Improving MPI-HMMER'’s Scalability With Parallel 1/©

Rohan Darole, John Paul Walters, and Vipin Chaudhary
Department of Computer Science and Engineering
University at Buffalo, The State University of New York
Buffalo, NY 14260
{rdarole, waltersj, vipih@buffalo.edu

May 22, 2008
Technical Report # 2008-11

Abstract

As the size of biological sequence databases continues to grow, the timardch feese
databases has grown proportionally. This has led to many parallel implemastaticommon
sequence analysis suites. However, it has become clear that manyeptraiel sequence
analysis tools do not scale well for medium to large-sized clusters. In tpier pee describe
an enhanced version of MPI-HMMER. We improve on MPI-HMMER'slabdity through
the use of parallel /O and a parallel file system. Our enhancements to theH0UMER
search toolshmmsearch andhmmpfam, allows for scalability through 256 nodes where MPI-
HMMER was previously limited to 64 nodes.

1 Introduction

As the size of biological sequence databases continue % gxponentially, outpacing Moore’s
Law, the need for highly scalable database search toolsases. Because a single processor can-
not effectively cope with the massive amount of data presetaiday’s sequence databases newer
MPI-enabled search tools have been created to reduce databarch times. These distributed
search tools have proven highly effective and have enaleselarchers to investigate larger and
more complex problems.

HMMER [5, 6, 4] is perhaps the second most used sequencesialyite. MPI-HMMER
is a freely available MPI implementation of the HMMER seqeeeanalysis suite [17, 8]. MPI-
HMMER is used in thousands of research labs around the wb2dl[1]. In previous work it has
been shown to scale nearly linearly for small to mid-sizestrs up to 64 nodes. However, as
database sizes increase, the need for greater MPI-HMMHBRbSItg has become clear.

In this paper we improve on the scalability of MPI-HMMER thgh the use of parallel /0 and
a parallel file system. This allows us to eliminate much ofabeamunication that previously acted

*This research was supported in part by NSF IGERT grant 99BMgDC/Michigan Life Science Corridor, and
NYSTAR.

UB CSE TR 2008-11

as a bottleneck to MPI-HMMER. By using parallel I/0, we are dbleffload most communication
to a cluster’s dedicated I/O nodes, thereby reducing thacpaation of the master node in the
parallel computation. Our contributions are:

e We characterize MPI-HMMER, showing its existing bottleneck
e Provide a parallel I/0O implementation of MPI-HMMER to impeoscalability on clusters
greater than 64 nodes.

The remainder of this paper is organized as follows: in $ac® provide a brief overview of
HMMER and MPI-HMMER. In Section 3 we describe the existing HER acceleration work.
In Sections 4 and 5 we describe our implementation and ssuid in Section 6 we present our
conclusions and future work.

2 HMMER and MPI-HMMER Background

MPI-HMMER is based on the HMMER [5, 6, 4] sequence analysiestiMMER allow scientists
to construct profile Hidden Markov Models (HMMs) of a set oigakd protein sequences with
known similar function and homology, and provides datalsasech functionality to compare input
HMMs to sequence databases (as well as input sequences to dél{iidases).

HMMER includes two database search todisynsearch and hmmpfam. hmmsearch accepts
as input a profile HMM, and searches the HMM against a datatfesequences (such as the NR
database). Thémmpfam tool performs similarly, but searches one or more sequeagasst
an HMM database (such as the Pfam database). These toolg pedorm the opposite func-
tions from one another, with the exception thaeimpfam allows for searching multiple sequences
against a database whdmamsearch restricts the input to a single HMM.

HMMER includes a PVM (parallel virtual machine) implemetida of a master-worker in its
source distribution. MPI-HMMER is based on this model hogreits 1/0 improvements have led
to significant speedup and scalability over the PVM impletagon. In particular, MPI-HMMER
uses both database fragmentation and double-bufferireglitece the overhead of message passing,
and to mask (as much as possible) the communication latency.

