
On the Semantics and Evaluation of Top-k Queries in Probabilistic Databases

Xi Zhang
University at Buffalo, SUNY

xizhang@cse.buffalo.edu

Jan Chomicki
University at Buffalo, SUNY
chomicki@cse.buffalo.edu

Abstract

We formulate three intuitive semantic properties for top-
k queries in probabilistic databases, and propose Global-
Topk query semantics which satisfies all of them. We pro-
vide a dynamic programming algorithm to evaluate top-k
queries under Global-Topk semantics in simple probabilis-
tic relations. For general probabilistic relations, we show
a polynomial reduction to the simple case. Our analysis
shows that the complexity of query evaluation is linear in k
and at most quadratic in database size.

1. Introduction
The study of incompleteness and uncertainty in

databases has long been an interest of the database com-
munity [14, 5, 11, 1, 9, 23, 15]. Recently, this interest has
been rekindled by an increasing demand for managing rich
data, often incomplete and uncertain, emerging from scien-
tific data management, sensor data management, data clean-
ing, information extraction etc. [6] focuses on query evalu-
ation in traditional probabilistic databases; ULDB [3] sup-
ports uncertain data and data lineage in Trio [21]; MayBMS
[17] uses the vertical World-Set representation of uncertain
data [2]. The standard semantics adopted in most works is
the possible worlds semantics [14, 9, 23, 3, 6, 2].

On the other hand, since the seminal papers of Fa-
gin [7, 8], the top-k problem has been extensively stud-
ied in multimedia databases [18], middleware systems [16],
data cleaning [10], core technology in relational databases
[12, 13] etc. In the top-k problem, each tuple is given a
score, and users are interested in k tuples with the highest
scores.

More recently, the top-k problem has been studied in
probabilistic databases [20, 19]. Those papers, however, are
solving two essentially different top-k problems. Soliman et
al. [20] assumes the existence of a scoring function to rank
tuples. Probabilities provide information on how likely tu-
ples will appear in the database. In contrast, in [19], the
ranking criterion for top-k is the probability associated with
each query answer. In many applications, it is necessary to
deal with tuple probabilities and scores at the same time.

Thus, in this paper, we use the model of [20]. Even in this
model, different semantics for top-k queries are possible, so
a part of the challenge is to define a reasonable semantics.

As a motivating example, considering the smart environ-
ment scenario in Example 1.

Example 1. A smart lab has the following data for a Sat-
urday night.

Name
Biometric Score
(Face, Voice, . . .)

Aidan 0.65
Bob 0.55

Chris 0.45

Prob. of
Sat Nights

0.3
0.9
0.4

Typically, the lab collects two kinds of data:

• Biometric data from sensors;

• Historical statistics.

Biometric data come from the sensors deployed in the
lab, for example, face recognition and voice recognition
sensors. Those data are collected and matched against the
profile of each person involved in the lab. They can be nor-
malized to give us an idea of how well each person fits the
sensed data. In addition, the lab also keeps track of the
statistics of each person’s activities.

Knowing that we definitely had two visitors that night,
we would like to ask the following question:

“Who were the two visitors in the lab last Saturday
night?”

This question can be formulated as a top-k query over
the above probabilistic relation, where k = 2.

In Example 1, each tuple is associated with an event,
which is that candidate being in the lab on Saturday nights.
The probability of the event is shown next to each tuple.
In this example, all the events of tuples are independent,
and tuples are therefore said to be independent. Intuitively,
for the top-k problem in Example 1, we are not necessar-
ily interested in candidates with high biometric scores if the
associated events are very unlikely to happen, e.g. we have
strong evidence suggesting that a candidate plays football
on Saturday nights and his probability of being in lab is
0.001.

1

Example 1 shows a simple probabilistic relation where
the tuples are independent. In contrast, Example 2 illus-
trates a more general case.

Example 2. In a sensor network deployed in a habitat,
each sensor reading comes with a confidence value Prob,
which is the probability that the reading is valid. The fol-
lowing table shows the temperature sensor readings at a
given sampling time. These data are from two sensors, Sen-
sor 1 and Sensor 2, which correspond to two parts of the
relation, marked C1 and C2 respectively. Each sensor has
only one true reading at a given time, therefore tuples from
the same part of the relation correspond to exclusive events.

Temp.(◦F)
22
10
25
15

Prob
0.6
0.4
0.1
0.6

C1

C2

Our question is:
“What’s the temperature of the warmest spot?”
The question can be formulated as a top-k query, where

k = 1, over a probabilistic relation containing the above
data. However, we must take into consideration that the
tuples in each part Ci, i = 1, 2, are exclusive.

