
Evaluating the Use of GPUs for Life Science
Applications∗

Technical Report # 2008-10

Vidyananth Balu, John Paul Walters, Suryaprakash Kompalli, and Vipin Chaudhary
Department of Computer Science and Engineering

University at Buffalo, The State University of New York
Buffalo, NY 14260

{vbalu2, waltersj, kompalli, vipin}@buffalo.edu

May 22, 2008
Technical Report # 2008-10

Abstract

As the peak performance of GPUs continues to outpace general-purposeprocessors, the
use of GPUs for application acceleration is becoming more widespread. However, not all al-
gorithms benefit equally from their use. In this paper we present the results of parallelizing
two life sciences applications, Markov Random Fields-based (MRF) liversegmentation and
HMMER’s Viterbi algorithm. We relate our experiences in porting both applications to the
GPU as well as the techniques and optimizations that are most beneficial. The unique charac-
teristics of both algorithms are demonstrated by implementations on an NVIDIA 8800 GTX
Ultra using the CUDA programming environment. The features of the MRF algorithm and the
reasons for its exceptional speedups are discussed in detail. We also characterize HMMER’s
Viterbi algorithm and note the features that facilitate speedup.

1 Introduction

In recent years graphics processing units (GPUs) have become increasingly attractive for general
purpose parallel computation. Parallel code that traditionally required expensive computational
clusters to achieve reasonable speedup may now port to GPUs yielding results equivalent to tens of
traditional CPUs at a fraction of the cost. As tools such as NVIDIA’s CUDA [15] continue to ma-
ture, the burden of GPU programming continues to decrease allowing for expression of traditional
parallel codes in the familiar “C” language.

With peak computing power of 345-518 GFLOPS for the latest NVIDIA GPUs compared to
only 32 GFLOPS for quad-core general purpose processors, the attraction of GPUs for general

∗This research was supported in part by NSF IGERT grant 9987598, MEDC/Michigan Life Science Corridor, and
NYSTAR.

1

UB CSE TR 2008-10

purpose computation is clear. However, graphics processors are not suited for all types of computa-
tions. In this paper we evaluate the use of the NVIDIA 8800 GTXUltra GPU for two classes of sta-
tistical problems: the HMMER sequence database search application (hmmsearch, and a medical
imaging liver segmentation application based on Markov Random Fields (MRF). We demonstrate
a variety of optimization strategies that are useful for different classes of GPU-based applications.
We make the following contributions:

• Implement liver segmentation using Markov Random Fields on the GPU.

• Implement a GPU-based implementation of HMMER’shmmsearchtool.

• Discuss and analyze the advantages and limitations of GPU hardware for general purpose
HPC.

The remainder of this paper is organized as follows: In Section 2 we introduce the liver seg-
mentation algorithm usingMRF, while in Section 3 we briefly describe HMMER and the paral-
lelization strategy commonly used. We present an overview of GPU computing in Section 4. In
Section 5 we present the results of ourMRFandhmmsearchimplementations, and in Section 6 we
analyze the differences of each algorithm and their suitability for GPU acceleration. Future work
is presented in Section 6.1.

2 MRF Segmentation

Algorithm 1 MRFalgorithm (class label 3d-array (CL), data 3d-array (D), mean (µ), variance (σ))
1: Initialize number of iteration (K) to zero.
2: Initialize Current Index (Icurr) to start of volume.
3: while Icurr < size of volumedo
4: Current labellcurr= CL[Icurr]
5: Current valuevcurr = D[Icurr]
6: r = Random class label fromair, bone, liver;
7: Energycurr = GaussianPrior(vcurr, lcurr) + CliquePotential(Icurr, lcurr)
8: Energynew = GaussianPrior(vcurr, r) + CliquePotential(Icurr, r)
9: ∆Energy = Energycurr − Energynew

10: if ∆Energy > kszi then
11: CL[Icurr] = r;
12: summaDelta + = DiffEnergy
13: end if
14: IncrementIcurr

