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Abstract

The importance and the difficulty of the folding problem hded scientists to
develop several computational methods for protein stregbuediction. Despite
the abundance of protein structure prediction methodsethpproaches have two
major limitations. First, the top ranked model reported Isgever is not necessar-
ily the best predicted model. The correct predicted mode} bearanked within
the top 10 predictions after some false positives. Secondingle method can
give correct predictions for all proteins. To attempt to esiy these limitations,
protein structure prediction “meta” approaches have besmldped. A meta-
server can select a set of candidate models by ranking molklmed from other
servers. In this article we present the Sample-Train-Etedijorithm and its ap-
plication to implement a new model quality assessment pragiMQAP) based
on a consensus of five MQAP's then we discuss the applicafioardViQAP as a
meta-selector. STP depends on the clustered nature o&ihenty data and it can
dynamically handle constantly growing training data. S€Rds clusters which
are similar to the input data, then trains a model on thesaanis, and finally uses
the trained model to get predictions for the input data. Cqpeemental results
show that a hierarchical model trained using STP outpedaany tested model
quality assessment program by 7%-8%. When selecting frodigiiens made
by humans in a standard benchmark CASP7, our meta-selettevas about 3%
improvement above the best human predictor.

1 Introduction

We live in the post-genomic era in which a large amount ofdgadal data are being accumulated.
Such data have two main properties. First, the availabigitig(labeled) data is constantly growing.
For example, gene banks and protein structure banks aeasiog in size on an annual or even on
a monthly or a daily basis. Second, the data is intrinsicellistered, meaning that data can be
clustered based on similarity in sequence, structure actiim i.e. each cluster has a biological
meaning. Once new labeled data which may contain new pattercomes available, models such
as artificial neural network (ANN), support vector machi8& 1), and decision trees trained on the
old training data become out of date and need to be retrainédeoupdated training set. Our goal
is to devise a machine learning algorithm that can extensetimeodels to make use of the newly
available labeled data dynamically. To that end, we propgasealgorithms to realize this goal.
The first algorithm trains a model dynamically on relatechdatthe unlabeled query (testing) data,
in another words, it trains dynamically a custom-made expHEne second algorithm dynamically
mixes local experts which are already trained and cached.

One of the most important problems in structural biologyh&sprotein folding problem. A few prin-
ciples that govern protein folding are currently known; leeer, the main folding algorithm is yet to



be discovered [1]. The three-dimensional structure ofginotan be determined experimentally by
X-ray crystallography, nuclear magnetic resonance aneratiethods. However, the output of these
methods is not as fast as the output of sequencing projecssidition, these methods are expensive,
and not applicable to all proteins. Therefore, proteincitme prediction based on computational
methods is currently an active research area.

The importance and the difficulty of the folding problem h#ae scientists to develop several com-
putational methods for protein structure prediction, tregarity of which are available as servers
accessible through the internet. Despite the abundancetip structure prediction servers, these
approaches have two major limitations [2]. First, the tapkesd model reported by a server is not
necessarily the best predicted model. The correct prefictedel may be ranked within the top
10 predictions after some false positives. Second, noeingithod can give correct predictions
for all target proteins. It has been observed in experimengssess the accuracy of protein struc-
ture prediction methods such as CASP [3] that the correctafisdisually predicted by one of the
participating servers. To attempt to remedy these linuitestj protein structure prediction “meta”
approaches have been developed.

Protein structure prediction meta-approaches considerdbults obtained from several different
methods. A meta-server selects a set of candidate modeknking models obtained from other
servers based on a local model quality assessment progr&APyl Such servers are known as *“
s” [4, 5]. Several MQAP’s are currently available to asségsduality of a given model of protein
of unknown three-dimensional structure. A model qualitye@sment program can use (i) physics
principles, (ii) statistical information derived from tlk@own protein structures, and (iii) machine
learning techniques that are trained on both physical at@stal properties of proteins of known
structures [7]. Currently many MQAP’s [4, 7, 8] [10]-[14]eaavailable and have been applied
in protein structure prediction. The majority of these MQ&\Bre composite scores i.e. they are
based on consensus of a few quality scorBsoq [13] and STF'T [9] are ANN-based composite
scores.SV Mod [7] is a SVM-based composite score. In this article we presee STP: Sample-
Train-Predict algorithm and its applicatiaticoSelectomwhich is a meta-MQAP-selector based on
a consensus of MQAP’s.

