Evaluating the Use of GPUs for Life Science
Applications

Technical Report # 2008-10

Vidyananth Balu, John Paul Walters, Suryaprakash Kompalli, and Vipin Chaudhary
Department of Computer Science and Engineering
University at Buffalo, The State University of New York
Buffalo, NY 14260
{vbalu2, waltersj, kompalli, vipih@buffalo.edu

May 22, 2008
Technical Report # 2008-10

Abstract

As the peak performance of GPUs continues to outpace general-pymmmsssors, the
use of GPUs for application acceleration is becoming more widespreadeugowot all al-
gorithms benefit equally from their use. In this paper we present thégediparallelizing
two life sciences applications, Markov Random Fields-based (MRF) sggmentation and
HMMER'’s Viterbi algorithm. We relate our experiences in porting both apptos to the
GPU as well as the technigues and optimizations that are most beneficialnifloe gharac-
teristics of both algorithms are demonstrated by implementations on an NVIDIA 83X
Ultra using the CUDA programming environment. The features of the MRF ihgoand the
reasons for its exceptional speedups are discussed in detail. We atsatehize HMMER's
Viterbi algorithm and note the features that facilitate speedup.

1 Introduction

In recent years graphics processing units (GPUs) have leamreasingly attractive for general
purpose parallel computation. Parallel code that tradltily required expensive computational
clusters to achieve reasonable speedup may now port to GEMBsg results equivalent to tens of
traditional CPUs at a fraction of the cost. As tools such asN¥Xks CUDA [15] continue to ma-
ture, the burden of GPU programming continues to decreéseiag for expression of traditional
parallel codes in the familiar “C” language.

With peak computing power of 345-518 GFLOPS for the latestDIX GPUs compared to
only 32 GFLOPS for quad-core general purpose processastthaction of GPUs for general

*This research was supported in part by NSF IGERT grant 99BMgDC/Michigan Life Science Corridor, and
NYSTAR.



UB CSE TR 2008-10

purpose computation is clear. However, graphics processemot suited for all types of computa-
tions. In this paper we evaluate the use of the NVIDIA 8800 GJiXa GPU for two classes of sta-
tistical problems: the HMMER sequence database searcicapph (hmmsearchand a medical
imaging liver segmentation application based on Markov Rané&ields VIRF). We demonstrate

a variety of optimization strategies that are useful fofedént classes of GPU-based applications.
We make the following contributions:

e Implement liver segmentation using Markov Random FieldshenGPU.
e Implement a GPU-based implementation of HMMERmmsearchool.

e Discuss and analyze the advantages and limitations of Gdlivaee for general purpose
HPC.

The remainder of this paper is organized as follows: In $ac® we introduce the liver seg-
mentation algorithm usinyIRF, while in Section 3 we briefly describe HMMER and the paral-
lelization strategy commonly used. We present an overvie®RIU computing in Section 4. In
Section 5 we present the results of &IRF andhmmsearchmplementations, and in Section 6 we
analyze the differences of each algorithm and their suitalior GPU acceleration. Future work
is presented in Section 6.1.

2 MRF Segmentation

Algorithm 1 MRFalgorithm (class label 3d-arrag’'(C), data 3d-arraylp), mean [), variance §))
1: Initialize number of iteration ) to zero.
2: Initialize Current Index {.....-) to start of volume.
3: while I,,,, < size of volumedo

Current label,.,.,.= CL[1 .|

Current value,,, = D[l

r = Random class label fromir, bone, liver;

Energyeur = Gaussian Prior(Veyrr, lewrr) + Clique Potential (1pyrr, Leurr)

Energynew = Gaussian Prior(Vey, r) + Clique Potential (1eyr, 1)

AEnergy = Energyeu — Energynew

10:  if AEnergy > kszithen

11: CL[Leyrr] =13

12: summabDelta + = DiffEnergy

13:  endif

14: Incrementl,,,,

15: end while

16: Update meam and variance using the new class labels.