15: end while
16: Update meanµ and varianceσ using the new class labels.
17: Check if the energy change in the volume is minimal (summaDelta). If not continue, steps 2

to 16 until the energy change is minimal.
18: Increment K

2

UB CSE TR 2008-10

Algorithm 2 CliquePotential(Class label 3d-array (CL), IndexI, LabelL)
1: Initialize energy,E as zero
2: for all Ineighbor ∈ Neighborhood ofI do
3: lcurr = CL[Ineighbor]
4: if lcurr = l then
5: E = E − betaInClass

6: else
7: E = E − betaOutClass

8: end if
9: end for

Segmentation is the identification of non-overlapping objects of interest from images or vol-
umes, and is a fundamental problem in image processing. In case of the liver, segmentation is
critical in several diagnostic and surgical procedures. Weuse a Markov Random Field (MRF) to
obtain an initial estimate of the liver boundary.MRFs condition the property associated with each
pixel (or voxel) on its immediate neighborhood. A sample set(sample set can be an image or
a volume)S is said to be anMRF if: ∀s ∈ S, p(Ys|Yr, r 6= s) = p(Ys|Yδs

), wheres andr are
individual data points (pixels in 2D, volxels in 3D), andδs is a neighborhood ofs. An MRF can
be modeled by takingY as a specific property, in our case a class label assignment. In other im-
plementations,Y may represent features being extracted from an image [18]. Algorithms 1 and 2
provide pseudocode for ourMRF implementation.

2.1 Related Work

Liver segmentation methodologies include model-driven approaches [10, 3, 7, 9] that use a model
to limit the segmentation algorithm to certain image areas,and data-driven approaches that do
not use a model to restrict the image being processed [14, 19]. Our methodology falls into the
data-driven approach, where we use a user-input seed point in combination with Markov Random
Field to obtain an initial liver boundary and refine the boundary using an Active Contour. A 2D,
non-parallel version of the algorithm has previously been published [1].

There are several 2D and 3D algorithms available for liver segmentation, and surveys are pre-
sented in [17, 13, 12]. However, few algorithms have been analyzed with respect to speedup, and
fewer still have been adapted to high-speed architectures like graphics processing units.

3 HMMER Background

Protein sequence analysis tools to predict homology, structure and function of particular peptide
sequences exist in abundance. Some of the most commonly usedtools are part of the profile hidden
markov model search algorithm, HMMER, developed by Sean Eddy[5, 4]. These tools construct
hidden markov models (HMMs) of a set of aligned protein sequences with known similar function
and homology, and provide database search functionality tocompare input HMMs to sequence
databases (as well as input sequences to HMM databases).

HMMER is composed of two search functions,hmmsearchandhmmpfam. hmmsearchsearches

3

UB CSE TR 2008-10

an input HMM against a sequence database, whilehmmpfamsearches one or more input sequences
against a database of HMMs. Bothhmmsearchandhmmpfamrely on the same core algorithm for
their scoring function,P7Viterbi. We focus our GPU implementation onhmmsearchas it is the
more compute-intensive of the two search applications.

Algorithm 3 Pseudocode for HMMER’shmmsearchtool.
1: Input: A profile HMM, H and a sequence databaseS

2: for all i ∈ S do
3: score = P7Viterbi(H, S i)
4: if score is significantthen
5: PostprocessSignificantHit(Si, H, score)
6: end if
7: end for

1 for (i = 1; i <= L; i++) {
for (k = 1; k <= M; k++) {

3 mc[k] = mpp[k-1] + tpmm[k-1];
if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

5 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

7 mc[k] += ms[k];
if (mc[k] < -INFTY) mc[k] = -INFTY;

9
dc[k] = dc[k-1] + tpdd[k-1];

11 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
if (dc[k] < -INFTY) dc[k] = -INFTY;

13
if (k < M) {

15 ic[k] = mpp[k] + tpmi[k];
if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;

17 ic[k] += is[k];
if (ic[k] < -INFTY) ic[k] = -INFTY;

19 }
}

21 }
...