2 The STP: Sample-Train-Predict Algorithm

The machine learning scientist often faces the problem bbatage in labeled training data; how-
ever, in fields such as modern computational biology we cquieznew labeled data on daily basis.
Thus, one must deal with large quantities of constantly grgvtraining data since the newly ac-
quired labeled data may contain information that is notgmes the old training data. Typically one
will discard the models trained on the old training data aashtnew ones. Clearly such an approach
is a waste of computation and needs manual human intervettticetrain the learning algorithm.
We have devised the Sample-Train-Predict (STP) algorithattempt to solve this problem. The
STP algorithm can handle a growing training data and leaiors the newly added labeled data
dynamically. In another words, the STP algorithm grows aditaining data set grows.

We propose a dynamic learning algorithm called S$&mpleTrain-Predict. The STP algorithm
can be used when the data have two main properties. FirsavHikble training (labeled) data is
constantly growing. For example, gene banks and proteictsire banks are increasing in size on
an annual or even a monthly basis. Second, the data is ictilysclustered based on similarity in
sequence, structure or function (each cluster has high-dmmantic meaning).

We state the problem as follows. The input is a set of labetad dhich is continuously growing

in size and a set of testing unlabeled data. The algorithrmputsitiabels for the unlabeled data.
Formally, STP(D, X) = T whereD is the set of labeled data and the size of the training data set
|D| continuously increasesX is the set of testing data ardis the set of labels (classification) or
real values (regression) corresponding to elements iXs&the STP algorithm does its prediction

in a batch mode i.e. it takes a cluster of data of unknown targlees as its input and outputs the
results in a batch mode as well. The STP algorithm has thagest (i) sample (ii) train (iii) predict.

We describe two variants of the STP algorithm: STPdata arRh®el. We consider STPdata as a
way to dynamically build a custom-made expert and STPmaslel method to dynamically mix a
set of local experts similar to [15, 17].
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Figure 1: The STPdata Algorithm

2.1 STPdata

Figure 1 outlines the STPdata algorithm. In STPdata, wecsalsubset of the training data based
on the similarity to the unlabeled data. The similarity magads problem dependent and the imple-
menter should decide on how to sample from the training detten the STPdata algorithm trains
a model such as ANN, SVM, etc. on the sampled data in the "tstage. In the “predict” stage,
STPdata uses the trained model to assign labels to the Uedaiput set. Since STPdata builds
models dynamically, it incorporates the newly added labdita in the “train” stage.

The STPdata algorithm works as follows: I8f,;; be a set of all the available training data clusters,
and X is the set we wish to predict its unknown target values Xeis the testing data, theP,. is

the union of similar clusters to clustér in the training data and is the output of the sample function
such thats(Dg;;, X) = D,. The sample function is defined as followsput: D,; ={ D, | D; isa
subset of the training datand X. Let A, B € D,; and

1 if set A and setB are neighbors
§(4,B) = { 0 o.W. J

Output: D, such thatD, C Dy, D, # 0 andD,, = {D;|D; € D,y andé(D;, X) = 1}.

The train function outputs a mod@l/,. trained on the data sampled in the previous step i.e. the
neighbors ofX such thatt(D,) = M,. The train function is defined as followdnput: D, =
{(bY,ay), ..., (b*,ax)} where inputh’ is m-dimensional vector and is the corresponding target.
Output: A model M,, trained onD,.. The predict function outputs, which is a set of the predicted
target values or labels for séf such thatp(M,, X) = T,. The predict function is defined as
follows. Input: M, is a model trained on the neighbors of setOutput: T, is the prediction of set

X target values.

The STPdata algorithm has been implemented successfuthaitoa hierarchy of linear models
based on the pseudo inverse solution, details are giverctiose8. The STPdata cycle takes a few
seconds for a batch of about 200 queries. However, ret@iainon-linear model for each batch
can be computationally expensive and limits the practicatlels to computationally simple ones
e.g. linear. For example, training a multi-layer neuralwwek requires a long time of training, in
addition to manually adjusting several parameters. To dgntleis limitation, we propose (i) the
STPmodel algorithm discussed in section 2.2 (ii) a modificato the STPdata algorithm to cache
the trained models.