17: Check if the energy change in the volume is minimal (summaielt not continue, steps 2

to 16 until the energy change is minimal.
18: Increment K

© N0




UB CSE TR 2008-10

Algorithm 2 CliquePotential(Class label 3d-array L), Index I, Label L)
1: Initialize energy,F as zero
2: for all I,eigneor € Neighborhood of do
3: lcurr = CL[[neighbm"]

4 if loyrr = [ then

5 E = F — betalnClass
6: €lse

7: E = FE — betaOutClass
8: endif

9: end for

Segmentation is the identification of non-overlapping otgef interest from images or vol-
umes, and is a fundamental problem in image processing. da chthe liver, segmentation is
critical in several diagnostic and surgical procedures. & a Markov Random FieldRF) to
obtain an initial estimate of the liver boundaMRFs condition the property associated with each
pixel (or voxel) on its immediate neighborhood. A sample (saimple set can be an image or
a volume)S is said to be amMRFif: Vs € S, p(Ys|Y,,r # s) = p(Ys|Ys.), wheres andr are
individual data points (pixels in 2D, volxels in 3D), angdis a neighborhood of. An MRF can
be modeled by takind™ as a specific property, in our case a class label assignnrenthér im-
plementationsy” may represent features being extracted from an image [18prthms 1 and 2
provide pseudocode for oMRF implementation.

2.1 Reated Work

Liver segmentation methodologies include model-drivepragches [10, 3, 7, 9] that use a model
to limit the segmentation algorithm to certain image areas data-driven approaches that do
not use a model to restrict the image being processed [14, @8t methodology falls into the
data-driven approach, where we use a user-input seed paiotbination with Markov Random
Field to obtain an initial liver boundary and refine the boarrydusing an Active Contour. A 2D,
non-parallel version of the algorithm has previously beeblighed [1].

There are several 2D and 3D algorithms available for livgnsentation, and surveys are pre-
sented in [17, 13, 12]. However, few algorithms have beetyaad with respect to speedup, and
fewer still have been adapted to high-speed architectikegitaphics processing units.

3 HMMER Background

Protein sequence analysis tools to predict homology, stre@nd function of particular peptide
sequences exist in abundance. Some of the most commonlyasdre part of the profile hidden
markov model search algorithm, HMMER, developed by Sean Esld4]. These tools construct
hidden markov models (HMMs) of a set of aligned protein segae with known similar function
and homology, and provide database search functionaligotopare input HMMs to sequence
databases (as well as input sequences to HMM databases).

HMMER is composed of two search functiohsnmsearclandhmmpfamhmmsearclsearches



UB CSE TR 2008-10

an input HMM against a sequence database, wintenpfansearches one or more input sequences
against a database of HMMs. Bdtmmsearctandhmmpfanrely on the same core algorithm for
their scoring functionP7Viterbi We focus our GPU implementation ¢immsearcthas it is the
more compute-intensive of the two search applications.

Algorithm 3 Pseudocode for HMMER Bmmsearchool.
1: Input: A profile HMM, H and a sequence databsse
2: for alli e Sdo
3. score =P7Viterbi(H, S 1)

4.  if score is significantthen
5: PostprocessSigni ficant Hit(S;, H, score)
6: endif
7. end for
1 for (i =1; i <=1L; i++) {
for (k =1, k <= M k++) {

3 nc[k] = npp[k-1]  + tpmik-1];

if ((sc =ip[k-1] + tpinfk-1]) > nc[k]) nt[Kk] = sc;
5 if ((sc = dpp[k-1] + tpdnfk-1]) > nt[K]) nt[k] = sc;

if ((sc = xnb + bp[k]) > nc[k]) nc[Kk] = sc;
7 nc[k] += ms[K];

if (nmc[k] < -INFTY) nc[k] = -INFTY;
9

dc[ k] = dc[k-1] + tpdd[k-1];
11 if ((sc = nc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;

if (dc[k] < -INFTY) dc[Kk] = -INFTY;
13

if (k<M {
15 ic[k] = npp[k] + tpm [k];

if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
17 ic[k] += is[Kk];
if (ic[k] < -INFTY) ic[k] = -INFTY;
19 }
}

21 }
23 P7Viterbi Trace(hmm dsq, L, nx, &r);

Listing 1: The most time consuming portion of tR&Viterbialgorithm.