23 P7ViterbiTrace(hmm, dsq, L, mx, &tr);

Listing 1: The most time consuming portion of theP7Viterbialgorithm.

At the core of the HMMER search is the Viterbi algorithm, usedto compute the most probable
path through a given state model. Algorithm 3 shows the pseudocode for a typical HMMER
database search, and listing 1 provides a code snippet of themost time consuming portion of the
P7Viterbialgorithm. Line 1 from Listing 1 represents the sequence loop, while lines 2-20 represent

4

UB CSE TR 2008-10

the HMM loop. TheP7Viterbialgorithm is sensitive to both the length of sequences in a sequence
database and the length of input HMM.

As is common of database search algorithms,hmmsearchis embarrassingly parallel over the
database loop of Algorithm 3. This results in a parallel region of over97%, where approximately
50% of the run-time is spent in the portion ofP7Viterbidisplayed in Listing 1, lines 2-20. There-
fore, the key to parallelizing a HMMER search is to offload theP7Viterbi function to multiple
computing elements, while also ensuring that the code fragment shown in Listing 1 is as efficient
as possible.

3.1 Related Work

HMMER includes a PVM (Parallel Virtual Machine) implementation of the searching algorithms.
However, due to its reliance on PVM and its non-optimized messaging, its scalability is lim-
ited. MPI (Message Passing Interface) implementations arethe most common parallel HMMER
techniques. MPI-HMMER [21] is a well-known and commonly used implementation. In MPI-
HMMER, worker nodes are assigned multiple database chunks tocompute in parallel. A single
master node is used to collect the results. This results in near linear speedup for small to mid-sized
computational clusters (64 nodes or less).

A second Bluegene-based MPI implementation has been demonstrated to scale through 1024
nodes [8]. It uses a hierarchical master model as well as improved data collection and load balanc-
ing strategies to alleviate single master bottleneck present in MPI-HMMER. However, its reliance
on a Bluegene supercomputer limits its widespread adoption.

ClawHMMer was the first GPU-enabledhmmsearchimplementation and is capable of effi-
ciently utilizing multiple GPUs in the form of a rendering cluster [6]. Unlike our implementation,
ClawHMMer is based on the BrookGPU stream programming language [2]. Other optimizations,
including several FPGA implementations, have been demonstrated in the literature [20, 16, 11].
FPGAs can achieve excellent performance, at the cost of exceptionally long development times.

4 Computing With GPUs

Computing with GPUs presents unique challenges and limitations that must be addressed in order
to achieve high performance. In this section we describe theNIVIDIA 8800-based GPU that is
used in our tests and also explain the unique features of the GPU that make programming them a
challenge.

The graphics processors used in our tests are NVIDIA 8800 GTXUltra GPUs with 768 MB
RAM. The 8800 GTX Ultra is composed of 16 stream multiprocessors, each of which is itself com-
posed of 8 stream processors for a total of 128 stream processors. Each multiprocessor has 8192
32-bit registers, which in practice limits the number of threads (and therefore, performance) of the
GPU kernel. The GPU itself is programmed using NVIDIA’s CUDA [15]. Each multiprocessor
can execute 768 concurrent threads. Threads are partitioned into thread blocks of up to 512 threads
each, and thread blocks are further partitioned into warps of 32 threads. Each warp is executed by
a single multiprocessor. Warps are not user-controlled or assignable, but rather are automatically
partitioned from user-defined blocks. At any given clock cycle, an individual multiprocessor (and

5

UB CSE TR 2008-10

its stream processors) executes the same instruction on allthreads of a warp. Consequently, each
multiprocessor should most accurately be thought of as a SIMD processor.

Programming the GPU is not a matter of simply mapping a singlethread to a single stream
processor. Rather, with 8192 registers per multiprocessor,hundreds of threads per multiprocessor
and thousands of threads per board should be used in order to fully utilize the GPU. Memory
access patterns, in particular, must be carefully studied in order to minimize the number of global
memory reads. Where possible, an application should make useof the 16 KB of shared memory per
multiprocessor, as well as the texture memory, in order to minimize GPU kernel access to global
memory. When global memory must be accessed, it is essential that memory be both properly
aligned, and laid out such that each SIMD thread accesses consecutive array elements in order to
combine memory reads into larger 384-bit reads.

