
On the Hardness of Eliminating Cheating Behavior in Time
Synchronization Protocols for Sensor Networks

Murtuza Jadliwala, Qi Duan, Shambhu Upadhyaya and Jinhui Xu
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, NY 14260.

Email: {msj3, qiduan, shambhu, jinhui}@cse.buffalo.edu

Abstract

Wireless Sensor Networks are fast gaining popularity for use in a variety of remote sensing, emer-

gency monitoring and information collection applications. Time synchronization in such highly dis-

tributed systems is important in order to maintain a global notion of time throughout the network and to

support the underlying applications. But, cheating behavior by malicious nodes can severely jeopardize

the accuracy of the time synchronization service associated with the network and the related time-based

applications. Existing literature on the problem of detection and elimination of cheating behavior in

distributed time synchronization protocols has very little or no fundamental theoretical analysis of the

basic problem itself. Absence of sound theoretical models and analysis of time synchronization proto-

cols in such networks has left a number of questions unanswered: How hard is it to detect and eliminate

cheating or inconsistent behavior in time synchronization protocols given complete (local time and time

difference) information? Do efficient algorithms for doing the same exist and if they do, is there a per-

formance guarantee on the solution quality? In this paper, we attempt to answer these questions. We first

present a practical graph-theoretic model, called Time Difference Graphs (TDG), for the network and

formulate the time synchronization problem as a Constraint Satisfaction Problem (CSP) in such graphs.

We then show that efficiently eliminating cheating behavior (or inconsistency causing nodes) in TDGs

is NP-hard. Furthermore, we show that this problem is hard even for a special case of TDG, namely, a

completely connected TDG. Moreover, we show that it is impossible to approximate this problem within

a factor n1−ε, where ε > 0, unless P = NP. Finally, we propose two polynomial time approximation

strategies, namely a greedy strategy and an Integer Programming formulation, for efficiently eliminating

inconsistency causing nodes in complete TDGs.

Keywords: Combinatorial Optimization, Graph Theory, Time Synchronization and Wireless Sensor

Networks

1

1 Introduction

Recent advances in sensor, processor and radio technology has resulted in the integration of sensing, com-

putation and wireless communication capabilities into a single, low form-factor and low cost system called a

sensor mote. On deployment at the area of interest, these motes form a wireless ad hoc network without any

infrastructure support and is referred to as a Wireless Sensor Network (WSN). WSNs are gaining popularity

in outdoor monitoring and emergency response applications that include but not limited to environmental

and climate monitoring, forest fire disaster recovery, target tracking and monitoring enemy movement dur-

ing wars and intrusion detection systems. Due to the critical nature of these applications, the order and time

of occurrence of the monitored events in such applications is extremely important. In order to achieve this,

each mote maintains an on-chip local clock which at the time of deployment is synchronized with the other

motes in the network. This local clock is nothing but a quartz crystal oscillating at a specific frequency and

the notion of time is maintained by counting the number of oscillations of this quartz crystal. Over a period

of time, motes in the network develop varying notions of time due to various network and mote dependent

factors like fading battery power, longer sleep periods, crystals oscillating at different frequencies etc.

The process of updating the local clocks of every mote in the network such that all motes have the same

notion of time is called Time Synchronization. Time synchronization can be an Absolute Synchronization or

Relative Synchronization. In absolute synchronization, the clocks of all the motes are adjusted to a real-time

standard like UTC (Universal Coordinated Time) or some other global value. In relative synchronization,

such a global or standard value of time is not known and the nodes have to be synchronized relative to each

other. Several efficient protocols for time synchronization in large computer networks (both internet and

Internet) and other highly distributed systems exist in the literature [30]. Cristian’s Remote Clock Reading

method [6], Arvind’s Time Transmission Protocol (TTP) [2], Lemmon et al.’s Set-valued Estimation method

[17] and Mill’s Offset Delay Estimation method employed by the Network Time Protocol (NTP) [20] are a

few example of such protocols. These protocols estimate the time offset between the target machine (that

needs to synchronize its time) and a source machine (generally a time-keeping server or a machine that has

the correct notion of time) using simple message transmissions and time stamping, and use this estimated

time difference to compute the time for the target. But due to lack of infrastructure, limited power, limited

bandwidth, limited hardware and non-deterministic delays at the MAC layer in sensor motes the above

schemes cannot be directly applied to sensor networks.

2

Depending on the application, either relative or absolute synchronization is required in sensor networks.

But, for most applications a relative synchronization is sufficient. Relative time synchronization algorithms

for wireless sensor networks are further divided into two broad types: Sender-Receiver synchronization

and Receiver-Receiver synchronization [30]. In Sender-Receiver synchronization [12, 23, 26, 1] the nodes

synchronize themselves with respect to a sender or beacon node. The sender node periodically sends a

message (beacon) with its local time as a time-stamp to the receiver. The receiver then synchronizes with the

sender using the time-stamp it receives from the sender. The message delay between the sender and receiver

is calculated by measuring the total round-trip time, from the time a receiver requests a time-stamp until the

time it actually receives a response. Receiver-Receiver synchronization [7, 28, 21, 19, 31, 3] exploits the

property of the physical broadcast medium that if any two receivers receive the same message in single-hop

transmission, they receive it at approximately the same time. Instead of interacting with a sender, receivers

exchange the time at which they received the same message and compute their offset based on the difference

in reception times. One thing that is common to all the time synchronization techniques mentioned above is

that each node† that wants to synchronize itself attempts to estimate the time offset (difference) to some (or

all) its neighboring nodes. The number and type of nodes that the target node estimates time differences to

and the technique used to estimate this time difference is different for each scheme and depends on the time

synchronization protocol used.

