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Abstract

As the size of biological sequence databases continues to grow, the time to search these
databases has grown proportionally. This has led to many parallel implementations of common
sequence analysis suites. However, it has become clear that many of these parallel sequence
analysis tools do not scale well for medium to large-sized clusters. In this paper we describe
an enhanced version of MPI-HMMER. We improve on MPI-HMMER’s scalability through
the use of parallel I/O and a parallel file system. Our enhancements to the core HMMER
search tools,hmmsearch andhmmpfam, allows for scalability through 256 nodes where MPI-
HMMER was previously limited to 64 nodes.

1 Introduction

As the size of biological sequence databases continue to grow exponentially, outpacing Moore’s
Law, the need for highly scalable database search tools increases. Because a single processor can-
not effectively cope with the massive amount of data presentin today’s sequence databases newer
MPI-enabled search tools have been created to reduce database search times. These distributed
search tools have proven highly effective and have enabled researchers to investigate larger and
more complex problems.

HMMER [5, 6, 4] is perhaps the second most used sequence analysis suite. MPI-HMMER
is a freely available MPI implementation of the HMMER sequence analysis suite [17, 8]. MPI-
HMMER is used in thousands of research labs around the world [12, 11]. In previous work it has
been shown to scale nearly linearly for small to mid-sized clusters up to 64 nodes. However, as
database sizes increase, the need for greater MPI-HMMER scalability has become clear.

In this paper we improve on the scalability of MPI-HMMER through the use of parallel I/O and
a parallel file system. This allows us to eliminate much of thecommunication that previously acted
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as a bottleneck to MPI-HMMER. By using parallel I/O, we are ableto offload most communication
to a cluster’s dedicated I/O nodes, thereby reducing the participation of the master node in the
parallel computation. Our contributions are:

• We characterize MPI-HMMER, showing its existing bottleneck
• Provide a parallel I/O implementation of MPI-HMMER to improve scalability on clusters

greater than 64 nodes.

The remainder of this paper is organized as follows: in Section 2 provide a brief overview of
HMMER and MPI-HMMER. In Section 3 we describe the existing HMMER acceleration work.
In Sections 4 and 5 we describe our implementation and results, and in Section 6 we present our
conclusions and future work.

2 HMMER and MPI-HMMER Background

MPI-HMMER is based on the HMMER [5, 6, 4] sequence analysis suite. HMMER allow scientists
to construct profile Hidden Markov Models (HMMs) of a set of aligned protein sequences with
known similar function and homology, and provides databasesearch functionality to compare input
HMMs to sequence databases (as well as input sequences to HMMdatabases).

HMMER includes two database search tools,hmmsearch andhmmpfam. hmmsearch accepts
as input a profile HMM, and searches the HMM against a databaseof sequences (such as the NR
database). Thehmmpfam tool performs similarly, but searches one or more sequencesagainst
an HMM database (such as the Pfam database). These tools nearly perform the opposite func-
tions from one another, with the exception thathmmpfam allows for searching multiple sequences
against a database wherehmmsearch restricts the input to a single HMM.

HMMER includes a PVM (parallel virtual machine) implementation of a master-worker in its
source distribution. MPI-HMMER is based on this model however, its I/O improvements have led
to significant speedup and scalability over the PVM implementation. In particular, MPI-HMMER
uses both database fragmentation and double-buffering to reduce the overhead of message passing,
and to mask (as much as possible) the communication latency.

Database fragmentation results in the master node sending adatabase chunk to the worker node,
rather than a single database entry at each iteration. It is based on the observation that sending a
small number of large messages is generally more efficient than sending a large number of short
messages. We combine database fragmentation with double-buffering to hide the impact of mes-
sage passing, thereby allowing a worker node to compute and return results while simultaneously
receiving the next batch.

The basic structure of anhmmsearch is shown in Figure 1 and is described algorithmically by:

1. The master reads the HMM from disk and sends it to each worker.
2. The master reads the sequences from the sequence file and sends database fragments to each

worker.
3. After receiving a database fragment, workers computes the similarity score for each se-

quence in the database fragment and returns the results to the master.
4. The master performs post-processing against all hits.
5. If additional sequences remain unprocessed, go to step 2.
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Figure 1: MPI-HMMER’shmmsearch design.