5 GPU Implementations and Results

In this section we describe the GPU implementations ofMRF liver segmentation and theP7Viterbi
algorithm. We provide details and performance results of optimizations for both GPU kernels. All
GPU tests were performed on a machine consisting of a 3.0 Ghz AMD Athlon 642 processor with
8 GB memory and 2 NVIDIA 8800 GTX Ultra GPUs. Only a single GPU was used in our tests.
The MRF serial tests were also taken on the AMD Athlon machine. Allhmmsearchserial tests
were performed on machines consisting of a single quad-core2.0 Ghz Intel Xeon processor with
4 GB RAM. Only a single core was used for the serial tests.

5.1 MRF Liver Segmentation Kernel

Algorithms 1 and 2 outline the major steps in theMRF computation that provides an approximate
liver boundary from the 3D CT volume. The CT volume is a stack of multiple 512 X 512 images,
for example a 512 X 512 X 60 volume has 60 CT images in it;x andy values of the volume will
range from 0 to 511 and thez co-ordinate will range from 0 to 59. In our GPU approach, lines 3
through 15 of algorithm 1 are implemented on the GPU, and multiple threads are used to iterate
through the volume. Each thread is assigned a particularx coordinate, or a range ofx-coordinates
according to its thread Id; they andz co-ordinates will iterate through 0-511 and 0-N respectively,
whereN is number of images in the volume.

In our GPU implementation, multiple threads process the volume in parallel and update class la-
bel values simultaneously. The GPU architecture does not permit these updates to be synchronized
across threads. Hence, calls toCliquePotential in lines 7 and 8 of algorithm 1 (Algorithm 2) do
not have guaranteed access to updated class labels along thex-coordinate. In the sequential imple-
mentation on CPU, updated class label values of the entire volume are available. Since class labels
are not available across threads, the GPU implementation isa departure from theMRF model.
Empirical analysis shows that the effect on segmentation result is insignificant in practice.

A primary optimization in our implementation is memory coalescing. Coalescing is a technique
to combine non-sequential and small reads from global memory, into the more efficient sequential
and large global memory reads. This minimizes the penalty ofreading from memory. Reads by
consecutive threads in a warp are combined by hardware into several, wider memory reads of up
to 384 bits each. Consecutive 32-bit reads that are issued simultaneously are automatically merged

6

UB CSE TR 2008-10

into multiple 384-bit reads in order to efficiently saturatethe memory bus. For the GPU to be able
to coalesce memory reads, we have modified the implementation such that threads within a warp
read memory sequentially. The entire class label values of the 3D volume are laid out in a single
dimensional array. The neighboring x coordinates lie closetogether and threads operate on this x
coordinate in order, leading to coalesced reads for nearly every access to the global memory. If
multiple GPU threads are reading from the same array beginning at offsetn then thread 0 should
read (assuming 32-bit array elements)array[n], thread 1 should readarray[n+1], etc.

MRF code occupies 32 registers on the GPU. Each multiprocessor on the NVIDIA 8800 Ul-
tra has 8,192 register, limiting the maximum number of MRF threads per multiprocessor to 256.
Various configurations of ”number of blocks X threadsper block X registersper thread” have
been tried and the best speedup has been obtained for 16 X 32 X 32 (Table 1). Higher register
count limits the number of threads per multiprocessor, and reduces the occupancy count (Ratio of
number of threads per multiprocessor to 768, the maximum possible threads per multiprocessor.
For a register count of 32, occupancy is 33%, and with 12 registers, the occupancy count is 67%.
Nevertheless, occupancy count is not the best indicator of speedup, as seen in Table 1.