In the case that all the nodes honestly execute their protocols, the estimated time differences in the

network should follow the triangle law as shown in Fig. 1. Figure 1 shows that if nodes A, B and C honestly

BA

C

δB,C

A B

D C

δB,C

δD,A

δA,B

δC,D

δC,A

δA,B

δA,B +δB,C +δC,A = 0 δA,B +δB,C +δC,D +δD,A = 0

Figure 1: Triangle Law for Time Offset

compute their time offsets and if δA,B is the time offset of node A with respect to node B and δB,C is the time

†The term “mote” and “node” are used interchangeably

3

offset of node B with respect to node C and so on, then the sum of the time differences δA,B, δB,C and δC,A is

zero. In practice, this sum should be less than some constant ε, which denotes an application specific upper

bound on the measurement error in the network. But without loss of generality, we can assume here that

if nodes are honest then the sum of the above time differences is zero and is non-zero if at least one of the

node cheats. Such inconsistencies in time difference estimates can severely jeopardize the accuracy of the

associated time synchronization protocol. The first step towards achieving accurate time synchronization

is to efficiently eliminate such inconsistent time offset data introduced by the cheating behavior of nodes

participating in the time synchronization protocol.

In this paper, we study the problem of eliminating inconsistent time offset data in time synchronization

protocols as a graph-theoretic optimization problem. We first formulate the time synchronization problem in

sensor networks as a constraint satisfaction problem in a special type of graph of the network called the Time

Difference Graphs (TDG). In a time difference graph, each sensor node is a vertex and an edge exist between

two nodes if they are in direct communication range of each other (one hop neighbors). Each vertex has a

weight depending on the local time at the corresponding node and the weight of each directed edge is the

time offset (difference) between the connecting nodes (vertices). We first prove that the time synchronization

problem in the network has a solution if and only if the associated time difference graph is consistent. A

time difference graph containing inconsistent time offset values is also referred to as a partially consistent

time difference graph. The problem of eliminating inconsistent time offset values in time synchronization

protocols then reduces to obtaining a largest consistent subgraph of the corresponding time difference graph

of the network. This optimization problem is also referred here as the Maximum Consistent Time Difference

Graph or the MCTD problem. We show the hardness of the MCTD problem using an efficient reduction

from a well known NP-complete problem, i.e., the VERTEX-COVER problem and show that it is unlikely

to have a polynomial time algorithm for the MCTD problem in the general case. We then study the MCTD

problem for a special type of time difference graphs, namely the completely connected time difference

graphs. Although the MCTD problem is also hard for this case, there exists polynomial time approximation

algorithms for the MCTD problem in complete time difference graphs. We discuss two such algorithms,

namely the greedy algorithm based on a greedy selection heuristic and a LP-relaxation based algorithm

for an Integer Programming formulation of the above problem. However for the solution quality of the

algorithms, we prove that there is no algorithm that can approximate the MCTD problem for complete time

difference graphs within a factor n1−ε, where ε > 0, unless P = NP.

4

1.1 Background and Related Work

The problem of time synchronization in the presence of malicious motes was first studied by Ganeriwal et al.

[11]. They identify malicious attacks on existing time synchronization schemes and provide secure single-

hop, multi-hop and group synchronization protocols. A major shortcoming in the algorithms proposed by

them were that they simply aborted when the computed time difference was greater than some precomputed

maximum expected difference. Moreover, it was not specified how this maximum expected difference was

computed. Song et al. [29] try to overcome the shortcomings of the previous results by proposing two

approaches to detect and accommodate a specific type of attack called the delay attack where a malicious

attacker deliberately delays the transmission of synchronization messages to magnify the time offset. They

proposed schemes that make use of the fact that if there is no malicious mote, the time offsets among the

sensor motes should follow the same (or similar) distribution. For the attacks to be effective, malicious motes

typically report their time offsets much larger than those from the benign motes, leaving their reported values

suspicious. The methods proposed by Song et al. performs reasonably better, but suffers from issues like

extra reference mote requirement and threshold computation that can be viewed as an overhead. Recently,

Li et al. [18] propose a secure time synchronization protocol that combines the Sender-Receiver model and

Receiver-Receiver model to verify the synchronization process between each synchronizing pair. The idea

behind their scheme is to use a node’s neighbors as verifiers to check if the synchronization is processed

correctly so that it can detect the attacks launched by compromised (or malicious) nodes. The drawback of

their scheme is that they assume a hierarchical node structure and presence of a set of secure verifiers for each

node. The main issue is that none of the schemes discussed above formally treat the fundamental problem

itself which is given a set of nodes, their local times and the time differences between nodes, is it even

possible for any polynomial-time algorithm to efficiently (or optimally) pick out the trouble causing motes?

Unless this question is answered, it is not possible to gauge the effectiveness of secure time synchronization

schemes working under specific assumptions and conditions, like the ones discussed above.

1.2 Paper Organization

In Section 2, we outline the network and adversary model, introduce the notion of time difference graphs and

define the problem of time synchronization as a constraint satisfaction problem in time difference graphs. In

Section 3 we introduce the MCTD problem for general graphs and present hardness results for the same. In

5

Section 4, we analyze the MCTD problem for completely connected time difference graphs and present two

approximation algorithms for it. In section 5, we conclude with a summary of important results and provide

directions for future research.

2 Mathematical Formulation

In this section we present a graph-theoretic formulation for the time synchronization problem in sensor

networks.

2.1 Network Model

Let N = {1,2, . . . ,n} be the set of n motes in the network. let P = {p1, p2, . . . , pn} be the local time vector

such that each pi gives the local time on the mote i. We assume that this notion of local time (pi ∈ R) is

nothing but the time difference in seconds from some global time scale like UTC (Universal Coordinated

Time). It can be converted easily into 24/12 hour format using suitable time management software on the

motes. At the start of the application when the network is deployed, pi = p j ∀i, j ∈N, but this equality ceases

to hold with time due to clock drift, clock skew and other factors as described in [30, 22]. A Time Difference

Graph (TDG), G = (V,E,w,δ) for the network can be defined as follows. The set V = {v1,v2, . . . ,vn} of

vertices contains a vertex corresponding to each mote in the network. Each vertex vi is associated with a

weight wi = pi, i.e., the weight of each vertex equals to the local time on the corresponding mote. Formally,

the graph G is associated with a time function w, w : V→ R, such that w assigns a weight to each vertex

in the graph that signifies the value of the local time on the corresponding mote represented by that vertex.