At the core of the HMMER search is the Viterbi algorithm, usedompute the most probable
path through a given state model. Algorithm 3 shows the pseade for a typical HMMER
database search, and listing 1 provides a code snippet ofidsetime consuming portion of the
P7Viterbialgorithm. Line 1 from Listing 1 represents the sequencp ladnile lines 2-20 represent

4



UB CSE TR 2008-10

the HMM loop. TheP7Viterbialgorithm is sensitive to both the length of sequences irjaesece
database and the length of input HMM.

As is common of database search algorithhmamsearchs embarrassingly parallel over the
database loop of Algorithm 3. This results in a parallel oagdf over97%, where approximately
50% of the run-time is spent in the portion®7Viterbidisplayed in Listing 1, lines 2-20. There-
fore, the key to parallelizing a HMMER search is to offload 8&viterbi function to multiple
computing elements, while also ensuring that the code feagishown in Listing 1 is as efficient
as possible.

3.1 Related Work

HMMER includes a PVM (Parallel Virtual Machine) implemetiten of the searching algorithms.
However, due to its reliance on PVM and its non-optimized sagsg, its scalability is lim-
ited. MPI (Message Passing Interface) implementationsheerenost common parallel HMMER
techniques. MPI-HMMER [21] is a well-known and commonly dsmplementation. In MPI-
HMMER, worker nodes are assigned multiple database chun&srpute in parallel. A single
master node is used to collect the results. This resultsanlimear speedup for small to mid-sized
computational clusters (64 nodes or less).

A second Bluegene-based MPI implementation has been deratausto scale through 1024
nodes [8]. It uses a hierarchical master model as well asaveiok data collection and load balanc-
ing strategies to alleviate single master bottleneck prtaseMPI-HMMER. However, its reliance
on a Bluegene supercomputer limits its widespread adoption.

ClawHMMer was the first GPU-enablddnmsearchimplementation and is capable of effi-
ciently utilizing multiple GPUs in the form of a renderinguster [6]. Unlike our implementation,
ClawHMMer is based on the BrookGPU stream programming lang{2jg Other optimizations,
including several FPGA implementations, have been demetestin the literature [20, 16, 11].
FPGAs can achieve excellent performance, at the cost op@roally long development times.

4 Computing With GPUs

Computing with GPUs presents unique challenges and limnatihat must be addressed in order
to achieve high performance. In this section we describeé\ivdDIA 8800-based GPU that is
used in our tests and also explain the unique features of Bé tBat make programming them a
challenge.

The graphics processors used in our tests are NVIDIA 8800 GTiva GPUs with 768 MB
RAM. The 8800 GTX Ultrais composed of 16 stream multiprocessgach of which is itself com-
posed of 8 stream processors for a total of 128 stream prsedsach multiprocessor has 8192
32-bit registers, which in practice limits the number ofttals (and therefore, performance) of the
GPU kernel. The GPU itself is programmed using NVIDIAs CUDE5]. Each multiprocessor
can execute 768 concurrent threads. Threads are parttioteethread blocks of up to 512 threads
each, and thread blocks are further partitioned into waf@2 éhreads. Each warp is executed by
a single multiprocessor. Warps are not user-controlledssigaable, but rather are automatically
partitioned from user-defined blocks. At any given clockleyan individual multiprocessor (and



UB CSE TR 2008-10

its stream processors) executes the same instruction tredlds of a warp. Consequently, each
multiprocessor should most accurately be thought of as &2§ikdcessor.

Programming the GPU is not a matter of simply mapping a sitigiead to a single stream
processor. Rather, with 8192 registers per multiprocebsmdreds of threads per multiprocessor
and thousands of threads per board should be used in ordahytaufilize the GPU. Memory
access patterns, in particular, must be carefully studientder to minimize the number of global
memory reads. Where possible, an application should makef tise 16 KB of shared memory per
multiprocessor, as well as the texture memory, in order tomize GPU kernel access to global
memory. When global memory must be accessed, it is essemtiairtemory be both properly
aligned, and laid out such that each SIMD thread accesse&cuwtive array elements in order to
combine memory reads into larger 384-bit reads.