Figure 1 presents speedup results for different configurations. It appears that speedup increases
with an increase in the block size as well as total number of threads. However, when the number
of blocks is constant, but the number of threads are increased, speedup changes more significantly
than with change in number of blocks alone. Significant difference is seen in the speedup of
configurations with different thread counts; examples include the configurations 2x32x8 versus
2x256x1, 4x32x4 versus 4x128x1, and 8x32x2 versus 8x64x1. Also, the increase in speedup is
comparatively lesser when multiple blocks are used withoutincreasing thread count; for example
configurations 2x64x4 versus 4x32x4 and configuration 4x64x2 versus 8x32x2. Overall, our re-
sults show that the total number of threads executed has a more significant effect than block count.
This is also attested in Table 1 where relatively less increase in speedup is achieved while going
from 4 blocks to 16 blocks.

Figure 1: Speedup ofMRF as a function of the number of threads; size of CT volume: 512 x 512
x 77

7

UB CSE TR 2008-10

Figure 2: Speedup ofMRF for multiple test cases.

Table 1: Speedup for varying block count and register usage for MRF; size of CT volume: 512 x
512 x 81

Blocks Threads per block Registers per threadOccupancy count Execution Time Speedup
1 512 12 67% 3.92 43
2 256 32 33% 2.05 83
4 128 32 33% 1.45 117
8 64 32 33% 1.34 127
16 32 32 17% 1.31 130

5.2 P7Viterbi Kernel

C code of theP7Viterbialgorithm was ported to CUDA with performance optimizations. The ker-
nel works on multiple sequences simultaneously, with each thread working on a unique sequence.
The number of threads that can be executed in parallel will belimited by two factors: (i)GPU
memorywill limit the number of sequences that can be stored, and (ii) The number of registers
used by each threadwill limit the number of threads that can run in parallel. Typically, register use
is the most prohibitive resource.

TheP7Viterbikernel in our implementation requires 32 registers per thread, allowing a maxi-
mum of 256 active threads per multiprocessor. NVIDIA 8800 GTX Ultra has 16 multiprocessors,
and each can run 4096 (256∗16) threads in parallel. In the remainder of this section we describe the
optimizations made to the GPU kernel. We consider three primary optimizations in ourP7Viterbi
kernel: database-level load balancing, memory layout and coalescing, and loop unrolling.

As we described in Section 3, HMMER’sP7Viterbi function is sensitive to both the length of
the query HMM as well as the length of an individual sequence.CUDA provides limited support
for thread synchronization; a barrier synchronization function is provided that returns only when
all threads have finished execution (cudaThreadSynchronize()). In our implementation, 4096
threads are run in parallel on a single multi-processor, with each thread operating on its own se-

8

UB CSE TR 2008-10

Figure 3: Speedup ofhmmsearchwith sorted database.

quence. A typical sequence database is unordered, placing short sequences in a close vicinity to
long sequences. On a CUDA-enabled GPU this results in shortersequences completing early, and
being forced to wait for the longest sequence in the current batch before the barrier synchronization
completes. The solution is to presort the sequence databaseby length, thereby balancing a similar
load over all 4,096 threads participating in the computation.

for (k = 1; k <= M; k++) {
mc[k] = mpp[k-1] + tpmm[k-1];

}

Listing 2: Original loop

for (k = 1; k <= M; k+=4) {
mc[k] = mpp[k-1] + tpmm[k-1];
mc[k+1] = mpp[k] + tpmm[k];
mc[k+2] = mpp[k+1] + tpmm[k+1];
mc[k+3] = mpp[k+2] + tpmm[k+2];

}

Listing 3: Unrolled loop

Loop unrolling is a classic loop optimization strategy designed to reduce the overhead of in-
efficient looping. The idea is to replicate the loop’s inner contents such that the ratio of useful
computation to loop bounds computation increases. The sameprinciples apply to GPU compu-
tation, with the caveat that loop unrolling may introduce additional register pressure. In GPU
programming, the use of additional registers may reduce thenumber of active threads, further re-
ducing the overall GPU utilization. Listings 2 and 3 provides an example of the loop unrolling
transformation for a portion of thek-loop of Listing 1. We have experimentally determined an
unrolling factor of 2 to provide modest performance improvements for most cases. However, due
to space considerations we must omit this data.