The modified STPdata algorithm treats the training data asray of clusters in which each cluster
can be indexed by a unique number. Each trained model isiagsavith the indices of the clusters
used in its training. The sampling step returns the indidebe clusters which are similar to the
testing cluster. There is an extra query step before theitigistep. In the query step it searches
the cached trained models for a model whose indices significaverlap with the sampled clusters
indices. If such a model exists, then STPdata uses it in #digiion and the training step is escaped,
otherwise it trains a new model. The modified STPdata algorigrows as it is being used and as
the training data grow.
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Figure 2: The STPmodel Algorithm
2.2 STPmode

Figure 2 outlines the STPmodel algorithm. In the STPmodgrithm we start with a set of trained
models each is trained on a cluster of the training dataefbe, in the “sample” stage, we sample
from trained models by selecting models which are trainedata similar to the unlabeled data.
In the “train” stage we combine these models linearly andthaemixed model in predicting the
labels of the unlabeled input set. When we have new labeledsgstwe train a new model on these
data, then add that trained model to the trained models s&te STPmodel builds mixed models
dynamically, it incorporates the newly added labeled dathe training stage.

The STPmodel algorithm works as follows: 1Bt,;; and X be defined as beford/,; is a set of
models each trained on a cluster of the training data. Thesampling stage in STPmodel collects
two sets. The first set 87, which is a set of modeld/;’s, eachM; is trained on a cluster that is
similar to setX. The second set i®, which is the union of similar clusters to clustar in the
training data such that D, M., X) = {M,, D, }. The sample function is defined as follows.
Input: Doy, ={ D; | D; is a subset of the training dgtaM,;; = { M; | M; is a model trained on
subsetD; of the training dathis a set of modeld/;’s, eachM; is trained on a clusteb; € D,
and the sefX. Let A, B € D,; andé(A, B) defined as beforeédutput: M, such thatM, C My,
M, # 0 and M, = {M;|M; € My; andD; € Dy, andé(D;, X) = 1}. D, such thatD, C Dy,
D, # 0.

The train function outputs a linear modgl,,,;,. trained to linearly combine the outputs of the set
of local experts sampled in the sampling step suchd#fiet,, D) = M,,;,. The train function is
defined as followsInput: M, ={ M, | M; is a model trained on subs&; of the training dath

is a set of local experts each trained on clugter D, = {(b,a1), ..., (v*, az)} where inputh’ is
m-dimensional vector angf is the corresponding targe®),, is the union of cluster®;’s. Output:

a linear modelV/,,;,. trained to linearly combine the outputs of modéls’'s. Eachi/; is used to
predict the target values of sBt,. In other words, the train function assigns weights to thesal
experts.

In the prediction step we use the set of local exp#ffsand the mixing model,,,;,. which we have
trained in the training stage to prediff which is a set of the predicted target values or labels for
setX such thatp(M,, M,,;., X) = T,. The predict function is defined as followkput: M, is

a set of local expertsif,,;,. is a linear mixing model trained on the neighbors of the hessiet X.
Output: T}, is the prediction of seX target values.

The STPmodel algorithm is related to the mixture of localesip[17, 15]. One applies a mixture
of local experts if the data set can be partitioned into senalbsets which have a higher level
semantics. Then we train a system of a set of local expertaaading model. Each local expert
is trained on a subset. The gating model allocates the expelte used on a given input data and
decides the strategy to combine the experts’ predictiorsmpshire and Waibel [17] use a gating
model that linearly combines the outputs made by the locpées while Jacobs and Hinton [15]
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Figure 3: ZicoSelector: a hierarchy of general linear mgdel

adapt a competitive strategy in the gating model to selectdbal experts to be used on the input
data. The weights of the local experts and the gating modehdjusted together in the training
process. Each local expert is a multi-layer network. We netglae STPmodel as a way to build
dynamically a mixture of local experts in which the weighfstlee local experts and the gating
model are adjusted separately. The STPmodel algorithm @a\NN, SVM, decision trees and
other models and is not limited to ANN as the mixtures desctiby Hampshire, Waibel, Jacobs
and Hinton.