Our contributions in this paper are the following:

• We formulate three intuitive semantic properties and
use them to compare different top-k semantics in prob-
abilistic databases (Section 3.1);

• We propose a new semantics for top-k queries in prob-
abilistic databases, called Global-Topk, which satisfies
all the properties above (Section 3.2);

• We exhibit efficient algorithms for evaluating top-k
queries under the Global-Topk semantics in simple
probabilistic databases (Section 4.1) and general prob-
abilistic databases (Section 4.3).

2. Background
Probabilistic Relations To simplify the discussion in this
paper, a probabilistic database contains a single probabilis-
tic relation. We refer to a traditional database relation as a
deterministic relation. A deterministic relation R is a set of
tuples. A partition C of R is a collection of non-empty sub-
sets of R such that every tuple belongs to one and only one
of the subsets. That is, C = {C1, C2, . . . , Cm} such that
C1∪C2∪ . . .∪Cm = R and Ci∩Cj = ∅, 1 ≤ i 6= j ≤ m.
Each subset Ci, i = 1, 2, . . . ,m is a part of the partition
C. A probabilistic relation Rp has three components, a sup-
port (deterministic) relation R, a probability function p and
a partition C of the support relation R. The probability func-
tion p maps every tuple in R to a probability value in (0, 1].
The partition C divides R into subsets such that the tuples

within each subset are exclusive and therefore their proba-
bilities sum up to at most 1. In the graphical presentation of
R, we use horizontal lines to separate tuples from different
parts.

Definition 2.1 (Probabilistic Relation). A probabilistic re-
lation Rp is a triplet 〈R, p, C〉, where R is a support deter-
ministic relation, p is a probability function p : R 7→ (0, 1]
and C is a partition of R such that ∀Ci ∈ C,

∑
t∈Ci

p(t) ≤
1.

In addition, we make the assumption that tuples from dif-
ferent parts of of C are independent, and tuples within the
same part are exclusive. Def. 2.1 is equivalent to the model
used in Soliman et al. [20] with exclusive tuple generation
rules. Ré et al. [19] proposes a more general model, how-
ever only a restricted model equivalent to Def. 2.1 is used
in top-k query evaluation.

Example 2 shows an example of a probabilistic relation
whose partition has two parts. Generally, each part corre-
sponds to a real world entity, in this case, a sensor. Since
there is only one true state of an entity, tuples from the same
part are exclusive. Moreover, the probabilities of all possi-
ble states of an entity sum up to at most 1. In Example 2, the
sum of probabilities of tuples from Sensor 1 is 1, while that
from Sensor 2 is 0.7. This can happen for various reasons.
In the above example, we might encounter a physical diffi-
culty in collecting the sensor data, and end up with partial
data.

Definition 2.2 (Simple Probabilistic Relation). A proba-
bilistic relation Rp = 〈R, p, C〉 is simple iff the partition
C contains only singleton sets.

The probablistic relation in Example 1 is simple (individ-
ual parts not illustrated). Note that in this case, |R| = |C|.

We adopt the well-known possible worlds semantics for
probabilistic relation [14, 9, 23, 3, 6, 2].

Definition 2.3 (Possible World). Given a probabilistic re-
lation Rp = 〈R, p, C〉, a deterministic relation W is a pos-
sible world of Rp iff

1. W is a subset of the support relation, i.e. W ⊆ R;

2. For every part Ci in the partition C, at most one tuple
from Ci is in W , i.e. ∀Ci ∈ C, |Ci ∩W | ≤ 1.

Denote by pwd(Rp) the set of all possible worlds of Rp.
Since all the parts in C are independent, we have the follow-
ing definition of the probability of a possible world.

Definition 2.4 (Probability of a Possible World). Given
a probabilistic relation Rp = 〈R, p, C〉, for any W ∈
pwd(Rp), its probability Pr(W) is defined as

Pr(W) =
∏
t∈W

p(t)
∏

Ci∈C′
(1−

∑
t∈Ci

p(t)) (1)

where C′ = {Ci ∈ C|W ∩ Ci = ∅}.

2

Scoring function A scoring function over a deterministic
relation R is a function from R to real numbers, i.e. s :
R 7→ R. The function s induces a preference relation �s

and an indifference relation ∼s on R. For any two distinct
tuples ti and tj from R,

ti �s tj iff s(ti) > s(tj);
ti ∼s tj iff s(ti) = s(tj).

When the scoring function s is injective, �s establishes
a total order1 over R. In such a case, no two tuples from R
tie in score.

A scoring function over a probabilistic relation Rp =
〈R, p, C〉 is a scoring function s over its support relation R.