The most effective optimization to theP7Viterbi is from optimizing memory layout and usage
patterns within the Viterbi algorithm. Because the CUDA environment does not allow threads to
dynamically allocate GPU memory, all memory allocations (even those allocating the GPU’s on-
board memory) must be performed by the host system and copiedto the GPU before instantiating
the kernel. By default, theP7Viterbifunction requires integer arrays of size3∗M ∗L+5∗L, where

9

UB CSE TR 2008-10

M,L are the length of the sequence and HMM, respectively. For large HMMs and large sequences,
this can easily result in several megabytes of data per thread. With only 768 MB memory for 4096
threads, this can exhaust of the GPU’s memory. Through careful optimization we are able to
reduce the memory requirements of theP7Viterbiscoring computation to6 ∗M + 10 integer array
elements.

Reducing the memory footprint means that we can no longer perform the trace back proce-
dure on line 23 of Listing 1. Fortunately, the trace back is only needed when a database hit has
been made. In our tests less than 2% of the database results inhits, so we simply perform a full
softwareP7Viterbi include track back on all database hits. This is a common strategy in hardware
accelerators, particularly FGPAs [16].

for (k = 1; k <= M; k++) {
mc[k] = mpp[k-1] + tpmm[k-1];

}

Listing 4: Non-coalesced memory

for (k = 1; k <= M; k++) {

mc[k*CHUNK+idx] =
mpp[(k-1)*CHUNK+idx] +
tex1Dfetch(tscTex, TMM*M + k-1);

}

Listing 5: Coalesced memory with texture

Figure 4: Performance improvements after applying memory coalescing.

We also make use of high speed texture memory to store both thecurrent sequence batch as
well as the HMM. Because the HMM is static through the search, it is well suited to read-only
texture memory. Similarly, the sequence data itself is read-only, and each batch of sequences
can be bound to texture memory prior to a GPU kernel invocation. Memory coalescing has also
significantly improvedhmmsearch’s overall speedup. In Listing 5 we provide an example of the
changes needed to improve memory reads. Themc andmpp arrays are both coalesced while the
tpmm array is stored in texture memory. Bothmc andmpp point to different rows of the same
array,mmx. By default each thread uses its own copy of themmx array, reading each element

10

UB CSE TR 2008-10

Table 2:P7Viterbioccupancy data (Threads per Block: 256, Registers per Thread:32)

Active Threads per Multiprocessor 256
Active Warps per Multiprocessor 8

Active Thread Blocks per Multiprocessor 1
Occupancy of each Multiprocessor 33%

Maximum Simultaneous Blocks per GPU16

starting frommpp[0] and proceeding throughmpp[M-1]. In a GPU, however, this is inefficient
as such an access pattern will result in multiple 32-bit reads.

We reorganize allmmx arrays into a single array, and reorganize the read pattern such that the
first 4,096 elements (for 4,096 threads) correspond tompp[0] in respective threads. In Listing 5
the variableidx corresponds to a thread ID andCHUNK denotes the number of threads. Thus,idx
= 0will readmpp[0],idx = 1 readsmpp[1], etc. All threads access identical elements of the
HMM, so thetscTex array is stored as a single dimensional array in texture memory. Figure 4
shows the results of applying memory coalescing to theP7Viterbi algorithm. This provided the
greatest performance increase of all optimizations, resulting in a speedup of more than9 for larger
HMMs. In Table 2 we present the occupancy of ourP7Viterbi kernel. Due to the high register
pressure, the utilization is limited to 33%.

Figure 5:hmmsearchspeedup as a function of the number of threads.