An edge exists between two vertices vi and v j in the graph G if and only if i and j are neighbors of each

other. By neighbors we mean that both i and j are in the radio range of each other and can communicate

with each other directly, i.e, i can send a packet to j and j can send a packet to i. They may or may not be

physically close to each other. In each such pair i, j, one node is a sender node and one node is a receiver

node. For each neighbor pairs i, j, the receiver node computes its time difference with respect to the sender

node and their is a directed edge (vi,v j) ∈ E from vi to v j in G. The weight δvi,v j of each edge (vi,v j) ∈ E

is the estimated time offset (difference) computed by the receiver from the sender. More formally, the graph

G is associated with a time difference function δ, δ : E→ R, such that δ assigns a weight to each edge in

the graph signifying the estimated value of the time difference between the two vertices (motes) connected

6

by that directed edge. δvi,v j is positive if the receiver node leads the sender node, δvi,v j is negative if the

receiver node lags the sender node and δvi,v j is zero if there is no time difference between the receiver and

sender node. An important thing to note here is that δvi,v j may not necessarily be equal to wi−w j, i.e.,

the difference of the corresponding local clocks. We will see later that δvi,v j = wi −w j only if both the

nodes honestly participate in the time difference estimation. Moreover, we can safely assume that the time

difference function can be efficiently computed. An example of one such efficient implementation of the

time difference function is given by Ganeriwal et al. [12] where the receiver computes the time difference by

receiving time stamped messages from the sender. The set E inG is the set of all the edges as defined above.

To simplify the current exposition we assume here that the graphG is a simple, planar, connected graph i.e.,

every vertex is reachable from every other vertex through a sequence of edges (or there are no disconnected

vertices), no edges cross each other and there are no self loops. But, we will see later in Section 3 that the

results are general enough and can be applied to incomplete (or disconnected) graphs also. A TDG with 6

nodes (vertices) and 8 directed edges is depicted in Fig. 2.

v1 v2

v4

v6

v5

δv6,v5
= 2

δv3,v2
= −4

v3

δv1,v2
= −2

w4 = 2

w1 = 3

w5 = 3

w2 = 5

w3 = 2

w6 = 5

δv3,v5
= −1

δv4,v1
= −1

δv5,v2
= −3

δv4,v6
= −3

δv2,v4
= 3

Figure 2: Time Difference Graph (TDG)

2.2 The Time Synchronization Problem

Given a TDG G = (V,E,w,δ) for the network, where w is the time function and δ is the time difference

function for G, the problem of time synchronization in the network can be represented as a Constraint

Satisfaction Problem [27]. We define a set of ‖V‖ = n variables x1,x2, . . . ,xn, one for each vertex vi ∈ V

7

in G. These variables are also called the adjustment variables. Each adjustment variable xi has a non-

empty domain, which in this case is the set of real numbers R. Each directed edge (vi,v j) ∈ E defines

two constraints. The first constraint, denoted as C1(vi,v j), gives the relationship between xi, x j and the time

difference function δ and is given as

C1(vi,v j) ≡ x j− xi = δ(vi,v j) (1)

The second constraint, denoted as C2(vi,v j), gives the relationship between xi, x j and the time function w and

is given as

C2(vi,v j) ≡ wi + xi = w j + x j (2)

Thus, there are a total of 2‖E‖ constraints in the system. The state of a Constraint Satisfaction Problem

(CSP) is defined by an assignment of values to some or all of the variables, {x1 = m1,x2 = m2, . . . ,xn = mn}.

An assignment that does not violate any constraints is called a consistent or legal assignment. A complete

assignment is one in which every variable is mentioned, and a solution to a CSP is a complete assignment

that satisfies all the constraints. Given a TDG, G = (V,E,w,δ), for the network, the problem of time syn-

chronization is then determining a complete consistent assignment to the adjustment variables x1,x2, . . . ,xn,

i.e., an assignment that includes all adjustment variables x1,x2, . . . ,xn and satisfies all the constraints in the

system. Time synchronization is feasible or solvable in the network if such a complete assignment exists. If

such a complete assignment does not exist then it implies that some of the constraints in the network cannot

be satisfied and time synchronization is infeasible or partially feasible. This infeasibility may be due to the

cheating behavior by some of the nodes and is outlined in detail in the following section.

2.3 Adversary Model and Inconsistency in Time Synchronization

From the formulation above, we can see that a solution to the time synchronization problem is any assign-

ment to the adjustment variables {x1 = m1,x2 = m2, . . . ,xn = mn} that satisfies all the 2‖E‖ constraints in the

time difference graph. But, all the constraints may not be satisfied by any assignment if some (or all) of the

constraints are not consistent with each other. To keep the exposition simple, we currently assume that there

is no measurement error. But, we will see later on that the scheme and the problem formulation is general

enough and can be easily extended to practical systems by adding a small measurement error constant. We

8

assume that if all nodes behave honestly then the local times are reported correctly and time differences

estimated accurately. On the other hand, when the nodes fail to honestly participate in the time synchroniza-

tion protocol the reported local times and time difference estimations are arbitrary. This cheating behavior

is reflected in the time function w and the time difference function δ of the corresponding time difference

graph of the network. In reality, nodes in time synchronization protocols can cheat in the following ways,

1. Advertising incorrect local clock: Each node i advertises the value of its local clock pi to the neighbor-

ing nodes during the time synchronization protocol. A node can cheat by advertising incorrect local

time information to other nodes. This cheating behavior translates to the time function w in the time

difference graph model assigning incorrect wi values to the corresponding vertices vi in the TDGG of

the network. Advertising incorrect local time by a sender node i may also affect the time difference

computation by the receiver node, say j. This translates to the time difference function δ assigning

incorrect weights δvi,v j to the directed edges (vi,v j) in the time difference graph model.

2. Manipulating message delay or time-stamp information: During the time synchronization protocol,

a cheating node i (either sender or receiver) can manipulate message transmissions by introducing

unnecessary delays or changing packet time stamps. This also affects the time difference computation

and the time difference function δ in the time difference graph model.