Top-k Queries
Definition 2.5 (Top-k Answer Set over Deterministic Re-
lation). Given a deterministic relation R, a non-negative
integer k and a scoring function s over R, a top-k answer
in R under s is a set T of tuples such that

1. T ⊆ R;

2. If |R| < k, T = R, otherwise |T | = k;

3. ∀t ∈ T,∀t′ ∈ R− T, t �s t′ or t ∼s t′.
According to Def. 2.5, given k and s, there can be more

than one top-k answer set in a deterministic relation R. The
evaluation of a top-k query over R returns one of them non-
deterministically, say S. However, if the scoring function s
is injective, S is unique, denoted by topk,s(R).

3. Semantics of Top-k Queries
3.1. Semantic Properties of Top-k Answers

Probability opens the gates for various possible seman-
tics for top-k queries. As the semantics of a probabilistic re-
lation involves a set of worlds, it is to be expected that there
may be more than one top-k answer, even under an injective
scoring function. The answer to a top-k query over a prob-
abilistic relation Rp = 〈R, p, C〉 should clearly be a set of
tuples from its support relation R. In order to compare dif-
ferent semantics, we formulate below some properties we
would like any reasonable semantics to satisfy.

In the following discussion, S is any top-k answer set in
Rp = 〈R, p, C〉 under an injective scoring function s. A tu-
ple from the support relation R is a winner if it belongs to
some top-k answer set under that semantics, and a loser oth-
erwise. That is to say, in the case of multiple top-k answer
sets, any tuple from any of them is a winner.
Properties

1. Exact k: When Rp is sufficiently large (|C| ≥ k), the
cardinality of S is exactly k;

2. Faithfulness: For any two tuples t1, t2 ∈ R, if both the
score and the probability of t1 are higher than those of
t2 and t2 ∈ S, then t1 ∈ S;

1irreflective, transitive, connected binary relation.

3. Stability:
• Raising the score/probability of a winner will not

turn it into a loser;
• Lowering the score/probability of a loser will not

turn it into a winner.

All of those properties reflect basic intuitions about top-
k answers. Exact k expresses user expectations about the
size of the result. Faithfulness and Stability reflect the sig-
nificance of score and probability.

3.2. Global-Topk Semantics
We propose here a new top-k answer semantics in prob-

abilistic relations, namely Global-Topk, which satisfies all
the properties formulated in Section 3.1:
• Global-Topk: return k highest-ranked tuples accord-

ing to their probability of being in the top-k answers in
possible worlds.

Considering a probabilistic relation Rp = 〈R, p, C〉 un-
der an injective scoring function s, any W ∈ pwd(Rp) has
a unique top-k answer set topk,s(W). Each tuple from the
support relation R can be in the top-k answer (in the sense
of Def. 2.5) in zero, one or more possible worlds of Rp.
Therefore, the sum of the probabilities of those possible
worlds provides a global ranking criterion.

Definition 3.1 (Global-Topk Probability). Assume a prob-
abilistic relation Rp = 〈R, p, C〉, a non-negative integer k
and an injective scoring function s over Rp. For any tuple t
in R, the Global-Topk probability of t, denoted by PRp

k,s (t),
is the sum of the probabilities of all possible worlds of Rp

whose top-k answer contains t.

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W)

Pr(W).

For simplicity, we skip the superscript in PRp

k,s (t),
i.e. Pk,s(t), when the context is unambiguous.

Definition 3.2 (Global-Topk Answer Set over Probabilistic
Relation). Given a probabilistic relation Rp = 〈R, p, C〉, a
non-negative integer k and an injective scoring function s
over Rp, a top-k answer in Rp under s is a set T of tuples
such that

1. T ⊆ R;

2. If |R| < k, T = R, otherwise |T | = k;

3. ∀t ∈ T,∀t′ ∈ R− T, Pk,s(t) ≥ Pk,s(t′).
Notice the similarity between Def. 3.2 and Def. 2.5. In

fact, the probabilistic version only changes the last condi-
tion, which restates the preferred relationship between two
tuples by taking probability into account. This semantics
preserves the nondeterministic nature of Def. 2.5. For ex-
ample, if two tuples are of the same Global-Topk probabil-
ity, and there are k−1 tuples with higher Global-Topk prob-
ability, Def. 2.5 allows one of the two tuples to be added to

3

the top-k answer nondeterministically. Example 3 gives an
example of the Global-Topk semantics.

Example 3. Consider the top-2 query in Example 1.
Clearly, the scoring function here is the biometric scoring
function. The following table shows all the possible worlds
and their probabilities. For each world, the underlined peo-
ple are in the top-2 answer set of that world.