Figure 2: MPI-HMMER’shmmpfam design.

MPI-HMMER’s hmmpfam MPI implementation functions similar tohmmsearch, except that
an indexing strategy is used to help combathmmpfam’s I/O-bound nature. Rather than sending
distributing HMMs from the master node, the master simply distributes index chunks to the work-
ers. The workers then directly read the HMMs from the HMM database. This means that a copy
of the HMM database must be available either locally or via a network storage. This method
functions similarly to our parallel I/O implementation, but relies on standard UNIX file I/O rather
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than high-speed parallel I/O. The indexes are distributed using a double-buffering scheme in the
same way thathmmsearch double-buffers the sequence database fragments. The PVM implemen-
tation ofhmmpfam uses a similar strategy, but does not employ either double-buffering or database
fragmentation.

Similarly, hmmpfam functions as shown in Figure 2 is described by:

1. The master node reads sequence from the input sequence file.
2. The master node broadcasts the sequence to each worker.
3. Master then reads the SSI index file to determine which HMMsthe worker will process.
4. The master distributes the corresponding index numbers to the workers.
5. The worker then reads the each HMM from the HMM database based on the indexes given

by the master.
6. The worker then computes the scores for a given sequence against each assigned HMM and

sends the results to the master.
7. Master performs post-processing against all hits.
8. If additional HMMs remain unprocessed, go to step 3.
9. If additional sequences remain, go to step 1.

Excellent performance is achieved through 32 and 64 nodes inhmmpfam andhmmsearch re-
spectively. Ultimately, the bottleneck in the computationis in the single master that must send
and receive all results. After 32 or 64 nodes are reached the master node becomes 100% utilized
between processing the results and sending a new batch of database entries. Inhmmfpam, the
problem is further exacerbated due to the I/O-bound nature of hmmpfam. This results in a pfam
search that cannot scale beyond 32 nodes, while the compute-boundhmmsearch is capable of an
additional doubling to 64 nodes.

3 Related Work

HMMER itself includes a PVM (parallel virtual machine) implementation of the core database
search tools. However, its scalability is limited due to itsreliance on PVM and its non-optimized
message passing strategy. Because it does not handle database fragmentation, each node is given
only a single sequence to process at each iteration. This results in a substantial message passing
penalty for each database entry.

In addition to our existing implementation, MPI-HMMER [17,8], there has been a variety of
work in accelerating HMMER. The most closely related implementation is the IBM Bluegene/L
work performed by Jiang et al. [9]. With the highly parallel Bluegene/L along with its specialized
network fabric, the Jiang et al. port is capable of scaling upto 1024 nodes provided that each node
is allocated its own IO coprocessor. Thus, their reported 1024 node scalability actually uses 2048
nodes. They use a hierarchical master model to help alleviate the single master bottleneck present
in MPI-HMMER.

SledgeHMMER [2] is a web service designed to allow researches to perform Pfam database
searches without having to install HMMER locally. SledgeHMMER includes caching of results to
enable rapid look-up of precomputed searches. It also includes a parallel optimization as well as
database caching of HMM databases into local memory.
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ClawHMMer was the first GPU-enabledhmmsearch implementation and is capable of effi-
ciently utilizing multiple GPUs in the form of a rendering cluster [7]. Other optimizations, in-
cluding several FPGA implementations, have been demonstrated in the literature [15, 13, 10, 16].
FPGAs can achieve excellent performance, at the cost of exceptionally long development times.
The advantage of both FPGAs and GPUs is their potential for high parallelism within a single
GPU/FPGA. However, the implementations are rarely portable. Other acceleration strategies, such
as the use of network processors have also been described in the literature [18].

Other sequence analysis suites have been enhanced with bothmulti-master and parallel IO
strategies. mpiBLAST is perhaps the most used parallel sequence analysis suite [3]. Its original
implementation has been further enhanced using a multi-master strategy similar to the Bluegene/L
implementation described above [14].

4 Parallel IO Implementation

Figure 3: Parallel I/Ohmmsearch design.

