mitigated | 1Ds per Total No.
the size of the initially poisoned set. To answer this quest Nodes | Mitigated Nodes| of IDs
tion, we vary the size of the initially poisoned set among| Scen. (1) 10 1000 10000
10, 100, 300, 500, 700, 900, and 1000. The poisoned nodesScen. (2)| 100 100 10000
are chosen from those with the top betweenness values, sinc&cen. (3)] 1000 10 10000
as shown in the previous section, the betweenness cepntralit Scen. (4) 100 1000 100000
measure seems to provide more nodes with high query trafficScen. (5)| 1000 100 100000
than other measures. Scen. (6)| 1000 300 300000

Figure 11(a) shows the average number of affected bots
that received poisoned bot commands under all scenarios. ItPassively monitoring traffic of a large number of nodes in B P2



Table 4. Traffic Observed by Sybil Agent

Scen. (1) | Scen. (2) | Scen. (3)| Scen. (4) Scen. (5) | Scen. (6)
(10x1000)| (100x100) | (1000x10)| (100x1000)| (1000x100)| (1000x300)
0 2.6017e-06f 0.0023 | 1.6122e-05] 0.0142 0.021112
Table 5. Bot Coverage by Sybil Agent
Scen. (1) | Scen. (2)| Scen. (3)| Scen.(4) | Scen.(5) | Scen. (6)
(10x1000)| (100x100)| (1000x10)| (100x1000)| (1000x100)| (1000x300)
0 6.7 1935.3 26.6 1998.8 1999

network is challenging and resource-intensive. A more eggive
approach is to introduce a set of node IDs that are actuatiyraited
by a small number of physical processing nodes. In this waffi¢ traffic, the malicious nodes must be able to interfere witkjaéries
routing through these IDs are available for full analysioribver, towards the victim. If any of these conditions fails, thetiicwill
these nodes do not have to conform to the standard protandl, atill be able to contact benign nodes, get updated with frefgi-
may even reduce the processing overhead. For example, dhe pnation and break out of the quarantine.
cessing nodes may ignore IDs that they are not interestingiso We only look at incoming traffic towards the victim, since {oi
selectively reply with fake IDs to trick the querying nodepob- soning the victim’s whole routing table requires significéime,
lish valuable resources on them. This is a fornBSgbil attack as even not possible if existing nodes in the table are stillea{idue
describe in [12]. to Kad'’s preference for existing nodes). In our experimentsuse

In our simulation, we inject a varied number of IDs into thatro our Sybil IDs as the malicious nodes. Any bot that queriegast
ing tables of a selected set of nodes in the network. Agaeseth one of these IDs within 120 seconds are considered to beddyle
nodes are chosen based on the betweenness centrality meaur our nodes. Table 6 shows the number of bots among the 2,080 bot
injected Sybil IDs are associated with one extra node das#ghas in the network that can be fooled. It shows that eclipse-thasi¢-
the central processing node call&ghil Agent This agent is re- igation is not efficient against botnets, even although Qydsed
sponsible for all requests directed to a Sybil ID. Howevez,amly mitigation can achieve very high coverage. This is becauseen
simulate a passive agent that collects requests withothdure- quire the malicious nodes to be contacted at a much earlige st
plying any IDs. Using this setup, we study the performancthisf of the querying process. Our simulation result also agratsthe
approach with respect to some key parameters, includingulre  outcome in [17], where the authors tried to eclipse bot comisa
ber of nodes to which the Sybil IDs will be introduced into ahd  with very large number of Sybil IDs.
number of Sybil IDs per node.

We consider three different sets of Sybil IDs with size 1900 .
100000 and 300000. For the first two sets, we consider semaal % Conclusions
scenarios when the set of nodes to be mitigated varies. TBable
details the configuration of each of these scenarios. Tableows In this work, we build a P2P-based botnet simulation testbed
the fraction of queries that were sent to the Sybil agentafindhese Which uses actual implementation code of the Kad P2P prbtoco
IDs. The results reveal that the traffic received by the Sibient achieve great realism. This simulation testbed employsillited
is very small even when the number of injected nodes is large.  €vent-driven simulation techniques for high scalabilityith this

A better metric to assess the performance of Sybil-basedanit testbed, we analyze the structural characteristics ofi2led bot-
tion is the number of bots that queried at least one Sybil Ehl@ nets, explore the challenges of monitoring bot activitressde a P2P
5 shows the average number of such bots, out of 2000 bots. HBgiwork, and evaluate the effectiveness of mitigationregies that
we can see the Sybil Agent has very good coverage of the bet p@pe already proposed in the literature. Conclusions draam this
ulation when we send Sybil IDs to a large number of nodes. elenévork shed many insights on the structure of P2P botnets, bow t
given the same number of Syb” IDs, it is more effective tcew monitor bot activities in P2P netWOka, and also how to I'ng
out the IDs on more nodes than sending more IDs to a small numi@tnet operations effectively.
of nodes. Note that this is not obvious because sending nixe |
also increases the chance to catch more keys.

licious nodes. For outgoing traffic, the victim’s routindpka needs
to contain only information about malicious nodes. For mawy
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