There is no globally verifiable way to detect if a node vi is cheating about its local time value wi (point 1)

or if the nodes local clock is actually way out of sync with the other nodes. Cheating on ones local time value

may or may not lead to incorrect computation of time difference values by the neighboring (receiver) nodes

on edges out of the cheating node. A node can obviously choose not to cheat on its local time value and still

manipulate communications (as discussed in point 2 above) with other nodes in order to adversely affect time

difference computations. But, there is a globally verifiable way to detect if the time difference estimations

are correctly computed or not, although it may not be possible to pin-point which node is cheating in case

the verification fails. This verification, called the triangle Law, was briefly introduced in Section 1. Thus,

we would like to reiterate that the time difference function (δ) does not directly depend on the time function

w but depends on the behavior (cheating or honest) of the sender node and that cheating behavior can be

detected by verifying the time difference estimates using the triangle law. Before we move ahead, we need

some definitions.

Definition 2.1. Cycle or Circuit: A cycle in a graph is an alternating sequence of vertices and edges in a

9

graph, with each edge being incident to the vertices immediately preceding and succeeding it in the sequence

such that all the vertices in the sequence are distinct except the first and the last.

In this paper, the usage of word cycle implicitly always implies a simple cycle, i.e. a cycle with no

repeated vertices except the first and the last vertex. Recollect that the triangle law for time offset (time

difference) gives the necessary condition for time difference consistency for a group of 3 nodes. Here, we

present a more general notion of a similar concept called the consistent cyle.

Definition 2.2. Consistent Cycle: Given a TDG, G = (V,E,w,δ), any cycle of G consisting of 3 or more

vertices is called a consistent cycle if and only if the sum of the time difference function values δvi,v j of all

the edges (vi,v j) in the cycle is exactly zero.

A cycle of 3 or more vertices in which the sum of the time difference function values for all the edges

is anything except zero (positive or negative) is called an inconsistent cycle. A time difference graph that

contains no inconsistent cycles is called a consistent time difference graph. A time difference graph that

contains inconsistent cycles is called a inconsistent or partially consistent time difference graph. One prob-

lem with the current definition of time difference graphs is the presence of connected acyclic loops, which

is possible in directed graphs. There is no way to check for the consistency of such a loop in the existing

definition of the time difference graph. We overcome this problem by adding redundancy as discussed in

the next section. A time difference graph which does not have any connected acyclic loops and which does

not any other directed cycles is always consistent.

2.4 Time Difference Graphs - Revisited

In a directed graph like the time difference graph (as discussed in Section 2.1), it is possible that some loops

or vertex combinations may be connected by edges but may not form a cycle (connected acyclic loops).

An example of such an acyclic loop in the time difference graph shown in Fig. 2 is < v2,v3,v5 >. As a

result, it is not possible to apply the triangle law to such acyclic loops and check for their consistency and

thus the overall consistency of the graph. In order to overcome this problem, we add some redundancy

to the definition of time difference graphs. Given a TDG, G = (V,E,w,δ), we define a new graph G′ =

(V′,E′,w′,δ′) as follows. The vertex set and time difference function ofG′ is the same as that ofG, i.e., V=

V′ and w = w′. For each edge (vi,v j) ∈ E, (vi,v j) ∈ E ′ and (v j,vi) ∈ E ′. Also if (vi,v j) ∈ E and δ(vi,v j) 6= 0

then δ′(vi,v j) = δ(vi,v j) and δ′(v j,vi) =−1×δ(vi,v j). If δ(vi,v j) = 0 then δ′(vi,v j) = δ′(v j,vi) = 0. This

10

new graph is called the Redundant Time Difference Graph (RTDG) and is shown in Fig. 5. As we can see

−3

−3

−2

4

−4

−33

3
−1 1

2

3

v1 v2

v4

v6

v5

v3

w
′

5
= 3

w
′

2
= 5

w
′

3
= 2

w
′

6
= 5

-1

2

1

-2

w
′

1
= 3

w
′

4
= 2

Figure 3: Redundant Time Difference Graph (RTDG)

from Figure 5, for each edge in the time difference graph, a new edge between the same pair of nodes in

the opposite direction is added in the corresponding redundant time difference graph. This edge is called

the redundant edge as its time difference value is just opposite in sign to the time difference value of the

actual edge and it does not provide any new information. This is also intuitive because if a node, say A,

lags another node, say B, by m, then the same thing can also be interpreted as B leads A by m. Redundant

time difference graphs eliminate acyclic loops in time difference graphs by converting each such loop into

a directed cycle which can be verified for consistency. This brings us to our first result which gives the

relationship between the solution of the time synchronization problem in a network and the consistency of

the corresponding redundant time difference graph.

Theorem 2.1. The time synchronization problem for a redundant time difference graph G′ = (V′,E′,w′,δ′)

has a solution if and only if G′ is consistent.

Proof. Let, G′ = (V′,E′,w′,δ′) be a redundant time difference graph as defined in Section 2.4. We first

prove the reverse direction. We will show that if the graph G′ is consistent then the time synchronization

problem for G′ has a solution. In other words, if the graph G′ is consistent then the CSP for the time

synchronization problem has at least one assignment to the adjustment variables x1,x2, . . . ,xn such that all

the constraints (Eqn. 1 and 2) are satisfied. We prove this by a contradiction argument. Since the graph G′

11

is consistent, by definition of consistency all simple cycles in G′ are consistent, i.e., sum of time difference

values of all edges in each cycle is zero. Now, let x1 = m1,x2 = m2, . . . ,xn = mn be one assignment to

the adjustment variables such that there is at least one constraint that is not satisfied. Let this constraint

(which is not satisfied) be on the edge (vi,vi+1), i.e., xi+1− xi 6= δ(vi,vi+1). Thus, δ(vi,vi+1) 6= mi+1−mi.