Database fragmentation results in the master node sendeitgbase chunk to the worker node,
rather than a single database entry at each iteration. #ssdon the observation that sending a
small number of large messages is generally more efficiemt sending a large number of short
messages. We combine database fragmentation with douffribg to hide the impact of mes-
sage passing, thereby allowing a worker node to computeetnchrresults while simultaneously
receiving the next batch.

The basic structure of @ammmsearch is shown in Figure 1 and is described algorithmically by:

1. The master reads the HMM from disk and sends it to each worke

2. The master reads the sequences from the sequence fileralsddstabase fragments to each
worker.

3. After receiving a database fragment, workers computessitmilarity score for each se-

guence in the database fragment and returns the results toaster.

The master performs post-processing against all hits.

If additional sequences remain unprocessed, go to step 2.

ok

2

UB CSE TR 2008-11

@ Master Reads the
Sequence File
-
Master assigns
sequences to
each worker | Worker SEQUENCE
FILE
@ @ Eg. FASTA
Master Worker | \yorkers
Compute
Workers . .
Send | P7Viterbi
Results to | on the
the master sequences
-
Worker

Figure 1. MPI-HMMER’'shmmsearch design.

@ ‘ Sequence File ‘ ‘ SSI Index File ‘

Master @ Workers read the
reads a @ SSi file to get the
sequence actual offset of the

from the Master reads the SSI File HMM in the HMM
file for index numbers of Database file

HMM's

vy @

-
Master

reads the
HMM file

2
O > Worker for post

»)
processing

<<6> HMM

Workers DATA-
reads the | BASE
actual

Master
broadcasts the
sequence to
the workers

Master @ Worker
|-y

|

Master

last HMM from
distributes the the HMM
index numbers Database
to the workers file

I I I=

Worker
@

Workers
Send Results
to the master

Figure 2. MPI-HMMER’'shmmpfam design.

MPI-HMMER'’s hmmpfam MPI implementation functions similar tommsearch, except that
an indexing strategy is used to help combaimpfam's I/0-bound nature. Rather than sending
distributing HMMs from the master node, the master simpgtributes index chunks to the work-
ers. The workers then directly read the HMMs from the HMM bate. This means that a copy
of the HMM database must be available either locally or viaeamork storage. This method
functions similarly to our parallel /O implementation,thelies on standard UNIX file 1/O rather

UB CSE TR 2008-11

than high-speed parallel I/0. The indexes are distribuggdgua double-buffering scheme in the
same way thatbmmsearch double-buffers the sequence database fragments. The PyMrman-
tation ofhmmpfam uses a similar strategy, but does not employ either doultfiesiing or database
fragmentation.

Similarly, hmmpfam functions as shown in Figure 2 is described by:

The master node reads sequence from the input sequence file

The master node broadcasts the sequence to each worker.

Master then reads the SSI index file to determine which HNtMswvorker will process.
The master distributes the corresponding index numbefsetworkers.

The worker then reads the each HMM from the HMM databasedas the indexes given
by the master.

The worker then computes the scores for a given sequeaagsagach assigned HMM and
sends the results to the master.

7. Master performs post-processing against all hits.

8. If additional HMMs remain unprocessed, go to step 3.

9. If additional sequences remain, go to step 1.

aprONPE

o

Excellent performance is achieved through 32 and 64 nodbsnpfam and hmmsearch re-
spectively. Ultimately, the bottleneck in the computatierin the single master that must send
and receive all results. After 32 or 64 nodes are reached #stemnode becomes 100% utilized
between processing the results and sending a new batch aifad&t entries. I|hmmfpam, the
problem is further exacerbated due to the 1/0-bound natlitenmpfam. This results in a pfam
search that cannot scale beyond 32 nodes, while the corbputedhmmsearch is capable of an
additional doubling to 64 nodes.

3 Redated Work

HMMER itself includes a PVM (parallel virtual machine) ingphentation of the core database
search tools. However, its scalability is limited due torébance on PVM and its non-optimized
message passing strategy. Because it does not handle @atzgasentation, each node is given
only a single sequence to process at each iteration. Thi#tges a substantial message passing
penalty for each database entry.