5 GPU Implementations and Results

In this section we describe the GPU implementations!|BF liver segmentation and tH&7 Viterbi
algorithm. We provide details and performance results @éfdpations for both GPU kernels. All
GPU tests were performed on a machine consisting of a 3.0 &2 Athlon 642 processor with
8 GB memory and 2 NVIDIA 8800 GTX Ultra GPUs. Only a single GPdEsaused in our tests.
The MRF serial tests were also taken on the AMD Athlon machine. hislimsearctserial tests
were performed on machines consisting of a single quad20r&hz Intel Xeon processor with
4 GB RAM. Only a single core was used for the serial tests.

51 MRF Liver Segmentation Kernel

Algorithms 1 and 2 outline the major steps in i&F computation that provides an approximate
liver boundary from the 3D CT volume. The CT volume is a stack aftiple 512 X 512 images,
for example a 512 X 512 X 60 volume has 60 CT images in &ndy values of the volume will
range from 0 to 511 and theco-ordinate will range from 0 to 59. In our GPU approach,die
through 15 of algorithm 1 are implemented on the GPU, andiplelthreads are used to iterate
through the volume. Each thread is assigned a partiautaordinate, or a range afcoordinates
according to its thread Id; theandz co-ordinates will iterate through 0-511 and\Orespectively,
whereN is number of images in the volume.

In our GPU implementation, multiple threads process themwelin parallel and update class la-
bel values simultaneously. The GPU architecture does motipthese updates to be synchronized
across threads. Hence, callsdbique Potential in lines 7 and 8 of algorithm 1 (Algorithm 2) do
not have guaranteed access to updated class labels alongdoedinate. In the sequential imple-
mentation on CPU, updated class label values of the entiten@hbre available. Since class labels
are not available across threads, the GPU implementatiandisparture from th&RF model.
Empirical analysis shows that the effect on segmentatisultrés insignificant in practice.

A primary optimization in our implementation is memory aesting. Coalescing is a technique
to combine non-sequential and small reads from global mgnrdo the more efficient sequential
and large global memory reads. This minimizes the penaltgading from memory. Reads by
consecutive threads in a warp are combined by hardware éveral, wider memory reads of up
to 384 bits each. Consecutive 32-bit reads that are issuedtamsously are automatically merged



UB CSE TR 2008-10

into multiple 384-bit reads in order to efficiently saturite memory bus. For the GPU to be able
to coalesce memory reads, we have modified the implementstich that threads within a warp
read memory sequentially. The entire class label valuelseo8D volume are laid out in a single
dimensional array. The neighboring x coordinates lie ctogether and threads operate on this x
coordinate in order, leading to coalesced reads for neadyyeaccess to the global memory. If
multiple GPU threads are reading from the same array baggreti offsetn then thread 0 should
read (assuming 32-bit array elemerdsy ay[ n] , thread 1 should reaak r ay[ n+1] , etc.

MRF code occupies 32 registers on the GPU. Each multiprocessthe NVIDIA 8800 Ul-
tra has 8,192 register, limiting the maximum number of MREe#ds per multiprocessor to 256.
Various configurations of "number of blocks X thregas- block X registersper thread” have
been tried and the best speedup has been obtained for 16 X 22(XaBle 1). Higher register
count limits the number of threads per multiprocessor, addces the occupancy count (Ratio of
number of threads per multiprocessor to 768, the maximursiplesthreads per multiprocessor.
For a register count of 32, occupancy is 33%, and with 12 registhe occupancy count is 67%.
Nevertheless, occupancy count is not the best indicatqued#dup, as seen in Table 1.

Figure 1 presents speedup results for different configumatilt appears that speedup increases
with an increase in the block size as well as total number refaths. However, when the number
of blocks is constant, but the number of threads are incdgapeedup changes more significantly
than with change in number of blocks alone. Significant d#fifee is seen in the speedup of
configurations with different thread counts; examplesudel the configurations 2x32x8 versus
2x256x1, 4x32x4 versus 4x128x1, and 8x32x2 versus 8x64xX40,Ahe increase in speedup is
comparatively lesser when multiple blocks are used witlhaereasing thread count; for example
configurations 2x64x4 versus 4x32x4 and configuration 4264tsus 8x32x2. Overall, our re-
sults show that the total number of threads executed haseasmnificant effect than block count.
This is also attested in Table 1 where relatively less irswan speedup is achieved while going
from 4 blocks to 16 blocks.