Without loss of generality, assume that δ(vi,vi+1) < mi+1−mi. Also let this edge be on some cycle C′ =

(v1,v2),(v2,v3), . . . ,(vi−1,vi),(vi,vi+1),(vi+1,vi+2), . . .(vr,vi). Now, since G′ is consistent, the cycle C′ is

consistent. Thus,

δ(v1,v2)+δ(v2,v3)+ . . .+δ(vi−1,vi)+δ(vi,vi+1)+δ(vi+1,vi+2)+ . . .+δ(vr−1,vr) = 0

=⇒ (x2− x1)+(x3− x2)+ . . .+(xi− xi−1)+δ(vi,vi+1)+(xi+2− xi+1)+ . . .+(x1− xr) = 0

=⇒ (m2−m1)+(m3−m2)+ . . .+(mi−mi−1)+δ(vi,vi+1)+(mi+2−mi+1)+ . . .+(m1−mr) = 0

=⇒ mi−mi+1 +δ(vi,vi+1) = 0

=⇒ δ(vi,vi+1) = mi+1−mi

which is a contradiction. This proves the reverse direction. Similarly, the forward direction is also straight-

forward.

We would like the readers to note that from this point onwards, the term time difference graph would

always imply a redundant time difference graph unless explicitly specified. Next, we discuss the problem of

efficiently eliminating inconsistencies in time difference graph models for sensor network systems.

3 Eliminating Inconsistencies in Time Difference Graphs

Up to this point, we have formulated the distributed time synchronization problem in sensor network systems

as a constraint satisfaction problem in a graph-based model of the system, namely time difference graphs.

We also proved the fundamental result that a feasible solution to the time synchronization problem exists if

and only if the corresponding time difference graph is consistent. This brings us to the main issue which

is given a partially consistent time difference graph, how to obtain the largest consistent subgraph of this

graph? This is equivalent to the problem of efficiently eliminating inconsistent (or cheating) behavior from

such graph-based representations for time synchronization protocols. This problem is formally stated next.

12

3.1 Maximum Consistent Time Difference Graph (MCTD) Problem

A consistent subgraph of a partially consistent time difference graph is obtained by eliminating vertices (and

the corresponding directed edges incident on and coming out of these vertices) until the resulting induced

subgraph is consistent, i.e., all simple cycles are consistent. The size of the consistent subgraph is the

cardinality of its vertex set. The edge size is the cardinality of its edge set. A consistent subgraph is maximal

if its vertex set is not a proper subset of the vertex set of any other consistent subgraph of that time difference

graph. A maximum consistent subgraph is a maximal consistent subgraph with maximum size. Now, given

a time difference graph, the problem of obtaining the largest consistent subgraph can be formulated as an

optimization problem as follows: Given a partially consistent TDG, G = (V,E,w,δ), find the maximum

consistent subgraph of G. We refer to this problem as the Maximum Consistent Time Difference Graph

Problem or MCTD. A decision (or parameterized) version of the problem can be stated as,

MCTD

Input: A partially consistent time difference graph G= (V,E,w,δ) and a positive integer k s.t. k ≤ ‖V‖.

Question: Does G contain a consistent time difference subgraph of size k or more?

3.2 Hardness of the MCTD Problem

Intuitively, the MCTD problem appears to be hard. In reality, the MCTD problem does belongs to the class

of highly intractable problems. We do not have sufficient proof that it even belongs to NP, i.e., the class

of non-deterministic polynomial time algorithms. This is because it is highly unlikely that MCTD has a

polynomial time verifier. Given a TDG, G = (V,E,δ)‡ and an integer k ≤ ‖V‖, it is not possible to verify

in polynomial time whether a subgraph G′ of G (of size k) contains only consistent cycles. To verify the

consistency of a graph, all the simple cycles need to be verified for consistency. The total number of cycles

in G′ itself could be exponential. But, we do show that MCTD is NP-hard, i.e., it is at least as hard as every

problem in NP. We prove this result by a straightforward polynomial time many-one (hardness preserving)

reduction from a well-known NP-complete problem, the VERTEX-COVER problem [13, 15]. A vertex

cover of a directed graph G̃ = (Ṽ , Ẽ) is a subset of vertices C ⊆ Ṽ that contains at least one vertex of every

directed edge (ũ, ṽ) ∈ Ẽ, and the VERTEX-COVER problem (also called MINIMUM VERTEX COVER

problem) is to find such a subset C of the smallest cardinality.

‡We ignore w in the following exposition since it is not used to check consistency of the time difference graph

13

Theorem 3.1. The Maximum Consistent Time Difference Graph (MCTD) problem is NP-hard.

Proof. We show that VERTEX-COVER≤P
m MCTD, i.e., VERTEX-COVER many-one (m) reduces in poly-

nomial time (P) to the MCTD problem.

v4

v1

v5

v2

v3

1

11

0
0

0

0

0
0

0 0

0 0 1

1

1

1

1

1
1

v4

v1

v5

v2

v3

(a) (b)

Figure 4: (a) Input graph for the VERTEX - COVER problem, G̃ = (Ṽ , Ẽ); (b) Input graph for the MCTD
problem, G= (V,E)

Construction: We describe a polynomial time construction that maps an instance G̃ =(Ṽ , Ẽ) of the VERTEX-

COVER problem to an instance G= (V,E,δ) of the MCTD problem such that G̃ has a vertex cover of size

≤ k (k≤ ‖Ṽ‖) if and only if G has a consistent subgraph of size ≥ ‖Ṽ‖−k. Since, consistency is defined in

terms of the time difference function δ only, we can omit the time function w in the current exposition. The

construction is shown in Figure 4.

1. For each vertex v in the vertex set Ṽ of G̃, place a vertex v in the vertex set V of G.

2. For each directed edge (u,v) ∈ Ẽ, add an edge (u,v) in E of G. If (v,u) /∈ Ẽ, add an edge (v,u) in E

of G. For each such edge, define δ(u,v) = 1 and δ(v,u) = 1. These edges are shown as solid lines in

Figure 4(b).

3. For each vertex pair u,v ∈ V such that edge (u,v) /∈ Ẽ and (v,u) /∈ Ẽ, add an edge (u,v) and (v,u) in

E of G. For each such edge, define δ(u,v) = 0 and δ(v,u) = 0. These edges are shown as dotted lines

in Figure 4(b).