In addition to our existing implementation, MPI-HMMER [18], there has been a variety of
work in accelerating HMMER. The most closely related impleta&on is the IBM Bluegene/L
work performed by Jiang et al. [9]. With the highly paralleLBfgene/L along with its specialized
network fabric, the Jiang et al. port is capable of scalingoup024 nodes provided that each node
is allocated its own 10 coprocessor. Thus, their reporté2iiibde scalability actually uses 2048
nodes. They use a hierarchical master model to help aléethatsingle master bottleneck present
in MPI-HMMER.

SledgeHMMER [2] is a web service designed to allow researtbgerform Pfam database
searches without having to install HMMER locally. SledgeMER includes caching of results to
enable rapid look-up of precomputed searches. It alsodesla parallel optimization as well as
database caching of HMM databases into local memory.

UB CSE TR 2008-11

ClawHMMer was the first GPU-enabldanmsearch implementation and is capable of effi-
ciently utilizing multiple GPUs in the form of a renderinguster [7]. Other optimizations, in-
cluding several FPGA implementations, have been demdedtna the literature [15, 13, 10, 16].
FPGAs can achieve excellent performance, at the cost opéroally long development times.
The advantage of both FPGAs and GPUs is their potential fgin piarallelism within a single
GPU/FPGA. However, the implementations are rarely poetaBther acceleration strategies, such
as the use of network processors have also been descrildesllitetature [18].

Other sequence analysis suites have been enhanced withmiodtihmaster and parallel 10
strategies. mpiBLAST is perhaps the most used parallel seguanalysis suite [3]. Its original
implementation has been further enhanced using a multienssategy similar to the Bluegene/L
implementation described above [14].

4 Parallel 1O Implementation

@ Master reads the
offset file

- Offset File

@ 3

Worker | Workers

Master assigns set the

sequence offsets MPI File

to each worker view and

Master reads a
Worker pack of Sequence
500 File

Workers \ sequence
Send
Results to >

the master

A

Worker

<

Workers Compute
P7Viterbi on the
sequence

Figure 3: Parallel I/Gymmsearch design.

We modified the database distribution mechanism from bottmsearch andhmmpfam to in-
clude the use of parallel MPI I/O in order to alleviate a mggortion of the master node’s network
overhead. We use the low-levBIPI File_read_at() primitives to allow workers to scan to their
appropriate database locations to begin computation. darés 3 and 4 we show the overall
schematic of our parallel I/O-optimizdunmsearch andhmmpfam implementations.

We used indexing on all sequence databases to ehairisearch to perform parallel reads
with distributed workers. We first pre-process the sequelatabase (offline) which generates an
index consisting of the sequence offsets, and sequencénlearntp one tuple per line and with
the first line consisting of the total number of sequencestardotal number of bytes for all
sequences. This makes finding a particular sequence ofiget gjraightforward. It also makes

5

UB CSE TR 2008-11

@ ‘ Sequence File ‘ ‘ HMM Offset File ‘
Master @

reads a

sequence

from the
file

Master reads the start
offset of HMM in the
y ydatabase

@)
Master reads the HMM file for
post processing

2
| Worker

Master
broadcasts the
sequence to
the workers

Master Worker
(@)
»

Master
distributes the
HMM offset
values to the
workers

-

-4 DATA-

Workers BASE
reads

(MPI_FILE_
READ) the
actual
HMM from
the HMM
Database

Worker file
.®

-t
Workers
Send Results
to the master

Figure 4: Parallel I/hmmpfam design.

database distribution easy, allowing for distribution i@ the number of sequences or the length
of sequences.

Becauséhmmpfam already uses an indexing strategy, we kept a similar teclenfigr the par-
allel I/0 implementation. In this case, however, we moditieelhmmpfam offset file to include a
similar tuple to thehmmsearch implementation in order to remove the reliance on applicatevel
indexes inhmmpfam searches.