Speedup vs Number of Threads

140
120

100
I H e % 5“ N I [ [ &
! . . CPU time
I p kI 2
0 GPUtime

=—i==Speedup

Speedup

Log_2 Execution time {seconds)

Number of threads

Figure 1: Speedup dWRF as a function of the number of threads; size of CT volume: 512X 5
X717



UB CSE TR 2008-10

Speedup For Different Test Cases

170 178 190

Log _2 Execution
time (seconds)

Test cases

N CPU time

Speedup

GPU time
=i==Speedup

Figure 2: Speedup d¥IRF for multiple test cases.

Table 1: Speedup for varying block count and register usag®IRF; size of CT volume: 512 x

512 x 81
Blocks | Threads per block Registers per threadOccupancy count Execution Time| Speedup
1 512 12 67% 3.92 43
2 256 32 33% 2.05 83
4 128 32 33% 1.45 117
8 64 32 33% 1.34 127
16 32 32 17% 1.31 130

5.2 P7Viterbi Kernd

C code of theP7Viterbialgorithm was ported to CUDA with performance optimizatiohke ker-
nel works on multiple sequences simultaneously, with eaad working on a unique sequence.
The number of threads that can be executed in parallel willmbiged by two factors: (I)\GPU
memorywill limit the number of sequences that can be stored, andrtie number of registers
used by each threadill limit the number of threads that can run in parallel. igagdly, register use
is the most prohibitive resource.

The P7Viterbikernel in our implementation requires 32 registers peratthrallowing a maxi-
mum of 256 active threads per multiprocessor. NVIDIA 880043Jltra has 16 multiprocessors,
and each can run 409856 16) threads in parallel. In the remainder of this section wedbs the
optimizations made to the GPU kernel. We consider threegmyiraptimizations in ouP7Viterbi
kernel: database-level load balancing, memory layout aatescing, and loop unrolling.

As we described in Section 3, HMMERRY Viterbifunction is sensitive to both the length of
the query HMM as well as the length of an individual sequer@gDA provides limited support
for thread synchronization; a barrier synchronizationction is provided that returns only when
all threads have finished executiotudaT hreadSynchronize()). In our implementation, 4096
threads are run in parallel on a single multi-processolh wéch thread operating on its own se-



UB CSE TR 2008-10

Sorted vs Unsorted Database

35000 8

30000 /_-/ pr— L
25000 "””“f’ -6
5
20000 — L 4
15000 I Unsorted
F3
Sorted
10000 L 2
5000 . 1 —i—Speedup
o MR . 0
77 20 456 789

9

Speedup

Execution time {seconds)

HMM size

Figure 3: Speedup dfmmsearchvith sorted database.

guence. A typical sequence database is unordered, pldearysequences in a close vicinity to
long sequences. On a CUDA-enabled GPU this results in stsetprences completing early, and
being forced to wait for the longest sequence in the curratttbbefore the barrier synchronization
completes. The solution is to presort the sequence datalydsagth, thereby balancing a similar
load over all 4,096 threads participating in the compuratio

for (k =1; k <= M k+=4) {
nme[k] = mpp[k-1] + tpmm{k-1];
for (X =t K=k Lo no[ k+1] = mpp[k] + tpmik];
ikl = mpplk-1] + tpmik-1]; mc[k+2] = npp[k+1] + tpnmi k+1];
} mo[k+3] = mpp[k+2] + tpmmk+2];
}
Listing 2: Original loop Listing 3: Unrolled loop

Loop unrolling is a classic loop optimization strategy desid to reduce the overhead of in-
efficient looping. The idea is to replicate the loop’s innentents such that the ratio of useful
computation to loop bounds computation increases. The gaimeiples apply to GPU compu-
tation, with the caveat that loop unrolling may introduceliidnal register pressure. In GPU
programming, the use of additional registers may reduceatineber of active threads, further re-
ducing the overall GPU utilization. Listings 2 and 3 prodden example of the loop unrolling
transformation for a portion of the-loop of Listing 1. We have experimentally determined an
unrolling factor of 2 to provide modest performance improeats for most cases. However, due
to space considerations we must omit this data.