In Figure 5 and 6 we present the overall performance improvement results, including all opti-
mizations. Figure 5 shows that the GPU offers best performance with 4,096 threads. This is to be
expected, given that ourP7Viterbirequires 32 registers per thread. With 8192 registers for each of
the 16 multistream processors, we have perfectly consumed all registers within the GPU. By dou-
bling the number of threads to 8192, we force the GPU to spend more time in context switches and

11

UB CSE TR 2008-10

Figure 6: Speedup as a function of the size of the HMM, 4096 threads.

spilling registers to memory, resulting in reduced performance. In Figure 6, we present the results
of performing multiple searches with varying HMM sizes. Thetrend is toward greater speedup for
increasing HMM sizes. This is expected due to thek-loop of theP7Viterbirelying on the length of
the HMM (Listing 1). Nevertheless, this does not always holdas evidenced by the slightly lower
performance of the789 state HMM in Figure 6. This effect has been previously shown in the
literature, and we are actively searching for its cause [6].

6 Discussion

A comparison of the speedup from our GPU implementations of MRF (Figure 2) andP7Viterbi /
hmmsearch(Figure 6) shows that significantly higher speedup is achieved in the MRF implemen-
tation. In this section we consider the major factors that resulted in different speedups. MRF’s
major advantage overhmmsearchis that the former makes very few reads from the GPU’s global
memory; at each iteration, MRF accesses global memory only twice. However,hmmsearchis
forced to repeatedly access global memory within the inner-most loop of Listing 1. Since this loop
is repeated over the entire length of the sequence, theP7Viterbi and, consequently,hmmsearch
spend a large portion of their run-time accessing global memory. Because of this repeated global
memory access inhmmsearch, memory coalescing proved more effective in HMMER than in our
MRF implementation. This was unsurprising, considering MRF’s limited use of global memory.

Loop unrolling proves more effective inP7Viterbi than in MRF. The Viterbi algorithm has a
limited number of variables needed in the core loop, and lends itself nicely to unrolling the inner
loop contents. However, MRF requires the use of comparatively larger number of variables in its
inner-loop. Unrolling these iterations results in increased register usage for temporary variables,
leading to reduced performance.

The MRF code ultimately proved to be better suited for acceleration on GPUs. Due to the ar-

12

UB CSE TR 2008-10

chitectural requirements of the NVIDIA GPU, any thread participating in a warp will, by definition
execute the same instructions simultaneously. This essentially turns the GPU into a large SIMD
processor. MRF is a natural fit for such architectures as its inner-loop is relatively free of branches
with each thread operating on the same set of images simultaneously.

6.1 Conclusion

We have presented the performance of two statistics-based life science applications,MRF-based
segmentation, and HMMER’shmmsearchdatabase searching tool. Both applications demonstrated
reasonable performance improvement on the GPU, withMRF exhibiting a speedup of over130x
compared to serial execution. As we have shown, significant effort is required in order to properly
leverage a GPU for general purpose computing. Moreover, we have demonstrated that algorithms
must properly target the GPU in order to achieve performanceimprovements. This includes at-
tention to the occupancy of the GPU kernel, loop unrolling, and most importantly memory coa-
lescing. Looking forward, our next goal is to leverage multiple GPUs within a single workstation,
and ultimately GPU-based workstation clusters in order to further optimize the performance of our
applications.

References

[1] R. S. Alomari, S. Kompalli, S. T. Lau, and V. Chaudhary. Design of a Benchmark Dataset,
Similarity Metrics, and Tools for Liver Segmentation. InProceedings of the 2008 SPIE
Medical Imaging Conference, 2008.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hardware. InSIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 777–786, New York, NY, USA, 2004. ACM.

[3] E. Chen, P. Chung, C. Chen, H. Tsai, and C. Chang. An Automatic Diagnostic System for
CT Liver Image Classification.IEEE Transactions on Biomedical Engineering, 45:783–794,
1998.

[4] R. Durbin, S. Eddy, A. Krogh, and A. Mitchison.Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[5] S. R. Eddy. Profile Hidden Markov Models.Bioinformatics, 14(9), 1998.

[6] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER: A Streaming HMMer-Search
Implementation. InIn proceedings of SC ’05: The International Conference on High Perfor-
mance Computing, Networking and Storage, 2005.