4.1 Post-processing

The original MPI-HMMER implementation followed the PVYM HMBR model in that it required
all results to be returned to the master for post-processitadcing matters worse, extraneous data
(for non-hits) was continually being sent back to the mastate in order to facilitate the post-
process. We reduce the number of messages being returrtesl toaster node to only those that
result in hits.

As a result, only database hits return extensive informaticthe master node. For non-hits,
only a 32-bit floating point score need be returned to the @na$o put things into perspective, a
typical database search results in only a 2% hit rate. It g these 2% that need to send detailed
Viterbi traces to the master.

4.2 Database Fragmentation

MPI-HMMER was the first to introduce database fragmentaimo HMMER database search-
ing. Each fragment was a small chunk of the database, typitalsequences per message. This

UB CSE TR 2008-11

worked well for the smaller clusters that MPI-HMMER targétand provided effective load bal-
ance over the duration of the computation. However, withviddal worker nodes capable of
reading database fragments as-needed, we found that Batgsrase fragments were needed in
order to keep all worker nodes busy.

Through experimentation, we found that approximately 58fuences or HMMs provided a
good balance of communication to computation, allowing dbeble-buffering to almost com-
pletely overlap with the computation. Once a node has reddig overall chunk of the database,
it continues to read and process 500 sequences or HMMs atiéeation.

4.3 Double Buffering (hmmsearch)

Double buffering is used to improve performance by overilag/O with computation. In the par-
allel /0 implementation of MPI-HMMER, there are two oppantties to employ double-buffering.
Before a worker begins to score the first sequence in its biatciggers anMPI _File_read_at() for
the next database fragment. This allows the next fragmeméd its transfer while scoring and
post-processing commences.

The second opportunity to employ double-buffering is irumeing the results to the master
node. After a worker computes the scores for its databagengats, it returns the scores to the
master node. However, because the worker need not waitdon#ister to acknowledge the receipt
of data it may send it and proceed to compute the scores forektedatabase fragment.

4.4 Load Balancing (hmmsearch)

There are several strategies that could be used in ordemtmym the load distribution over tens
or hundreds of nodes or processors. MPI's parallel I/O aloworker nodes to read data from
databases without interaction with a master node. Thusyibst obvious strategy is to pre-
distribute the database at the beginning of computatioat iEhthe master node sends each worker
a start and finish offset into the database, and workers gioguhpute on their database portion.

However, this is only minimally effective due to the scoriagorithm’s reliance on both the
sequence length and the HMM lengths. In Listing 1 we providbart code listing of the most
time-consuming portion of HMMER'’s Viterbi scoring algonith P7Viterbi(). Here we can see
that HMMER is dependent on both the length of the sequeneedtiter:-loop), as well as the
length of the HMM (the innek-loop, lines 2-20. By simply allocating database chunkshégit
from an HMM database or sequence database) based on onlgt#h@twmber of sequences or
HMMs, there will be a natural load imbalance due to differsggjuence and HMM lengths within
the database.

Our solution was to instead allocate database fragmenésitmasthe lengths of the sequences.
Because the master node knows both the total number of sezpignihie database, as well as the
total lengths of all sequences, it is able to allocate fragsef the database based on those lengths
rather than the number of entries. In this manner, a nodedladibcated a database fragment with
many long sequences is allocated fewer total sequenceden tr maintain a reasonable balance
of computation.

UB CSE TR 2008-11

1 for (i =1; i <=1L; i++) {
for (k = 1; k <= M k++) {
3 mc[k] = npp[k-1] + tpm{k-1];

if ((sc =ip[k-1] + tpinmk-1]) > nt[k]) nc[k] = sc;
5 if ((sc = dpp[k-1] + tpdnmk-1]) > nc[k]) nc[k] = sc;
if ((sc = xnmb + bp[k]) > nc[k]) nc[Kk] = sc;
7 nc[k] += nms[k];
if (nmc[k] < -INFTY) nt[k] = -I1NFTY;
9
dc[k] = dc[k-1] + tpdd[k-1];
11 if ((sc = nc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
if (dc[Kk] < -INFTY) dc[k] = -INFTY;
13
if (k<M {
15 ic[k] = npp[k] + tpm [Kk];
if ((sc =ip[k] + tpii[k]) >ic[k]) ic[k] = sc;
17 ic[k] += is[k];
if (ic[k] < -INFTY) ic[k] = -INFTY;
19 }
}
21 }

Listing 1: The most time consuming portion of tR&Viterbi algorithm.