The most effective optimization to th&7Viterbiis from optimizing memory layout and usage
patterns within the Viterbi algorithm. Because the CUDA eowiment does not allow threads to
dynamically allocate GPU memory, all memory allocationge(ethose allocating the GPU'’s on-
board memory) must be performed by the host system and ctpteed GPU before instantiating
the kernel. By default, thB7Viterbifunction requires integer arrays of sixe M x L.+ 5x L, where

9



UB CSE TR 2008-10

M, L are the length of the sequence and HMM, respectively. FgelBiMMs and large sequences,
this can easily result in several megabytes of data perdhi&&h only 768 MB memory for 4096
threads, this can exhaust of the GPU’s memory. Through waogtimization we are able to
reduce the memory requirements of ®idViterbiscoring computation t6« M + 10 integer array
elements.

Reducing the memory footprint means that we can no longeoparthe trace back proce-
dure on line 23 of Listing 1. Fortunately, the trace back if/oreeded when a database hit has
been made. In our tests less than 2% of the database reshlts,iso we simply perform a full
softwareP7Viterbiinclude track back on all database hits. This is a commotesgfyan hardware
accelerators, particularly FGPAs [16].

for (k = 1; k <= M k++) {
for (k =1; k <= k++ ; —
et = et tomtiens | THEOMCILE )
) tex1Df etch(tscTex, TMWM + k-1);
}
Listing 4: Non-coalesced memory Listing 5: Coalesced memory with texture

Coalesced vs Uncoalesced

65536 16
16384 14
4096 — 12
1024 + — 10

Speedup

N uncolaesced

8
64 — b
colaesced

16 — 4

2

0

—l—Speedup

Log_2 Execution time (seconds)

77 209 456 789

HMM size

Figure 4. Performance improvements after applying memoajascing.

We also make use of high speed texture memory to store bottutinent sequence batch as
well as the HMM. Because the HMM is static through the seairtcis, well suited to read-only
texture memory. Similarly, the sequence data itself is 1&g, and each batch of sequences
can be bound to texture memory prior to a GPU kernel invonatMemory coalescing has also
significantly improvechmmsearcls overall speedup. In Listing 5 we provide an example of the
changes needed to improve memory reads. Mhandnpp arrays are both coalesced while the
t pmmarray is stored in texture memory. Batit andnpp point to different rows of the same
array, mx. By default each thread uses its own copy of thex array, reading each element

10



UB CSE TR 2008-10

Table 2:P7Viterbioccupancy data (Threads per Block: 256, Registers per Th82ad:

Active Threads per Multiprocessor | 256

Active Warps per Multiprocessor 8
Active Thread Blocks per Multiprocessor 1

Occupancy of each Multiprocessor | 33%
Maximum Simultaneous Blocks per GPU 16

starting fromnmpp[ 0] and proceeding througimpp[ M 1] . In a GPU, however, this is inefficient
as such an access pattern will result in multiple 32-bitsead

We reorganize alhmx arrays into a single array, and reorganize the read pattemmthat the
first 4,096 elements (for 4,096 threads) corresponupio[ O] in respective threads. In Listing 5
the variabla dx corresponds to a thread ID aGHUNK denotes the number of threads. Thudx
= Owillreadnpp[ O] ,i dx = 1readsrpp[ 1], etc. Allthreads access identical elements of the
HMM, so thet scTex array is stored as a single dimensional array in texture mgnfagure 4
shows the results of applying memory coalescing toRf®iterbi algorithm. This provided the
greatest performance increase of all optimizations, tiesuin a speedup of more th&rfor larger
HMMs. In Table 2 we present the occupancy of &utViterbikernel. Due to the high register
pressure, the utilization is limited to 33%.

Speedup vs Number of Threads

45000

20

40000 18
35000 16
30000 ij
25000
20000 ;O == CPU time
15000 6 GPU time
100co 685 833308 253082238 B 2430 ¢ —i—Speedup

5000 2

0 0

16x64 16x128 16x192 16x256 32x256

Execution time (seconds)
Speedup

Number of blocks X Number of threads

Figure 5:hmmsearclspeedup as a function of the number of threads.