3 An Example Application: Protein Structure M eta-Selection

In this section we consider a concrete implementation ofSm@ algorithm. The data used in

this experiment is the protein structure predictions stigmhito CASP6 and CASP7 by servers and
human predictors. The data is intrinsically clustered akkthree-dimensional structures predicted
for the same a.a. (amino acids) sequence form a cluster. A8P6 there are about 60 clusters and
for CASP7 there are about 100 clusters. New clusters aréabl@ionce new protein structures are
deposited in the protein structures bank. In this sectiorfilgestate the meta-selection problem.
Second, we describe a hierarchical model callembSelector Then we illustrate how the STPdata

and the STPmodel algorithms traficoSelectodynamically.

The protein structure meta-selection problem can be sfatashlly as follows. Input: An x m
scores matrixs, such that;; is the score of 3d-structuieassigned by MQAB. The scores matrix
S contains the MQAPSs’ scores of the 3d-structures prediaiethe same a.a. sequence.

Sll Sl2 L Slm
- . . .
Sui Swz - - . Sum
Output: The predicted quality score of each 3d-structure.

ZicoSelectotis a hierarchy of general linear models (GLM). Figure 3 gimasoverall view of the
hierarchical system. The input BicoSelectois a set of 3d-structures predicted for the same amino
acids sequence. The selection process is composed of duas.| At the first level, the top;
models ranked by F'ire are chosen to pass to the second level where a linear classifised to



Figure 4: The distributions of MaxSub scores and 3D-Juryexof the 3d-strucutres generated
from three different a.a. sequences

select models whose ranks are less than Models selected at the second level are ranked by a
regression linear model at the final stage. The GLMfabservations can be expressed as

A=Sv+e

Where A is a matrix of target values, S is thex m features matrix as defined earlier, v is the
m-dimensional regression coefficients vector, and e isithdimensional errors vector. Let w be a
m + 1 dimensional vector of 1 ana regression coefficients, then

Sw=A
STSw=5TA
w=(ST9)"1sTA
Next we describe how we train tlcoSelectousing the STPdata algorithm.

Pre-processing. This stage is designated to the following data preprocgggirselect models that
are at leas85% complete (ii) select full atoms models (iii) run tAéodeller program on selections,
Modeller is a homology or comparative modeling programntremove models whos&f axSub
score with the original model is less tharg5. MaxSub is a similarity measure between two 3d-
strucutres.

STP Sampling. STPdata considers the MQPAS’ scores of the 3d-strucutrergtsd for the same
a.a. sequence as one cluster. We represent each clusteo logmters of the bimodal distribution
of the 3D-Jury score and the percentages of the 3d-strgctiiat belong to each mode. We obtain
the two centers by applying the k-means clustering algmsthvith initial centers 0.0 and 1.0. We
specifically choose the 3D-Jury score for the following ¢hreasons (i) the 3D-Jury score is highly
correlated with the MaxSub (the target) score (ii) the distions of MaxSub and 3D-Jury scores
are bimodal as shown in figure 4 (iii) the distribution of th@-3ury score has one of the least KL
divergence from the distribution of the MaxSub score intingathe similarity between these two
distributions.

STP Training. Once the sampling step is done, we trdiicoSelector which is a hierarchy of
general linear models, on the sampled data. Training arlimealel based on the pseudo inverse
solution is very fast which makes the STPdata algorithmablétto the problem under consideration.
Next we describe the three levels of the hierarchical model.

ZicoSelector: first levelModels whoseD Fire’s rank is less tham, are chosen to pass to the next
stage. We assume that models whose ranks are greatenthame noisy models and hence will
affect the training process negatively.

ZicoSelector: second leveln this stage a linear classifier (GLM) is trained to seleét tbp no
models. The classifier is trained to separate two classedirsh class is composed of models whose
ranks are less tham, and the second class is composed of models whose ranks aterghams.