4.5 Database Caching (hmmpfam)

Because of the design bimmpfam, multiple input sequences may be searched against the HMM
database. This is not true bfmmsearch, where a database search is limited to a single input
HMM. This presents a simple opportunity for optimizing therfermance othmmpfam in that

we may cache the HMM database entries, either in memory oocad ktorage, for subsequent
sequence iterations. We are not the first to implement tlagife [9]. However, we include the
caching due to its simplicity and effectiveness.

5 Resaults

In this section we describe the actual performance of oualighi/O enabledhmmsearch and
hmmpfam implementations. All tests were carried on out at the Umsitgrat Buffalo’s Center for
Computational Research (CCR) [1]. The CCR’s hardware resourcestoh$056 nodes, each
equipped with 2 3.2 Ghz Intel Xeon processors, 2048 MB RAMapigethernet and Myrinet 2G
network interfaces, and an 80 GB SATA hard disk.

For our tests we used the gigabit ethernet network interfc@revious tests, no substantial
improvement was found with the use of the Myrinet interfa¢des mass storage the CCR includes
a 25 TB (usable) EMC CX700-based SAN as well as as 25 TB Ibrialjghfile system. The Ibrix
file system includes 21 segment servers (often called I/@sbg other parallel file systems). The
Ibrix file system’s physical storage exists as a pool of gferan the EMC SAN. Segment servers

UB CSE TR 2008-11

are connected to the EMC SAN via fiber channel.

2xNR Database vs. RRM.hmm

60
- 50
L 40
L 30

10000

8000

6000

Speedup

4000
- 20

- 10
B9

TIME(seconds)

2000

2 4 8 16 32 64 128 256 512

#PROCESSORS

PIO-HMMER s MPI-HMMER Speedup-PI0 ===Speedup-MPI

Figure 5. Comparing MPI-HMMER and PIO-HMMER for 77 state HMMdasmall database.

4xNR Database vs RRIVLhmm

18000 70
16000 1 &0
14000
12000
10000
8000
6000
4000
2000

- 50
- 40
- 30
F 20

Speedup

TIME((seconds)

- 10
5 = .= _.m _W |,

2 4 8 16 32 64 128 256 512
#PROCESSORS

PIO-HMMER mmmm MPI-HMMER Speedup-PIO Speedup-MPI

Figure 6: Comparing MPI-HMMER and PIO-HMMER for 77 state HMMdlarge database.

5.1 hmmsearch Performance

Our hmmsearch results present data for two HMMs and two database sizes. aibled and
guadrupled the NR database to provide sufficient data fgelacale analysis. Because B@/iterbi
algorithm is sensitive to the size (number of states) ofrtpei HMM, we have tested our enhance-
ments for both a 77 state HMM and a 236 state HMM.

In Figures 5 and 6 we show the performance of the smaller 7& BiislM (named rrm in the
HMMER distribution) against both sized databases. Thisaggnts a worst-case performance of
both HMMER implementations as the smaller HMM is both comagionally light-weight and gen-
erates tens of thousands of hits against the NR databaselyClea parallel I/O implementation
outperforms standard MPI-HMMER by a wide margin. While bdtiow a slight improvement
with the larger database, we can see that MPI-HMMER topsrafflzegins exhibit performance
degradation at 32 processors. The parallel I/0 implemientatowever, continues to demonstrate
speedup through 256 nodes for both database sizes.