Possible World Prob
W1 = ∅ 0.042
W2 = {Aidan} 0.018
W3 = {Bob} 0.378
W4 = {Chris} 0.028
W5 = {Aidan,Bob} 0.162
W6 = {Aidan,Chris} 0.012
W7 = {Bob,Chris} 0.252
W8 = {Aidan,Bob, Chris} 0.108

Chris is in the top-2 answer of W4,W6,W7, so its top-2
probability is 0.028 + 0.012 + 0.252 = 0.292. Similarly,
the top-2 probability of Aidan and Bob are 0.9 and 0.3 re-
spectively. 0.9 > 0.3 > 0.292, therefore Global-Topk will
return {Aidan,Bob}.

Note that top-k answer sets may be of cardinality less
than k for some possible worlds. We refer to such possible
worlds as small worlds. In Example 3, W1...4 are all small
worlds.

3.3. Other Semantics
Soliman et al. [20] proposes two semantics for top-k

queries in probabilistic relations.

• U-Topk: return the most probable top-k answer set that
belongs to possible world(s);

• U-kRanks: for i = 1, 2, . . . , k, return the most proba-
ble ith-ranked tuples across all possible worlds.

Example 4. Continuing Example 3, under U-Topk seman-
tics, the probability of top-2 answer set {Bob} is 0.378, and
that of {Aidan,Bob} is 0.162 + 0.108 = 0.27. Therefore,
{Bob} is more probable than {Aidan,Bob} under U-Topk.
In fact, {Bob} is the most probable top-2 answer set in this
case, and will be returned by U-Topk.

Under U-kRanks semantics, Aidan is in 1st place in the
top-2 answer of W2,W5,W6,W8, therefore the probability
of Aidan being in 1st place in the top-2 answers in possible
worlds is 0.018 + 0.162 + 0.012 + 0.108 = 0.3. However,
Aidan is not in 2nd place in the top-2 answer of any possible
world, therefore the probability of Aidan being in 2nd place
is 0. In fact, we can construct the following table.

Aidan Bob Chris
Rank 1 0.3 0.63 0.028
Rank 2 0 0.27 0.264

U-kRanks selects the tuple with the highest probability
at each rank (underlined) and takes the union of them. In

this example, Bob wins at both Rank 1 and Rank 2. Thus,
the top-2 answer returned by U-kRanks is {Bob}.

The properties introduced in Section 3.1 lay the ground
for comparing different semantics. In Table 1, a single “X”
(resp. “×”) indicates that property is (resp. is not) satisfied
under that semantics. “X/×” indicates that, the property is
satisfied by that semantics in simple probabilistic relations,
but not in the general case.

Semantics Exact k Faithfulness Stability
Global-Topk X X X
U-Topk × X/× X
U-kRanks × × ×

Table 1. Property satisfaction for different semantics

Global-Topk satisfies all the properties while neither of
the other two semantics does. For Exact k, Global-Topk
is the only one that satisfies this property. Example 4 il-
lustrates the case when both U-Topk and U-kRanks violate
this property. It is not satisfied by U-Topk because a small
possible world with high probability could dominate other
worlds. In that case, the dominating possible world might
not have enough tuples. It is also violated by U-kRanks be-
cause a single tuple can win at multiple ranks in U-kRanks.
For Faithfulness, since U-Topk requires all tuples in a top-k
answer set to be compatible, this property can be violated
when a high-score/probability tuple could be dragged down
arbitrarily by its compatible tuples if they are not very likely
to appear. U-kRanks violates both Faithfulness and Stabil-
ity. Under U-kRanks, instead of a set, a top-k answer is
an ordered vector, where ranks are significant. A change
in a tuple’s probability/score might have unpredictable con-
sequence on ranks, therefore those two properties are not
guaranteed to hold.

4. Query Evaluation under Global-Topk

4.1. Simple Probabilistic Relations

We first consider a simple probabilistic relation Rp =
〈R, p, C〉 under an injective scoring function s.

Theorem 4.1. Given a simple probabilistic relation Rp =
〈R, p, C〉 and an injective scoring function s over Rp, if R =
{t1, t2, . . . , tn} and t1 �s t2 �s . . . �s tn, the following
recursion on Global-Topk queries holds.

q(k, i) =


0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i− 1) p̄(ti−1)
p(ti−1)

+ q(k − 1, i− 1))p(ti)
otherwise

(2)where q(k, i) = Pk,s(ti) and p̄(ti−1) = 1− p(ti−1).

Proof. See Appendix.

4

Example 5. Consider a simple probabilistic relation Rp =
〈R, p, C〉, where R = {t1, t2, t3, t4}, p(ti) = pi, 1 ≤ i ≤
4, C = {{t1}, {t2}, {t3}, {t4}} and an injective scoring
function s such that t1 �s t2 �s t3 �s t4. The following
table shows the Global-Topk of ti, where 0 ≤ k ≤ 2.

k t1 t2 t3 t4
0 0 0 0 0
1 p1 p̄1p2 p̄1p̄2p3 p̄1p̄2p̄3p4

2 p1 p2 (p̄2 + p̄1p2)p3 ((p̄2 + p̄1p2)p̄3

+p̄1p̄2p3)p4

Row 2 (bold) is each ti’s Global-Top2 probability. Now,
if we are interested in top-2 answer in Rp, we only need to
pick the two tuples with the highest value in Row 2.