We chooser, = 0.5 x n; to make sure that the data is balanced and the classifier [sas®d to
any of the two classes. The linear classifier is trained oset {(z',a1), ..., (z%,a4)} Where

q = ny x |T|, such thatT| is the number of the clusters in the sampled data, inptits., 27 are
m-dimensional vectors ana is the number of MQAP’sz? = {z1, ..., z,,, }, where

o J1 if the mgap;j ranks the model below; ;
Ti= 1 ow;



Methods [ Easy [ Medium [ Hard [ Total |

Best Human 16.399 24.53 6.116 47.761
Best MQAP 15.834 23.872 5.164 45.62
ZicoSelectorSTP 16.175 25.329 6.297 49.263

Improvement over Best Human -1.366% | 3.257% | 2.959% 3.145%
Improvement over Best MQAP| 2.154% | 6.103% | 21.940% | 7.986%

Table 1: The performance @icoSelectotrained by STPdata on the set of human predictions

ZicoSelector: third levelModels selected by the linear classifier in the previousestag passed
to this stage. A linear model for regression is trained tajotethe rank of the 3d-structures. The
training setD, = {(x',a1), ..., (z¥,ax)}. Wherek = n, x |T|, inputsz?, ..., ¥ arem-dimensional
vectors.z! = {1, ...,z,, } ,wherez; is the model's rank according to ti& MQAP. The output;

is the model rank according t& ax Sub. In other words, leR = {1,2,..,n2 —1,n2}, thenz; € R
anda; € Ri.e. the modelis trained on the 3d-structures’ ranks adogriw the MQAP’s to predict
the 3d-structure’s rank according Adax Sub.

STP Prediction. Once the hierarchical modglcoSelectois trained, STPdata uses it to predict the
quality of the query 3d-structures.

To evaluate our methods we have divided targets into foegeaies according to the difficulty level:
easy, medium, hard, and impossible. The impossible catagagnored in our evaluation. The
results presented in this section are obtained by settiog?R in the k-nearest neighbors algorithm
and the threshold at the third stage to 80 and the threshdhe &urth stage to 40.

Two experiments have been conducted to evaluate the perfmerofZicoSelectotrained by STP-
data. The meta-MQAP-selector used in both experimentsiised on 3d-structures sampled from
predictions made by servers and human predictors in CASR6thd first experiment, models
predicted by human predictors in CASP7 are used in testitigpSelectoroutperforms all tested
MQAP’s in the three categories and in the total score by aB&t#8%, and outperforms the best
human predictor in the medium and the hard categories arkitotal score by about 3%. The
performance oZicoSelectois shown in table 1, the total score in the table includesescfiom the
impossible category. In the second experiment, modeldgiestlby servers in CASP7 are used in
testing. Results are not showzicoSelectooutperforms all tested MQAP’s and its performance is
very similar to the best server performance in all of thedhrategories and in the overall score.

We also applied the STPmodel algorithm to trdinoSelectorWe obtained 56 clusters by applying
the k-nearest neighbors algorithm with= 20 to each protein in the CASP6 servers and humans
sets. Each cluster is indexed by the target protein. Nextiraired 56 GLM's. Each GLM is
trained on one cluster of the 56 clusters. In the samplingestave select models based on the
similarity between the test protein and the index protemshie same way used in the STPdata
algorithm. STPmodel trains another GLM to learn to combime dutputs of the set of the local
experts sampled in the previous stage. Figure 5 shows tferpemnce of the meta-MQAP-selector
trained by STPmodel as a function of the number of experthese¢rvers’ set and on the humans’
set respectively. The x-axis represents the number of expeltected in the sampling stage and the
y-axis represents the total MaxSub score of rank one modtdsted by the meta-MQAP-selector.
The performance of the meta-MQAP-selector deterioratdh@asumber of experts increases due
to the curse of dimensionality. The performanc&moSelectotrained by STPmodel with two or
three local experts is very similar to the performance ofahhe trained by STPdata.

4 Conclusions

Our findings from the current research can be summarizedlas/$o (i) the invention of the STP-
data and STPmodel algorithms which are suitable to largengically clustered, constantly grow-
ing training data sets (ii) the dynamic training used in tHé>Slgorithm proved effective when
applied to the protein structure meta-selection probleintiie STP algorithm can be generalized
and applied to other problems in the computational biologlgdfand problems in other fields. The
experimental results show thaicoSelectorour hierarchical model trained using the STPdata algo-
rithm, outperforms any tested MQAP by 7%-8%. When selectiogfpredictions made by humans
in CASP7, our meta-MQAP-selector achieves about 3% impneve over the best human predic-
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tors. The performance of the meta-MQAP-selector on serpegdictions in CASP7 is very similar
to the performance of the best server.
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