UB CSE TR 2008-11

2xNR Database vs. PF00244.hmm

18000 200
16000 180
14000 r 160
12000 r 140
10000 P 120
2000 " 20
6000 [
4000 3 - 40
2000 == 20

Speedup

TIME(seconds)

2 4 8 16 32 64 128 256 512
#PROCESSORS

PIO-HMMER mmmm MPI-HMMER Speedup-PIO Speedup-MPI

Figure 7: Comparing MPI-HMMER and PIO-HMMER for 236 state HMIYid small database.

4xNR Database vs. PF00244.hmm

40000 200
35000
30000 150
25000
20000
15000
10000
5000

100

Speedup

A — 50

e

TIME(seconds)

8 16 32 64 128 256 512

N
IS

#PROCESSORS

PIO-HMMER mmmm MPI-HMMER Speedup-PIO Speedup-MPI

Figure 8: Comparing MPI-HMMER and PIO-HMMER for 236 state HMiMd large database.

In Figures 7 and 8 we compare the 236 state HMM (a 14-3-3 proi@med PF00244.hmm)
against both databases. Again the parallel I/O implemiemtgierforms well through 256 proces-
sors. However, the larger HMM now contributes a greater amoticomputation, demonstrating
the compute-bound nature bimmsearch. Indeed, for a cluster of size 256 processors we are
able to achieve nearlyQ0x performance, far outpacing the MPI-HMMER implementatitPI-
HMMER, however, exhibits better performance for smalleistdu sizes and is able to maintain
almost perfectly linear speedup through 64 nodes, providediatabase is large enough to pro-
vide adequate computation. This is due to the fine grainetibatancing of MPI-HMMER where
much smaller database fragments are distributed to nod®semted. In the parallel I/O implemen-
tation, all portions of the database are allocated at thanbgy of computation, based on sequence
lengths. Such static load balancing cannot account fomithigidual variances at run-time.

The performance impact of our 1/0O optimization is shown igufe 9. As we show, reducing
the I/O between the master and the worker nodes represergstile greatest performance impact
of all optimizations. Indeed, our implementation improbgsa factor of nearll50x between the
non-optimized and the optimized cases. By reducing the at@f@ommunication both the master
and workers spend less time communicating, instead spgadineater proportion of their time in

computation.
In Figure 10 we compare the result of two database distobhusichemes. In the non-load

10

UB CSE TR 2008-11

Impact of I/O Reduction on PIO hmmsearch Times

50000

40000

30000

Speedup

20000

10000

TIME (Seconds)

2 4 8 16 32 64 128 256 512

ZPROCESSORS

PI0-10 Reduce s P|O-NON-10 reduce

——Speedup with I/O Reduction —=—Speedup without I/O Reduction

Figure 9: The impact of reducing the I/O from worker to master

Impact of Length-based Load Balancing
200

40000

30000 150

20000 /% 100

10000 50
2 4

T T L - T T
8 16 32 64 128 256 512

Speedup

TIME(Seconds)

#PROCESSORS

P10-Load balancing mmm P|O-Non Load balancing

Speedup with Load balancing ~ ==Speedup without Load balancing

Figure 10: Length-based load balancing vs. static worksdiw.

balanced case, all offsets are distributed equally amoogegsors. Thus, for processors and a
database consisting pfentries, each processor is allocatedequences. Through experimenta-
tion we found that this results in considerable imbalana#) many processors completing their
assigned work and waiting for several processors to finishcaBse thd?7Viterbi algorithm is
sensitive to the length of the sequence, we changed the Istdbdtion scheme to allocate an ap-
proximately equal length of sequences to each processiwpidvided up to aB0x performance
improvement over the non-load balanced solution.

Finally, we present the results of our parallel Il@msearch with each processor accessing
a dedicated network card in Figure 11. By dedicating a netwudskface to each processor, we
are able to achieve a speedu@0x on 256 nodes as opposed to #8x performance achieved
with two processors per node. Thus for a cluster of only 25@@ssors we demonstréienm-
search performance that is comparable to, and possibly exceethiegperformance of the Jiang
et al. BG/L implementation [9]. This performance is achiea¢dnly a small fraction of the cost
of a BGI/L, using gigabit ethernet and a commercially avadgirallel file system using only

commodity components.