Given the recursion in Thm. 4.1, we can apply the stan-
dard dynamic programming (DP) technique, together with
a priority queue, to select k tuples with the highest Global-
Topk probability, as shown in Alg. 1. It is a one-pass com-
putation on the probabilistic relation, which can be easily
implemented even if secondary storage is used. The over-
head is the initial sorting cost (not shown in Alg. 1), which
would be amortized by the workload of consecutive top-k
queries.

Algorithm 1 (Ind Topk) Evaluate Global-Topk queries in
a Simple Probabilistic Relation
Require: Rp = 〈R, p, C〉, k

1: Initialize a fixed cardinality (k +1) priority queue Ans
of 〈t, prob〉 pairs, which compares pairs on prob;

2: q(0, 1) = 0;
3: for k′ = 1 to k do
4: q(k′, 1) = p(tk′);
5: end for
6: for i = 2 to |R| do
7: for k′ = 0 to k do
8: if k′ = 0 then
9: q(k′, i) = 0;

10: else

11:
q(k′, i) =
p(ti)(q(k′, i− 1) p̄(ti−1)

p(ti−1)
+ q(k′ − 1, i− 1));

12: end if
13: end for
14: Add 〈ti, q(k, i)〉 to Ans;
15: if |Ans| > k then
16: remove the pair with the smallest prob value from

Ans;
17: end if
18: end for
19: return {ti|〈ti, q(k, i)〉 ∈ Ans};

4.2. Threshold Algorithm Optimization
Fagin [8] proposes Threshold Algorithm(TA) for pro-

cessing top-k queries in a middleware scenario. In a middle-

ware system, an object has m attributes. For each attribute,
there is a sorted list ranking objects in the decreasing or-
der of its score on that attribute. An aggregation function f
combines the individual attribute scores xi, i=1, 2, . . . ,m
to obtain the overall object score f(x1, x2, . . . , xm). An
aggregation function is monotonic iff f(x1, x2, . . . , xm) ≤
f(x′1, x

′
2, . . . , x

′
m) whenever xi ≤ x′i for every i. Fagin [8]

shows that TA is cost-optimal in finding the top-k objects
in such a system.

TA is guaranteed to work as long as the aggregation
function is monotonic. For a simple probabilistic relation,
if we regard score and probability as two special attributes,
Global-Topk probability Pk,s is an aggregation function of
score and probability. The Faithfulness property in Section
3.1 implies the monotonicity of Global-Topk probability.
Consequently, assuming that we have an index on proba-
bility as well, we can guide the dynamic programming(DP)
in Alg. 1 by TA. Now, instead of computing all kn en-
tries for DP, where n = |R|, the algorithm can be stopped
as early as possible. A subtlety is that Global-Topk prob-
ability Pk,s is only well-defined for t ∈ R, unlike in [8],
where an aggregation function is well-defined over the do-
main of all possible attribute values. Therefore, compared
to the original TA, we need to achieve the same behavior
without referring to virtual tuples which are not in R.

U-Topk satisfies Faithfulness in simple probabilistic re-
lations, but the candidates under U-Topk are sets not tuples
and thus there is no counterpart of an aggregation function
under U-Topk. Therefore, TA is not applicable. Neither is
TA applicable to U-kRanks. Though we can define an ag-
gregation function per rank, rank = 1, 2, . . . , k, for tuples
under U-kRanks, the violation of Faithfulness in Table 1
suggests a violation of monotonicity of those k aggregation
functions.

Denote T and P for the list of tuples in the decreasing
order of score and probability respectively. Following the
convention in [8], t and p are the last value seen in T and P
respectively.

Applying TA to Global-Topk Computation.

(1) Go down T list, and fill in entries in the DP table.
Specifically, for t = tj , compute the entries in the jth

column up to the kth row. Add tj to the top-k answer
set Ans, if any of the following conditions holds:

(a) Ans has less than k tuples, i.e. |Ans| < k;
(b) The Global-Topk probability of tj , i.e. q(k, j), is

greater than the lower bound of Ans, i.e. LBAns,
where LBAns = minti∈Ans q(k, i).

In the second case, we also need to drop the tuple with
the lowest Global-Topk probability in order to keep the
cardinality of Ans.

(2) After we have seen at least k tuples in T , we go down
P list to find the first p whose tuple t has not been seen.