We modified the database distribution mechanism from bothhmmsearch andhmmpfam to in-
clude the use of parallel MPI I/O in order to alleviate a majorportion of the master node’s network
overhead. We use the low-levelMPI File read at() primitives to allow workers to scan to their
appropriate database locations to begin computation. In Figures 3 and 4 we show the overall
schematic of our parallel I/O-optimizedhmmsearch andhmmpfam implementations.

We used indexing on all sequence databases to enablehmmsearch to perform parallel reads
with distributed workers. We first pre-process the sequencedatabase (offline) which generates an
index consisting of the sequence offsets, and sequence length with one tuple per line and with
the first line consisting of the total number of sequences andthe total number of bytes for all
sequences. This makes finding a particular sequence offset quite straightforward. It also makes
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Figure 4: Parallel I/Ohmmpfam design.

database distribution easy, allowing for distribution by either the number of sequences or the length
of sequences.

Becausehmmpfam already uses an indexing strategy, we kept a similar technique for the par-
allel I/O implementation. In this case, however, we modifiedthehmmpfam offset file to include a
similar tuple to thehmmsearch implementation in order to remove the reliance on application-level
indexes inhmmpfam searches.

4.1 Post-processing

The original MPI-HMMER implementation followed the PVM HMMER model in that it required
all results to be returned to the master for post-processing. Making matters worse, extraneous data
(for non-hits) was continually being sent back to the masternode in order to facilitate the post-
process. We reduce the number of messages being returned to the master node to only those that
result in hits.

As a result, only database hits return extensive information to the master node. For non-hits,
only a 32-bit floating point score need be returned to the master. To put things into perspective, a
typical database search results in only a 2% hit rate. It is only these 2% that need to send detailed
Viterbi traces to the master.

4.2 Database Fragmentation

MPI-HMMER was the first to introduce database fragmentationinto HMMER database search-
ing. Each fragment was a small chunk of the database, typically 12 sequences per message. This
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worked well for the smaller clusters that MPI-HMMER targeted, and provided effective load bal-
ance over the duration of the computation. However, with individual worker nodes capable of
reading database fragments as-needed, we found that largerdatabase fragments were needed in
order to keep all worker nodes busy.

Through experimentation, we found that approximately 500 sequences or HMMs provided a
good balance of communication to computation, allowing thedouble-buffering to almost com-
pletely overlap with the computation. Once a node has received its overall chunk of the database,
it continues to read and process 500 sequences or HMMs at every iteration.

4.3 Double Buffering (hmmsearch)

Double buffering is used to improve performance by overlapping I/O with computation. In the par-
allel I/O implementation of MPI-HMMER, there are two opportunities to employ double-buffering.
Before a worker begins to score the first sequence in its batch,it triggers anMPI File read at() for
the next database fragment. This allows the next fragment tobegin its transfer while scoring and
post-processing commences.

The second opportunity to employ double-buffering is in returning the results to the master
node. After a worker computes the scores for its database fragments, it returns the scores to the
master node. However, because the worker need not wait for the master to acknowledge the receipt
of data it may send it and proceed to compute the scores for thenext database fragment.

4.4 Load Balancing (hmmsearch)

There are several strategies that could be used in order to improve the load distribution over tens
or hundreds of nodes or processors. MPI’s parallel I/O allows worker nodes to read data from
databases without interaction with a master node. Thus, themost obvious strategy is to pre-
distribute the database at the beginning of computation. That is, the master node sends each worker
a start and finish offset into the database, and workers simply compute on their database portion.

However, this is only minimally effective due to the scoringalgorithm’s reliance on both the
sequence length and the HMM lengths. In Listing 1 we provide ashort code listing of the most
time-consuming portion of HMMER’s Viterbi scoring algorithm, P7Viterbi(). Here we can see
that HMMER is dependent on both the length of the sequence (the outeri-loop), as well as the
length of the HMM (the innerk-loop, lines 2-20. By simply allocating database chunks (either
from an HMM database or sequence database) based on only the total number of sequences or
HMMs, there will be a natural load imbalance due to differingsequence and HMM lengths within
the database.