11

UB CSE TR 2008-11

Comparing hmmsearch for One and Two Processors Per Node

40000 250
35000
< 30000 — // — 20
S 25000 — ~ - 150 E
£ 20000 / Z
= 4 A 100 =
= 15000 = =
= 10000
= K r 50
5000
0 +—93 u T T - - T T 0

16 32 64 128 256 512

N
=
=3}

#PROCESSORS

P10 with 2 Processor Per Noden = PO with 1 Processor per node

Speedup with 2 Processor Per Node Speedup with 1 Processor Per Node

Figure 11:hmmsearch performance with dedicated network interfaces.

Pfam Hmm Database vs Globins50

4000 100

3500
Z 3000 S—
E 2500 L 60 E
% 2000 £
=1 :
E‘ 1500 fa0 A
=
5 1000 1 50

500 S

0 ‘ Bl =m -m = m m
2 4 8 16 32 64 128 256 512
#PROCESSORS
PIO-HMMER mmmm MPI-HMMER Speedup-PI0 —#—Speedup-MPI

Figure 12: Basibimmpfam implementation without database caching.

5.2 hmmpfam Perfor mance

In this section we present the results of bommpfam implementation. We compare a 50 sequence
globins input to the Pfam HMM database, and show results étin batabase caching and non-
database caching. In Figure 12 we show the performan&enofpfam without HMM database
caching. In this case, eatimmpfam process is required to re-read the Pfam database for all 50
sequences. As can be seen, MPI-HMMER'’s performance peaksaid®s. This is due to the 1/O-
bound nature ofimmpfam and the lack of communication optimization in MPI-HMMER. Ha
great deal of communication is required for an MPI-HMMBRmpfam search. The parallel /0
implementation, however, again scales to 256 nodes. Thigdtsein a per-sequence time of only
0.62 seconds compared to MPI-HMMER'’s best per-sequencedti®& seconds.

In Figure 13 we improve on the per-sequehognpfamtimes by utilizing database caching for
subsequent sequence iterations. As a result we are ablg@toventhe overall scalability t887x
at 256 nodes. This results in a per-sequence search timéydd.d® seconds. We expect to further
improve the search time for the first (non-cached) sequenaeflementing double-buffering and
improved load balancing (such as that used infeamsearch implementation).

12

UB CSE TR 2008-11

Pfam Hmm Database vs Globins50 with Database Caching

4000 350
3500 L 300
3000 . | 550
2500 s 300
2000
1500
1000 r 100
500 I - 50

e ——r— e |

2 4 8 16 32 64 128 256 512

- 150

Speedup

TIME(Seconds)

#PROCESSORS

PIO-HMMER mmmm MPI-HMMER Speedup-PI10 with Database Caching ==t=Speedup-MPI

Figure 13:hmmpfam implementation using database caching.

6 Conclusonsand Future Work

In this paper we have shown that MPI parallel I/O can be &ffelst applied to the MPI-HMMER
implementation of the HMMER sequence analysis suite toesghexceptional performance on
commodity hardware. We have demonstrated BG/L performanc @dmmaodity cluster, using
an inexpensive network (gigabit ethernet) and the lbriajpalrfile system. Similar hardware is
commonly accessible worldwide. Due to lbrix’s lack of fileiging, we hope to further test both
hmmsearch and hmmpfam on more suitable parallel file systems, such as PVFSv2. PYF&v
particular, provides optimized MPI 1/0O support as well ae fitriping over multiple 1/0 nodes.
We hope to further improve the load balancing strategy towaflor a more dynamic run-time-
balanced computation. Finally, we expect to extend the i@nghmmsearch optimizations (load
balancing, double-buffering, etc.) tommpfam in order to further reduce the compute time of
non-cached searches.