5

Let p = p, and we can use p to estimate the threshold,
i.e. upper bound (UP) of the Global-Topk probability
of any unseen tuple. Assume t = ti,

UP = (q(k, i)
p̄(ti)
p(ti)

+ q(k − 1, i))p.

(3) If UP > LBAns, we can expect Ans will be updated
in the future, so go back to (1). Otherwise, we can
safely stop and report Ans.

Theorem 4.2 (Correctness). Given a simple probabilistic
relation Rp = 〈R, p, C〉, a non-negative integer k and an
injective scoring function s over Rp, the above TA-based
algorithm correctly find a top-k answer under Global-Topk
semantics.

Proof. See Appendix.
The optimization above aims at an early stop. Bruno et

al. [4] carries out an extensive experimental study on the ef-
fectiveness of applying TA in RDMBS. They consider vari-
ous aspects of query processing. One of their conclusions is
that if at least one of the indices available for the attributes2

is a covering index, that is, it is defined over all other at-
tributes and we can get the values of all other attributes di-
rectly without performing a primary index lookup, then the
improvement by TA can be up to two orders of magnitude.
The cost of building a useful set of indices once would be
amortized by a large number of top-k queries that subse-
quently benefit form such indices. Even in the lack of cov-
ering indices, if the data is highly correlated, in our case,
that means high-score tuples having high probabilities, TA
would still be effective.

4.3. Arbitrary Probabilistic Relations
Induced Event Relation In the general case of proba-
bilistic relation, each part of of the partition C can contain
more than one tuple. The crucial independence assumption
in Alg. 1 no longer holds. However, even though tuples are
not independent, parts of the partition C are. In the follow-
ing definition , we assume an identifier function id. For any
tuple t, id(t) is the identifier of the part where t belongs.

Definition 4.1 (Induced Event Relation). Given a proba-
bilistic relation Rp = 〈R, p, C〉, an injective scoring func-
tion s over Rp and a tuple t ∈ Cid(t) ∈ C, the event relation
induced by t, denoted by Ep = 〈E, pE , CE〉, is a probabilis-
tic relation whose support relation E has only one attribute,
Event. E and the probability function pE are defined by
the following two generation rules:

• Rule 1: tet
∈ E and pE(tet

) = p(t);

• Rule 2:
∀Ci ∈ C ∧ Ci 6= Cid(t), [(∃t′ ∈ Ci ∧ t′ �s t) ⇒
(teCi

∈ E) and pE(teCi
) =

∑
t′∈Ci

t′�st

p(t′)].

2Probability is typically supported as a special attribute in DBMS.

No other tuples belong to E. The partition CE is defined
as the collection of singleton subsets of E.

Except for one special tuple generated by Rule 1, each
tuple in the induced event relation (generated by Rule 2)
represents an event eCi associated with a part Ci ∈ C. The
probability of this event, denoted by p(teCi

), is the prob-
ability that eCi occurs. Given the tuple t, the event eCi is
defined as “some tuple from the part Ci has the score higher
than the score of t”.

The role of the special tuple tet and its probability p(t)
will become clear in Thm. 4.3. Let us first look at an exam-
ple of an induced event relation.

Example 6. Given Rp as in Example 2, we would like to
construct the induced event relation Ep = 〈E, pE , CE〉 for
tuple t=(Temp: 15) from C2. By Rule 1, we have tet ∈ E,
pE(tet) = 0.6. By Rule 2, since t ∈ C2, we have teC1

∈ E

and pE(teC1
) =

∑
t′∈C1
t′�st

p(t′) = p((Temp: 22)) = 0.6.

Therefore,

E: pE:
Event
tet

teC1

Prob
0.6
0.6

Proposition 4.1. Any induced event relation is a simple
probabilistic relation.

Evaluating Global-Topk Queries With the help of in-
duced event relation, we could reduce Global-Topk in the
general case to Global-Topk in simple probabilistic rela-
tions.

Lemma 4.1. Given a probabilistic relation Rp = 〈R, p, C〉
and an injective scoring function s, for any t ∈ R, Ep =
〈E, pE , CE〉. Let Qp = 〈E − {tet}, pE , CE − {{tet}}〉.
Then, the Global-Topk probability of t satisfies the follow-
ing:

PRp

k,s (t) = p(t) · (
∑

We∈pwd(Qp)
|We|<k

p(We)).

Theorem 4.3. Given a probabilistic relation Rp =
〈R, p, C〉 and an injective scoring function s, for any t ∈
Rp, the Global-Topk probability of t equals the Global-
Topk probability of tet when evaluating top-k in the induced
event relation Ep = 〈E, pE , CE〉 under the injective scor-
ing function sE : E → R, sE(tet

) = 1
2 and sE(teCi

) = i:

PRp

k,s (t) = PEp

k,sE (tet
).