Our solution was to instead allocate database fragments based on the lengths of the sequences.
Because the master node knows both the total number of sequences in the database, as well as the
total lengths of all sequences, it is able to allocate fragments of the database based on those lengths
rather than the number of entries. In this manner, a node thatis allocated a database fragment with
many long sequences is allocated fewer total sequences in order to maintain a reasonable balance
of computation.
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1 for (i = 1; i <= L; i++) {
for (k = 1; k <= M; k++) {

3 mc[k] = mpp[k-1] + tpmm[k-1];
if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

5 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

7 mc[k] += ms[k];
if (mc[k] < -INFTY) mc[k] = -INFTY;

9
dc[k] = dc[k-1] + tpdd[k-1];

11 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
if (dc[k] < -INFTY) dc[k] = -INFTY;

13
if (k < M) {

15 ic[k] = mpp[k] + tpmi[k];
if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;

17 ic[k] += is[k];
if (ic[k] < -INFTY) ic[k] = -INFTY;

19 }
}

21 }

Listing 1: The most time consuming portion of theP7Viterbi algorithm.

4.5 Database Caching (hmmpfam)

Because of the design ofhmmpfam, multiple input sequences may be searched against the HMM
database. This is not true ofhmmsearch, where a database search is limited to a single input
HMM. This presents a simple opportunity for optimizing the performance ofhmmpfam in that
we may cache the HMM database entries, either in memory or on local storage, for subsequent
sequence iterations. We are not the first to implement this feature [9]. However, we include the
caching due to its simplicity and effectiveness.

5 Results

In this section we describe the actual performance of our parallel I/O enabledhmmsearch and
hmmpfam implementations. All tests were carried on out at the University at Buffalo’s Center for
Computational Research (CCR) [1]. The CCR’s hardware resources consist of 1056 nodes, each
equipped with 2 3.2 Ghz Intel Xeon processors, 2048 MB RAM, gigabit ethernet and Myrinet 2G
network interfaces, and an 80 GB SATA hard disk.

For our tests we used the gigabit ethernet network interface. In previous tests, no substantial
improvement was found with the use of the Myrinet interfaces. For mass storage the CCR includes
a 25 TB (usable) EMC CX700-based SAN as well as as 25 TB Ibrix parallel file system. The Ibrix
file system includes 21 segment servers (often called I/O nodes by other parallel file systems). The
Ibrix file system’s physical storage exists as a pool of storage on the EMC SAN. Segment servers
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are connected to the EMC SAN via fiber channel.

Figure 5: Comparing MPI-HMMER and PIO-HMMER for 77 state HMM and small database.

Figure 6: Comparing MPI-HMMER and PIO-HMMER for 77 state HMM and large database.

5.1 hmmsearch Performance

Our hmmsearch results present data for two HMMs and two database sizes. We doubled and
quadrupled the NR database to provide sufficient data for large-scale analysis. Because theP7Viterbi
algorithm is sensitive to the size (number of states) of the input HMM, we have tested our enhance-
ments for both a 77 state HMM and a 236 state HMM.

In Figures 5 and 6 we show the performance of the smaller 77 state HMM (named rrm in the
HMMER distribution) against both sized databases. This represents a worst-case performance of
both HMMER implementations as the smaller HMM is both computationally light-weight and gen-
erates tens of thousands of hits against the NR database. Clearly, the parallel I/O implementation
outperforms standard MPI-HMMER by a wide margin. While both show a slight improvement
with the larger database, we can see that MPI-HMMER tops off and begins exhibit performance
degradation at 32 processors. The parallel I/O implementation, however, continues to demonstrate
speedup through 256 nodes for both database sizes.
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Figure 7: Comparing MPI-HMMER and PIO-HMMER for 236 state HMMand small database.

Figure 8: Comparing MPI-HMMER and PIO-HMMER for 236 state HMMand large database.

In Figures 7 and 8 we compare the 236 state HMM (a 14-3-3 protein named PF00244.hmm)
against both databases. Again the parallel I/O implementation performs well through 256 proces-
sors. However, the larger HMM now contributes a greater amount of computation, demonstrating
the compute-bound nature ofhmmsearch. Indeed, for a cluster of size 256 processors we are
able to achieve nearly190x performance, far outpacing the MPI-HMMER implementation.MPI-
HMMER, however, exhibits better performance for smaller cluster sizes and is able to maintain
almost perfectly linear speedup through 64 nodes, providedthe database is large enough to pro-
vide adequate computation. This is due to the fine grained load balancing of MPI-HMMER where
much smaller database fragments are distributed to nodes as-needed. In the parallel I/O implemen-
tation, all portions of the database are allocated at the beginning of computation, based on sequence
lengths. Such static load balancing cannot account for the individual variances at run-time.