In Figure 5 and 6 we present the overall performance imprevemesults, including all opti-
mizations. Figure 5 shows that the GPU offers best perfoomavith 4,096 threads. This is to be
expected, given that ol7Viterbirequires 32 registers per thread. With 8192 registers fcin e&
the 16 multistream processors, we have perfectly consuthezfssters within the GPU. By dou-
bling the number of threads to 8192, we force the GPU to speord time in context switches and

11



UB CSE TR 2008-10

Speedup vs HMM Size

. 2 20
) 65536 1 L 18
& 16384 16
o
3 4096 - 14
g 1024 - -12 3
= 256 - 10 ¢  mmmcPUtime
8 64 8 &
= ' 6 GPU time
b 16 -
% 4 =i Speedup
w 4 - 2
=
o 1 0
o
= 77 209 456 789
HMM size

Figure 6: Speedup as a function of the size of the HMM, 4096&xitis.

spilling registers to memory, resulting in reduced perfance. In Figure 6, we present the results
of performing multiple searches with varying HMM sizes. Tirend is toward greater speedup for
increasing HMM sizes. This is expected due toAHeop of theP7Viterbirelying on the length of
the HMM (Listing 1). Nevertheless, this does not always haddcevidenced by the slightly lower
performance of th&g89 state HMM in Figure 6. This effect has been previously showithe
literature, and we are actively searching for its cause [6].

6 Discussion

A comparison of the speedup from our GPU implementations BF\Figure 2) andP7Viterbi/
hmmsearcl{Figure 6) shows that significantly higher speedup is acden the MRF implemen-
tation. In this section we consider the major factors thatited in different speedups. MRF’s
major advantage ovdrmmsearchs that the former makes very few reads from the GPU’s global
memory; at each iteration, MRF accesses global memory onetwHowever,hmmsearchs
forced to repeatedly access global memory within the irnest loop of Listing 1. Since this loop
is repeated over the entire length of the sequencePiéterbi and, consequentljymmsearch
spend a large portion of their run-time accessing global orgnBecause of this repeated global
memory access ihmmsearchmemory coalescing proved more effective in HMMER than in ou
MRF implementation. This was unsurprising, considering MRifited use of global memory.

Loop unrolling proves more effective iA7Viterbithan in MRF. The Viterbi algorithm has a
limited number of variables needed in the core loop, anddetself nicely to unrolling the inner
loop contents. However, MRF requires the use of compargtlaeer number of variables in its
inner-loop. Unrolling these iterations results in incesegister usage for temporary variables,
leading to reduced performance.

The MRF code ultimately proved to be better suited for aceéilem on GPUs. Due to the ar-

12



UB CSE TR 2008-10

chitectural requirements of the NVIDIA GPU, any thread jggoating in a warp will, by definition
execute the same instructions simultaneously. This aaflgritirns the GPU into a large SIMD
processor. MRF is a natural fit for such architectures assritoop is relatively free of branches
with each thread operating on the same set of images sineoltisty.

6.1 Conclusion

We have presented the performance of two statistics-b#gsesclence applicationdviIRFbased
segmentation, and HMMERRMmsearcldatabase searching tool. Both applications demonstrated
reasonable performance improvement on the GPU, MRF exhibiting a speedup of ovdi30x
compared to serial execution. As we have shown, signifidéort és required in order to properly
leverage a GPU for general purpose computing. Moreover,ave demonstrated that algorithms
must properly target the GPU in order to achieve performamgeovements. This includes at-
tention to the occupancy of the GPU kernel, loop unrollingd anost importantly memory coa-
lescing. Looking forward, our next goal is to leverage npétiGPUs within a single workstation,
and ultimately GPU-based workstation clusters in ordeutther optimize the performance of our
applications.

References

[1] R. S. Alomari, S. Kompalli, S. T. Lau, and V. Chaudhary. @@sof a Benchmark Dataset,
Similarity Metrics, and Tools for Liver Segmentation. Rroceedings of the 2008 SPIE
Medical Imaging Conference2008.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, Mudton, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics HardwareSIBGRAPH '04: ACM SIGGRAPH
2004 Paperspages 777—-786, New York, NY, USA, 2004. ACM.

[3] E. Chen, P. Chung, C. Chen, H. Tsai, and C. Chang. An Automatigrigistic System for
CT Liver Image ClassificationEEE Transactions on Biomedical Engineerjdd:783—-794,
1998.

[4] R. Durbin, S. Eddy, A. Krogh, and A. MitchisoBiological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acid€ambridge University Press, 1998.