Proof. See Appendix.
Since any induced event relation is simple (Prop. 4.1),

Thm. 4.3 illustrates how we can reduce the computation of
PRp

k,s (t) in the original probabilistic relation to a top-k com-
putation in a simple probabilistic relation, where we can
apply the DP technique in Section 4.1. The complete al-
gorithms are shown below.

6

Algorithm 2 (IndEx Topk) Evaluate Global-Topk queries
in a General Probabilistic Relation
Require: Rp = 〈R, p, C〉, k, s

1: Initialize a fixed cardinality k + 1 priority queue Ans
of 〈t, prob〉 pairs, which compares pairs on prob;

2: for t ∈ R do
3: Calculate PRp

k,s (t) using Algorithm 3
4: Add 〈t, PRp

k,s (t)〉 to Ans;
5: if |Ans| > k then
6: remove the pair with the smallest prob value from

Ans;
7: end if
8: end for
9: return {t|〈t, PRp

k,s (t)〉 ∈ Ans};

In Alg. 3, we first find the part Cid(t) where t belongs. In
Line 2, we initialize the support relation E of the induced
event relation by the tuple generated by Rule 1 in Def. 4.1.
For any part Ci other than Cid(t)(Line 3-8), we compute the
probability of the event eCi according to Def. 4.1. Since all
the tuples from the same part are exclusive, this probabil-
ity is the sum of the probabilities of all tuples that qualify
in that part. Note that if no tuple from Ci qualifies, this
probability is zero. In this case, we do not care whether any
tuple from Ci will be in the possible world or not, since it
does not have any influence on whether t will be in top-k
or not. The corresponding event tuple is therefore excluded
from E. By default, any probabilistic database assumes that
any tuple not in the support relation is with probability zero.
Line 9 uses Alg. 1 to compute PEp

k,s (tet). Consequently, we
retain only the DP related codes in Alg. 1. Note that Alg. 1
requires all tuples be sorted on score, but this is not a prob-
lem for us. Since we already know the scoring function sE ,
we simply need to organize tuples based on sE when gen-
erating E. No extra sorting is necessary.

Alg. 2 uses Alg. 3 as a subroutine and computes PRp

k,s (t)
for every tuple t ∈ R, then again uses a priority queue to
select the final answer set.

4.4. Complexity

For simple probabilistic relations, in Alg. 1, the DP com-
putation takes O(kn) time and using a priority queue to
maintain the k highest values takes O(nlogk). So alto-
gether, Alg. 1 takes O(kn). The TA optimization will re-
duce the computation time on average, however the algo-
rithm will still have the same complexity.

For general probabilistic relations, in Alg. 3, Line 3-8
takes O(n) to build E (we need to scan all tuples within
each part). Line 9 uses DP in Alg. 1, which takes O(|E|k),
where |E| is no more than the number of parts in partition
C, which is in turn no more than n. So Alg. 3 takes O(kn).
Alg. 2 repeats Alg. 3 n times, and the priority queue again

Algorithm 3 (IndEx Topk Sub) Calculate PRp

k,s (t)using
induced event relation
Require: Rp = 〈R, p, C〉, k, s, t ∈ R

1: Find the part Cid(t) ∈ C such that t ∈ Cid(t);
2: Initialize E with tuple tet , where pE(tet) = p(t)

E = {tet};
3: for Ci ∈ C and Ci 6= Cid(t) do
4: p(eCi) =

∑
t′∈Ci

t′�st

p(t′);

5: if p(eCi
) > 0 then

6: Add a tuple teCi
to E, where pE(teCi

) = p(eCi)

E = E ∪ {teCi
} ;

7: end if
8: end for
9: Use Line 2−13 of Algorithm 1 to compute PEp

k,sE (tet
);

10: PRp

k,s (t) = PEp

k,sE (tet);
11: return PRp

k,s (t);

takes O(n log k). Altogether, the complexity is O(kn2 +
n log k) = O(kn2).

In [20], both U-Topk and U-kRanks take O(kn) in sim-
ple probabilistic relations, which is the same as Alg. 1. In
the general case, U-Topk takes Θ(kmnk−1 log n) and U-
kRanks takes Ω(mnk−1), where m is a rule engine factor.
Both U-Topk and U-kRanks do not scale well with k, for
the time complexity is already at least cubic when k ≥ 4. A
detailed analysis is available in Appendix.