Acknowledgements

We would like to gratefully acknowledge Muzammil Hussaim ¥@rious comments and discus-
sions regarding this project and its implementation.

References

[1] University at Buffalo. The Center for Computational Researchtt p: // www. ccr .
buf f al 0. edu, 2006.

[2] G. Chukkapalli, C. Guda, and S. Subramaniam. SledgeHMMERVeb Server for Batch
Searching the Pfam Databa$ducleic Acids Research, 32(Web Server issue), 2004.

[3] A. Darling, L. Carey, and W. Feng. The Design, Implemetatand Evaluation of mpi-
BLAST. In 4th International Conference on Linux Clusters: The HPC Revolution 2003 in
conjunction with the ClusterWorld Conference and Expo, 2003.

13

UB CSE TR 2008-11

[4] R.Durbin, S. Eddy, A. Krogh, and A. MitchisoBiological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[5] S. Eddy. HMMER: Profile HMMs for Protein Sequence Analysigtt p:// hnmer.
j anel i a. or g, 2006.

[6] S.R. Eddy. Profile Hidden Markov Model8ioinformatics, 14(9), 1998.

[7] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER: A StreagntiMMer-Search Im-
plementation. Inn SC’05: The International Conference on High Performance Computing,
Networking and Storage, 2005.

[8] J. P. Walters. MPI-HMMERAt t p: / / ww. npi hnmrer . or g/, 2008.

[9] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P. Sosa. fAciént Parallel Implementa-
tion of the Hidden Markov Methods for Genomic Sequence $earnca Massively Parallel
System.Transactions on Parallel and Distrbuted Systems, 19(1):15-23, 2008.

[10] R.P. Maddimsetty, J. Buhler, R. Chamberlain, M. Frankling B. Harris. Accelerator Design
for Protein Sequence HMM Search. Pnoc. of the 20th ACM International Conference on
Supercomputing (ICS06), pages 287-296. ACM, 2006.

[11] MPI-HMMER. Mpi-hmmer at ccr. http://ww. ccr. buf f al 0. edu/ di spl ay/
VEB/ Appl i cat i on+Sof t war e+By+Subj ect , 2008.

[12] MPI-HMMER. Mpi-hmmer on bigred. htt p: //raci nfo. ui ts. i ndi ana. edu/
bi oi nf or mat i cs/ npi - hmrer - bi gred. sht ni , 2008.

[13] T. F. Oliver, B. Schmidt, J. Yanto, and D. L. Maskell. Aechting the Viterbi Algorithm for
Profile Hidden Markov Models using Reconfigurable Hardwéezture Notes in Computer
Science, 3991:522-529, 2006.

[14] O. Thorsen, B. Smith, C. P. Sosa, K. Jiang, H. Lin, A. Petarsl W. c. Feng. Parallel
Genomic Sequence-Search on a Massively Parallel Systei@F 197: Proceedings of the
4th international conference on Computing frontiers, pages 59-68, New York, NY, USA,
2007. ACM.

[15] TimeLogic BioComputing Solutions. DecypherHMM.htt p://ww. ti el ogi c.
com , 2006.

[16] J. P. Walters, X. Meng, V. Chaudhary, T. F. Oliver, L. Yo¥e B. Schmidt, D. Nathan, and J. I.
Landman. MPI-HMMER-Boost: Distributed FPGA Acceleratiol,S Sgnal Processing,
48(3):223-238, 2007.

[17] J. P. Walters, B. Qudah, and V. Chaudhary. AcceleratiegitMMER Sequence Analysis
Suite Using Conventional Processors. AIWNA '06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applications - Volume 1 (AINA 06),
pages 289-294, Washington, DC, USA, 2006. IEEE Computer §ocie

14

UB CSE TR 2008-11

[18] B. Wun, J. Buhler, and P. Crowley. Exploiting Coarse-Grdifarallelism to Accelerate
Protein Motif Finding with a Network Processor. BACT '05: Proceedings of the 2005
International Conference on Parallel Architectures and Compilation Techniques, 2005.

15