[7] S. Huang, B. Wang, and X. Huang. Using GVF Snake to Segment Liver from CT Images.
In Proceedings of 3rd IEEE/EMBS International Summer School on Medical Devices and
Biosensors, 2006, pages 145–148, 2006.

13

UB CSE TR 2008-10

[8] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P. Sosa. An Efficient Parallel Implementa-
tion of the Hidden Markov Methods for Genomic Sequence Search on a Massively Parallel
System.Transactions on Parallel and Distrbuted Systems, 19(1):15–23, 2008.

[9] C. Krishnamurthy, J. J. Rodriguez R. J., and Gillies. Snake-based Liver Lesion Segmentation.
In Southwest04, pages 187–191, 2004.

[10] F. Liu, B. Zhao, P. K. Kijewski, L. Wang, and L. H. Schwartz. Liver Segmentation for CT
Images Using GVF Snake.Medical Physics, 32(12):3699–3706, December 2005.

[11] R. P. Maddimsetty, J. Buhler, R. Chamberlain, M. Franklin, and B. Harris. Accelerator Design
for Protein Sequence HMM Search. InProc. of the 20th ACM International Conference on
Supercomputing (ICS06), pages 287–296. ACM, 2006.

[12] Y. Masutani, K. Uozumi, M. Akahane, and K. Ohtomo. LiverCT Image Processing: A Short
Introduction of the Technical Elements.European Journal of Radiology, 58:246–251, may
2006.

[13] T. McInerney and D. Terzopoulos. Deformable Models in Medical Images Analysis: A
Survey.Medical Image Analysis, 1(2), 1996.

[14] Y. Nakayama, Q. Li, S. Katsuragawa, R. Ikeda, Y. Hiai, K. Awai, S. Kusunoki, Y. Yamashita,
H. Okajima, Y. Inomata, and K. Doi. Automated Hepatic Volumetry for Living Related Liver
Transplantation At Multisection CT1.Radiology, 240(3), September 2006.

[15] NVIDIA. Compute Unified Device Architecture (CUDA) Programming Guide. NVIDIA, 1.0
edition, 2007.

[16] T. F. Oliver, B. Schmidt, J. Yanto, and D. L. Maskell. Acclerating the Viterbi Algorithm for
Profile Hidden Markov Models using Reconfigurable Hardware.Lecture Notes in Computer
Science, 3991:522–529, 2006.

[17] M. Pham, R. Susomboon, T. Disney, D. Raicu, and J. Furst. A Comparison of Texture Models
for Automatic Liver Segmentation. InMedical Imaging 2007: Image Processing. Edited
by Pluim, Josien P. W.; Reinhardt, Joseph M.. Proceedings ofthe SPIE, Volume 6512, pp.
65124E (2007)., volume 6512 ofPresented at the Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference, mar 2007.

[18] C. Philips, R. Susomboon, R. Mokhtar, D. Raicu, and J. Furst.Segmentation of Soft Tissue
Using Texture Features and Gradient Snakes. Technical Report TR07-011, CTI DePaul, 2007.

[19] P. Regina and K. D. Toennies. A New Approach for Model-Based Adaptive Region Growing
in Medical Image Analysis. InCAIP ’01: Proceedings of the 9th International Conference
on Computer Analysis of Images and Patterns, pages 238–246, Otto-von-Guericke Univer-
sity Magdeburg,, Department of Simulation and Graphics, London, UK, Regina@isg.cs.uni-
magdeburg.de,Klaus@isg.cs.uni-magdeburg.de, 2001. Springer-Verlag.

[20] TimeLogic BioComputing Solutions. DecypherHMM.http://www.timelogic.
com/, 2006.

14

UB CSE TR 2008-10

[21] J. P. Walters, B. Qudah, and V. Chaudhary. Accelerating the HMMER Sequence Analysis
Suite Using Conventional Processors. InAINA ’06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applications, pages 289–294, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

15