The performance impact of our I/O optimization is shown in Figure 9. As we show, reducing
the I/O between the master and the worker nodes represents the single greatest performance impact
of all optimizations. Indeed, our implementation improvesby a factor of nearly150x between the
non-optimized and the optimized cases. By reducing the amount of communication both the master
and workers spend less time communicating, instead spending a greater proportion of their time in
computation.

In Figure 10 we compare the result of two database distribution schemes. In the non-load
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Figure 9: The impact of reducing the I/O from worker to master.

Figure 10: Length-based load balancing vs. static work division.

balanced case, all offsets are distributed equally among processors. Thus, forn processors and a
database consisting ofp entries, each processor is allocatedp

n
sequences. Through experimenta-

tion we found that this results in considerable imbalance, with many processors completing their
assigned work and waiting for several processors to finish. Because theP7Viterbi algorithm is
sensitive to the length of the sequence, we changed the load distribution scheme to allocate an ap-
proximately equal length of sequences to each processor. This provided up to an80x performance
improvement over the non-load balanced solution.

Finally, we present the results of our parallel I/Ohmmsearch with each processor accessing
a dedicated network card in Figure 11. By dedicating a networkinterface to each processor, we
are able to achieve a speedup of220x on 256 nodes as opposed to the190x performance achieved
with two processors per node. Thus for a cluster of only 256 processors we demonstratehmm-
search performance that is comparable to, and possibly exceeding,the performance of the Jiang
et al. BG/L implementation [9]. This performance is achievedat only a small fraction of the cost
of a BG/L, using gigabit ethernet and a commercially available parallel file system using only
commodity components.
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Figure 11:hmmsearch performance with dedicated network interfaces.

Figure 12: Basichmmpfam implementation without database caching.

5.2 hmmpfam Performance

In this section we present the results of ourhmmpfam implementation. We compare a 50 sequence
globins input to the Pfam HMM database, and show results for both database caching and non-
database caching. In Figure 12 we show the performance ofhmmpfam without HMM database
caching. In this case, eachhmmpfam process is required to re-read the Pfam database for all 50
sequences. As can be seen, MPI-HMMER’s performance peaks at 32 nodes. This is due to the I/O-
bound nature ofhmmpfam and the lack of communication optimization in MPI-HMMER. Thus, a
great deal of communication is required for an MPI-HMMERhmmpfam search. The parallel I/O
implementation, however, again scales to 256 nodes. This results in a per-sequence time of only
0.62 seconds compared to MPI-HMMER’s best per-sequence timeof 3.4 seconds.

In Figure 13 we improve on the per-sequencehmmpfam times by utilizing database caching for
subsequent sequence iterations. As a result we are able to improve the overall scalability to287x
at 256 nodes. This results in a per-sequence search time of only 0.19 seconds. We expect to further
improve the search time for the first (non-cached) sequence by implementing double-buffering and
improved load balancing (such as that used in ourhmmsearch implementation).
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Figure 13:hmmpfam implementation using database caching.

6 Conclusions and Future Work

In this paper we have shown that MPI parallel I/O can be effectively applied to the MPI-HMMER
implementation of the HMMER sequence analysis suite to achieve exceptional performance on
commodity hardware. We have demonstrated BG/L performance on a commodity cluster, using
an inexpensive network (gigabit ethernet) and the Ibrix parallel file system. Similar hardware is
commonly accessible worldwide. Due to Ibrix’s lack of file striping, we hope to further test both
hmmsearch andhmmpfam on more suitable parallel file systems, such as PVFSv2. PVFSv2, in
particular, provides optimized MPI I/O support as well as file striping over multiple I/O nodes.
We hope to further improve the load balancing strategy to allow for a more dynamic run-time-
balanced computation. Finally, we expect to extend the remaining hmmsearch optimizations (load
balancing, double-buffering, etc.) tohmmpfam in order to further reduce the compute time of
non-cached searches.
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