It is clear that the above construction can be completed in polynomial time. We now show that the graph G̃

has a vertex cover of size k if and only if the graph G has a consistent time difference graph of size ‖Ṽ‖−k.

14

Suppose the graph G̃ in Figure 4 has a vertex cover C (C ⊆ Ṽ) of size k (‖C‖ = k). Since C is a vertex

cover, ∀(u,v) ∈ Ẽ, either u or v or both are in C. By our construction, ∀(u,v) ∈ Ẽ, (u,v) ∈ E and (v,u) ∈ E.

Thus, C also covers all the edges with time difference values 1 in the time difference graph G. This implies,

V−C would contain no edges with time difference values 1, i.e., V−C would contain no cycle such that

the sum of the time difference values of all the edges in the cycle is not equal to 0. In other words, subgraph

induced by V−C is a consistent time difference graph of G of size ‖V‖− k. Thus, if any directed graph G̃

has a vertex cover of size k, the time difference graph G has a consistent subgraph of size ‖V‖− k.

Now we prove the other direction. First thing we observe in the above construction is that the time

difference graph G is complete, i.e., there is an edge from every vertex to every other vertex. Moreover,

there are edges of the same type in both direction from every vertex to every other vertex. This implies

that any induced subgraph of G is also complete. Let C′ be the vertex set representing the consistent time

difference subgraph of G of size m (m ≤ ‖V‖). Thus, C′ is a complete graph with no cycles with sum of

time difference values of the edges (in the cycle) not equal to zero. This implies that there can be no edge

in C′ with time difference value 1, otherwise there will be at least one inconsistent cycle in C′. Thus, V−C′

covers all edges in E with time difference value 1. From our construction, it is clear that the edge set Ẽ of

G̃ is a subset of all edges in E with time difference value 1. Thus, V−C′ covers all the edges in G̃ and is a

vertex cover of G̃ of size ‖V‖−m i.e., ‖Ṽ‖−m since ‖Ṽ‖= ‖V‖
Thus, VERTEX-COVER many-one reduces in polynomial time to MCTD. Since VERTEX-COVER is

NP-complete, MCTD is NP-hard.

Thus, it is very unlikely that MCTD will have a deterministic polynomial time algorithm unless P = NP.

Moreover, it seems unlikely that MCTD will even have an efficient approximation algorithm.

3.3 Solving the MCTD Problem

In this section, we present a very simple technique for obtaining a maximum consistent subgraph, given a

TDG, G = (V,E,δ). But before we do that, we need to introduce another graph-based problem, namely

FEEDBACK VERTEX SET problem [13]. The FEEDBACK VERTEX SET problem is defined as: given

a directed or undirected graph, G = (V,E), find a subset F ⊆ V of vertices in the graph such that G−F is

acyclic. In simpler words, the FEEDBACK VERTEX SET problem is to find a (minimum) subset of vertices

that covers all the cycles in G. F is called the feedback vertex set of G, or an FVS of G. Then, the algorithm

15

for solving MCTD can be given as shown in Algorithm 1,

1: Compute the set of all the negative cycles C in the graph G. A negative cycle is a cycle such that the
sum of the weights of the edges in the cycle is < 0.

2: Compute the feedback vertex cover F of C.
3: return G−F as the maximum consistent time difference graph of G

Algorithm 1: Calculating Maximum Consistent Subgraph for the TDG, G= (V,E,δ) (Section 2.4)

Thus, the MCTD problem for a time difference graph can be solved, if efficient algorithms exists for

finding all the negative cycles of a weighted directed graph and for solving the FEEDBACK VERTEX SET

problem for directed graphs. But, both the above problems are known NP-complete problems. Although,

deciding the existence and finding a negative cycle in a weighted directed graph is polynomially solvable and

all cycles of a directed or undirected graph can be enumerated efficiently by a simple backtracking algorithm

[25], Kachiyan et al. [16] proved that (directed) negative cycles in a graph cannot be generated in polynomial

output time, unless P = NP. Using Gallai’s results [10], Kachiyan et al. showed that the hard problem of

finding minimal infeasible subsystems of a system of linear inequalities, called IIS (Irreducible Inconsistent

Subsystems) corresponds in a one-to-one way to the problem of finding the maximum number of negative

cycles in an edge-weighted directed graph. Similarly, Karp et al. [15] proved the NP-completeness of

the FEEDBACK VERTEX SET problem. For undirected graphs, there are considerable results for the

FEEDBACK VERTEX SET problem, e.g., there are exact algorithms of finding a minimum FVS in a graph

on n vertices in time O(1.9053n) [24] and in time O(1.7548n) [9]. There is also a polynomial time 2-

approximation algorithm for it [4]. In directed graphs, the FEEDBACK VERTEX SET problem becomes

harder and there has been only a limited progress on it, since Karp proved that to find an FVS in a directed

graph of size bounded by k is NP-complete [15]. No exact algorithms with running time within O(cnnO(1)),

where c < 2, and no polynomial time approximation algorithms with constant ratio have been found [8].

Thus, from the above results it appears unlikely that the MCTD problem will have a polynomial time (in

terms of the number of vertices) exact algorithm for the general time difference graphs. It is still an open

question if a constant ratio approximation algorithm exist for the MCTD problem. In the next section,

we discuss an interesting generalization of the MCTD problem discussed above. We analyze the MCTD

problem for a special type of time difference graph, namely a completely connected time difference graph.

16

4 MCTD Problem for Completely Connected TDG

A completely connected (or complete) time difference graph is a special type of redundant time difference

graph in which there is an (directed) edge between every pair of vertices in the graph (in both the directions).

Although, it is very difficult to model existing sensor networks (except extremely dense network spread

over a small area) using such completely connected graphs, they possess certain very interesting structural

properties. This motivates us to further investigate whether the MCTD problem is equally hard for such

completely connected graphs or if efficient solutions exist for this special case.

4.1 Properties of Completely Connected TDG

Property 1. A complete time difference graph has a polynomial number of exactly three node (vertex) cycles.