[5] S. R. Eddy. Profile Hidden Markov ModelBioinformatics 14(9), 1998.

[6] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER: A StreagnHMMer-Search
Implementation. Inn proceedings of SC '05: The International Conference ornhHgrfor-
mance Computing, Networking and Storage05.

[7] S. Huang, B. Wang, and X. Huang. Using GVF Snake to Segmeet lfrom CT Images.
In Proceedings of 3rd IEEE/EMBS International Summer SchaoMedical Devices and
Biosensors, 20Q6ages 145-148, 2006.

13



UB CSE TR 2008-10

[8] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P. Sosa. fAciént Parallel Implementa-
tion of the Hidden Markov Methods for Genomic Sequence $eanca Massively Parallel
System.Transactions on Parallel and Distrbuted Systed®(1):15-23, 2008.

[9] C.Krishnamurthy, J. J. Rodriguez R. J., and Gillies. Snia&eed Liver Lesion Segmentation.
In Southwest04pages 187-191, 2004.

[10] F. Liu, B. Zhao, P. K. Kijewski, L. Wang, and L. H. Schwartkiver Segmentation for CT
Images Using GVF Snakdledical Physics32(12):3699-3706, December 2005.

[11] R.P. Maddimsetty, J. Buhler, R. Chamberlain, M. Frankling B. Harris. Accelerator Design
for Protein Sequence HMM Search. BRmoc. of the 20th ACM International Conference on
Supercomputing (ICSO08)ages 287-296. ACM, 2006.

[12] Y. Masutani, K. Uozumi, M. Akahane, and K. Ohtomo. LiM&T Image Processing: A Short
Introduction of the Technical Element&uropean Journal of Radiology8:246—-251, may
2006.

[13] T. McIinerney and D. Terzopoulos. Deformable Models iedwtal Images Analysis: A
Survey.Medical Image Analysjsl(2), 1996.

[14] Y. Nakayama, Q. Li, S. Katsuragawa, R. Ikeda, Y. Hiai, Kval, S. Kusunoki, Y. Yamashita,
H. Okajima, Y. Inomata, and K. Doi. Automated Hepatic Volurgdor Living Related Liver
Transplantation At Multisection CTRadiology 240(3), September 2006.

[15] NVIDIA. Compute Unified Device Architecture (CUDA) Programming GuM¥IDIA, 1.0
edition, 2007.

[16] T. F. Oliver, B. Schmidt, J. Yanto, and D. L. Maskell. Aethting the Viterbi Algorithm for
Profile Hidden Markov Models using Reconfigurable Hardwéasecture Notes in Computer
Science3991:522-529, 2006.

[17] M. Pham, R. Susomboon, T. Disney, D. Raicu, and J. Furst. @awison of Texture Models
for Automatic Liver Segmentation. IMedical Imaging 2007: Image Processing. Edited
by Pluim, Josien P. W.; Reinhardt, Joseph M.. Proceedingb®fSPIE, Volume 6512, pp.
65124E (2007).volume 6512 oPresented at the Society of Photo-Optical Instrumentation
Engineers (SPIE) Conferenamar 2007.

[18] C. Philips, R. Susomboon, R. Mokhtar, D. Raicu, and J. FiBsegmentation of Soft Tissue
Using Texture Features and Gradient Snakes. Technical RERO7-011, CTI DePaul, 2007.

[19] P. Regina and K. D. Toennies. A New Approach for Model-Bb&daptive Region Growing
in Medical Image Analysis. I€AIP '01: Proceedings of the 9th International Conference
on Computer Analysis of Images and Pattempages 238—-246, Otto-von-Guericke Univer-
sity Magdeburg,, Department of Simulation and Graphicsidan, UK, Regina@isg.cs.uni-
magdeburg.de,Klaus@isg.cs.uni-magdeburg.de, 200ihdepi\erlag.

[20] TimeLogic BioComputing Solutions. DecypherHMM.htt p: //wwv. ti el ogi c.
coni , 2006.

14



UB CSE TR 2008-10

[21] J. P. Walters, B. Qudah, and V. Chaudhary. AcceleratiegHMMER Sequence Analysis
Suite Using Conventional Processors. AINA '06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applioatipages 289-294, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

15