Specifically, there are a total of 2.




n

3


, where n is the total number of vertices in the graph.

Property 2. A complete time difference graph is consistent if and only if all the three node (vertex) cycles

in the graph are consistent.

Property 1 is obvious from the structure of the complete time difference graph. Property 2 follows from

Lemma 4.1.

Lemma 4.1. In a complete time difference graph, two 3-node cycles with two common vertices are inde-

pendently consistent if and only if the cycle containing all the vertices (of the two cycles) is consistent.

Proof. We give the proof for this Lemma by a contradiction argument. We first prove the forward direction,

1

2 3

δ14

4

δ21

δ41

δ43δ34

δ32

δ23

δ13

δ31δ12

δ24

δ42

Figure 5: Property 2 of Completely Connected TDG

i.e., if two 3-node cycles with two common vertices are independently consistent then the cycle containing

17

all the vertices (of the two cycles) is consistent. Without loss of generality let us assume that {1,2,3,1}
and {1,3,4,1} are the two 3-node independently consistent cycles with the common nodes 1 and 3. Thus,

δ12 +δ23 +δ31 = 0 and δ13 +δ34 +δ41 = 0. Also, let {1,2,3,4,1} be the cycle containing all the four nodes

of the above two 3-node cycles and let cycle {1,2,3,4,1} be not consistent. Thus,

δ12 +δ23 +δ34 +δ41 6= 0

=⇒ δ12 +δ23 +δ31−δ31 +δ34 +δ41 6= 0

=⇒ −δ31 +δ34 +δ41 6= 0 (δ12 +δ23 +δ31 = 0)

=⇒ δ13 +δ34 +δ41 6= 0 (δ13 =−δ31)

=⇒ Cycle {1,3,4,1} is inconsistent

which is a contradiction. Similarly the reverse direction can be proved by a similar argument.

Next, we outline some important theoretical results for the MCTD problem in completely connected

time difference graphs.

4.2 Theoretical Results

Contrary to our initial intuition that there might be a possibility of better results for the MCTD problem

in complete time difference graphs, theoretical analysis has shown that the MCTD problem is indeed hard.

Our next result proves that the MCTD problem for complete time difference graphs is NP-complete.

Theorem 4.1. MCTD problem for completely connected time difference graph is NP-complete.

This result follows from a very straight-forward polynomial time reduction from a well-known NP-hard

problem, called the MAX-CLIQUE problem [15]. The MAX-CLIQUE problem for a given graph with n

vertices is to find a maximum size clique in it, i.e., a complete subgraph of maximum size. The best known

algorithm for approximating MAX-CLIQUE has a factor of O(n
log2n) [5]. Moreover, it has been proved that

for any ε > 0 there is no polynomial time approximation algorithm for CLIQUE within factor n1−ε, unless

P = NP [14]. As a lemma to the above theorem, we show that solving the MCTD problem for completely

connected time difference graph is at least as hard as solving the MAX-CLIQUE problem for a graph.

18

Lemma 4.2. MCTD problem for completely connected time difference graph is hard to approximate within

a factor n1−ε (ε > 0), unless P=NP.

Due to space constraints, we do not include the proofs for Theorem 4.1 and Lemma 4.2 here. From

Lemma 4.2, it follows that the MCTD problem for completely connected time difference graphs will have

no approximation algorithm within a factor n1−ε unless P = NP, where n is the number of vertices in the

graph and for some constant ε > 0.

4.3 Algorithms

We now propose two approximation algorithms for the MCTD problem in complete time difference graphs.

The first algorithm is based on a greedy strategy for selecting vertices from the complete time difference

graph. The second algorithm is based on solving the LP relaxation of an Integer-Programming formulation

for the MCTD problem.

4.3.1 Greedy Strategy

This algorithm is based on a greedy heuristic for selecting and adding vertices into the set of consistent time

difference subgraph for a complete time difference graph. This selection is based on the Consistency Index

(CI) of a vertex.

Definition 4.1. Consistency Index (CI): The consistency index of a vertex in a complete time difference

graph is the total number of consistent 3-node cycles of the graph that the vertex is present in.

The greedy algorithm for the MCTD problem is shown in Algorithm 2,

Require: Time Difference Graph G= (V,E,δ), ‖V‖= n.
1: Compute CI for each vertex, vi ∈ V.
2: Sort vertices based on CI from largest to smallest. Let the sorted list be V′ = {v1,v2, . . . ,vn}.
3: Let the resulting MCTD subgraph for G be represented as T. Initially, let T= v1 ∈ V′.
4: for each vertex vi ∈ V′ (i = 2 to n) do
5: if vi is consistent with every vertex in T (i.e., all 3-vertex cycles in T after adding vi is consistent)

then
6: Add vi to T.
7: end if
8: end for
9: return T.

Algorithm 2: Greedy Strategy for MCTD Problem in Complete TDG

19

The CI computation step of the greedy algorithm takes O(n4) time. This is because there are O(n3)

3-vertex cycles in the complete time difference graph and it takes another O(n) time to assign a CI for every

vertex in the graph. Sorting takes O(n.logn) and the verification and addition steps (4 through 8) take O(n4)

in the worst case. Thus, the total running time of the greedy algorithm for the MCTD problem is O(n4),

which is still polynomial in terms of the number of vertices.

4.3.2 Integer Programming Formulation

The MCTD problem for a complete time difference graph can also be formulated as an Integer Program (IP)

(more specifically a 0-1 Program) as shown below:

Maximize
n

∑
i=1

xi

Sub ject to (xi + x j + xk−2).δi, j,k ≤ 0

∀i, j,k such that i, j,k ∈ {1,2, . . . ,n} and δi, j,k ≡ δi, j +δ j,k +δk,i ≥ 0

and xi,x j,xk ∈ {0,1}

Solving an Integer Program is a well-known NP-hard problem [15]. To overcome this problem, Linear Pro-

gram (LP) relaxation for the above Integer program can be obtained. LP relaxation is solvable in polynomial

time using efficient techniques like simplex algorithm. If the LP relaxation has integral solution then that

can be the solution for the above IP also. But if LP relaxation does not have integral solution then techniques

like rounding, branch and bound etc. can be used to obtain a feasible solution.

5 Conclusion

In this paper, we addressed the problem of eliminating cheating behavior in time synchronization protocols

for highly distributed systems like wireless sensor networks. We modeled the time synchronization problem

in such networks as a constraint satisfaction problem using a graph-based representation of the network,

called the time difference graph. The problem of eliminating cheating (or inconsistent) behavior is then

formulated as an optimization problem, called the MCTD problem, in such graphs. We proved that the

MCTD problem for the general case is NP-hard and also analyzed the problem for special types of time

difference graphs, namely complete time difference graphs. We showed that even for a complete time

20

difference graph, MCTD problem is NP-complete and there is no algorithm that can approximate it within

a factor n1−ε, ε > 0. Finally, we outlined two simple polynomial time approximation algorithms for the

MCTD problem in complete time difference graphs.

As a future exercise we would like to answer the question: What is the best approximation ratio possible

for the MCTD problem (in both the cases).

References

[1] Global clock synchronization in sensor networks. IEEE Transactions on Computers, 55(2):214–226,
2006. Qun Li and Daniela Rus.

[2] K. Arvind. Probabilistic clock synchronization in distributed systems. IEEE Trans. Parallel Distrib.
Syst., 5(5):474–487, 1994.

[3] Hagit Attiya, David Hay, and Jennifer L. Welch. Optimal clock synchronization under energy con-
straints in wireless ad-hoc networks. In The 9th International Conference on Principles of Distributed
Systems (OPODIS), pages 169–179, December 2005.

[4] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-Approximation Algorithm for the Undirected
Feedback Vertex Set Problem. SIAM Journal on Discrete Mathematics, 12(3):289–297, 1999.

[5] R.B. Boppana and M.M. Halldórsson. Approximating Maximum Independent Sets by Excluding Sub-
graphs, volume 447, chapter Proceedings of SWAT 1990, Lecture Notes in Computer Science, pages
13–25. Springer Berlin / Heidelberg, 1990.

[6] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing, 3:146–158, 1989.

[7] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization using
reference broadcasts. SIGOPS Operating Systems Rev., 36(SI):147–163, 2002.

[8] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating Minimum Feedback
Sets and Multicuts in Directed Graphs. Algorithmica, 20(2):151–174, 1998.

[9] Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin. Finding a Minimum Feedback Vertex Set in
Time O(1.7548n), volume 4169, chapter IWPEC 2006, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2006.

[10] T. Gallai. Maximum-minimum sätze über graphen. Acta Mathematicae, Academiae Scientiarum
Hungaricae, 9, 1958.

[11] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava. Secure time synchro-
nization service for sensor networks. In WiSe ’05: Proceedings of the 4th ACM workshop on Wireless
security, pages 97–106, New York, NY, USA, 2005. ACM Press.

[12] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for sensor networks.
In SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor sys-
tems, pages 138–149, New York, NY, USA, 2003. ACM Press.

21

[13] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, January 1979.

[14] J. Hastad. Clique is hard to approximate within n1−ε. Acta Mathematics, 182:105–142, 1999.

[15] R.M. Karp. Complexity of Computer Computations, chapter Reducibility Among Combinatorial Prob-
lems, pages 85–104. Plenum Press, 1972.

[16] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich. Generating
all vertices of a polyhedron is hard. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 758–765, 2006.

[17] Michael D. Lemmon, Joydeep Ganguly, and Lucia Xia. Model-based clock synchronization in net-
works with drifting clocks. In PRDC ’00: Proceedings of the 2000 Pacific Rim International Sympo-
sium on Dependable Computing, page 177, Washington, DC, USA, 2000. IEEE Computer Society.

[18] Hui Li, Yanfei Zheng, Mi Wen, and Kefei Chen. A Secure Time Synchronization Protocol for Sensor
Network, volume 4819, chapter Emerging Technologies in Knowledge Discovery and Data Mining,
Lecture Notes in Computer Science, pages 515–526. Springer Berlin / Heidelberg, 2007.

[19] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Ĺdeczi. The flooding time synchronization
protocol. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 39–49, New York, NY, USA, 2004. ACM Press.

[20] David L. Mills. Internet time synchronization: The network time protocol. In Zhonghua Yang and
T. Anthony Marsland (Eds.), Global States and Time in Distributed Systems, IEEE Computer Society
Press. 1994.

[21] Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis. Continuous clock synchronization in
wireless real-time applications. In SRDS ’00: Proceedings of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), page 125, Washington, DC, USA, 2000. IEEE Computer Society.

[22] S. B. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock skew from network delay
measurements. Technical Report UM-CS-1998-043, , 1998.

[23] S. Ping. Delay measurement time synchronization for wireless sensor networks. Intel Research, IRB-
TR-03-013, June 2003.

[24] Igor Razgon. Exact Computation of Maximum Induced Forest, volume 4059, chapter Proceedings of
SWAT 2006, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006.

[25] R.C. Read and R.E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and spanning
trees. Networks, 5, 1975.

[26] Kay Römer. Time synchronization in ad hoc networks. In MobiHoc ’01: Proceedings of the 2nd ACM
international symposium on Mobile ad hoc networking & computing, pages 173–182, New York, NY,
USA, 2001. ACM Press.

[27] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chapter Constraint Sat-
isfaction Problems, pages 137–160. Prentice Hall Series in Artificial Intelligence, 2 edition, 2002.

[28] M. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for wireless sensor networks,
2003.

22

[29] Hui Song, Sencun Zhu, and Guohong Cao. Attack-resilient time synchronization for wireless sensor
networks. In Second IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS
2005), Washington DC, November 2005.

[30] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. Clock synchronization in wireless
sensor networks: A survey. Ad-Hoc Networks, 3(3):281–323, May 2005.

[31] Jana van Greunen and Jan Rabaey. Lightweight time synchronization for sensor networks. In WSNA
’03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applica-
tions, pages 11–19, New York, NY, USA, 2003. ACM Press.

23