5. Conclusion

We study the semantic and computational problems for
top-k queries in probabilistic databases. We propose three
desired properties for a top-k semantics, namely Exact k,
Faithfulness and Stability. Our Global-Topk semantics sat-
isfies all of them. We study the computational problem of
query evaluation under Global-Topk semantics for simple
and general probabilistic relations. For the former case, we
propose a dynamic programming algorithm and effectively
optimize it with Threshold Algorithm. In the latter case, we
show a polynomial reduction to the simple case. In contrast
to Soliman et al. [20], our approach satisfies intuitive se-
mantic properties and can be implemented more efficiently.
However, [20] is of a more general model as it allows arbi-
trary tuple generation rules.

6. Future Work

We note that the two dimensions of top-k queries
in probabilistic databases, score and probability, are not
treated equally: score is considered in an ordinal sense
while probability is considered in a cardinal sense. One of

7

the future directions would be to integrate strength of prefer-
ence expressed by score into our framework. Another direc-
tion is to consider non-injective scoring function. A prelim-
inary study shows that this case is non-trivial, because it is
not clear how to allocate the probability of a single possible
world to different top-k answer sets. Other possible direc-
tions include top-k evaluation in other uncertain database
models proposed in the literature [2] and more general pref-
erence queries in probabilistic databases.

7. Appendix

7.1. Proofs of Table 1

Semantics Exact k Faithfulness Stability
Global-Topk X(1) X(4) X(7)
U-Topk × (2) X/× (5) X(8)
U-kRanks × (3) × (6) × (9)

Table 1. Property satisfaction for different semantics

Proof. The following proofs correspond to the numbers
next to each entry in the above table.

Assume that we are given a probabilistic relation Rp =
〈R, p, C〉, a non-negative integer k and an injective scoring
function s.

(1) Global-Topk satisfies Exact k.

We compute the Global-Topk probability for each tu-
ple in R. If there is at least k tuples in R, we are always
able to pick the k tuples with the highest Global-Topk
probability. In case when there are more than k−r+1
tuple(s) with the rth highest Global-Topk probability,
where r = 1, 2 . . . , k, only k − r + 1 of them will be
picked nondeterministically.

(2) U-Topk violates Exact k.

Example 4 illustrates a counterexample in a simple
probabilistic relation.

(3) U-kRanks violates Exact k.

Example 4 illustrates a counterexample in a simple
probabilistic relation.

(4) Global-Topk satisfies Faithfulness.

By the assumption, t1 �s t2 and p(t1) > p(t2), so we
need to show that Pk,s(t1) > Pk,s(t2).

For every W ∈ pwd(Rp) such that t2 ∈ topk,s(W)
and t1 6∈ topk,s(W), obviously t1 6∈ W . Otherwise,
since t1 �s t2, t1 would be in topk,s(W). Define a
world W ′ = (W\{t2}) ∪ {t1}, since t1 and t2 are
either independent or exclusive, W ′ ∈ pwd(Rp) and

Pr(W ′) = Pr(W)p(t1)p̄(t2)
p̄(t1)p(t2)

. Since p(t1) > p(t2),
Pr(W ′) > Pr(W). Moreover, t1 will substitute for
t2 in the top-k answer to W ′.

For the Global-Topk probability of t1 and t2, we have

Pk,s(t2) =
∑

W∈pwd(Rp)
t1∈topk,s(W)
t2∈topk,s(W)

Pr(W) +
∑

W∈pwd(Rp)
t1 6∈topk,s(W)
t2∈topk,s(W)

Pr(W)

<
∑

W∈pwd(Rp)
t1∈topk,s(W)
t2∈topk,s(W)

Pr(W) +
∑

W ′∈pwd(Rp)
t1∈topk,s(W ′)

t2 6∈W ′

Pr(W ′)

≤
∑

W∈pwd(Rp)
t1∈topk,s(W)
t2∈topk,s(W)

Pr(W) +
∑

W ′∈pwd(Rp)
t1∈topk,s(W ′)

t2 6∈W ′

Pr(W ′)

+
∑

W ′′∈pwd(Rp)
t1∈topk,s(W ′′)

t2∈W ′′

t2 6∈topk,s(W ′′)

Pr(W ′′)

= Pk,s(t1).

The equality in ≤ holds when t1 and t2 are exclusive
or s(t2) is among the k highest scores. Since there is
at least one inequality in the above equation, we have

Pk,s(t1) > Pk,s(t2).

(5) U-Topk satisfies Faithfulness in simple probabilistic
relations while it violates Faithfulness in general prob-
abilistic relations.

Simple Probabilistic Relations

Proof. By contradiction. If U-Topk violates Faith-
fulness in a simple probabilistic relation, there exists
Rp = 〈R, p, C〉 and exists ti, tj ∈ R, ti �s tj , p(ti) >
p(tj), and by U-Topk, tj is in the top-k answer to Rp

under the scoring function s while ti is not.

S is a top-k answer to Rp under the function s by the
U-Topk semantics, tj ∈ S and ti 6∈ S. Denote by
Qk,s(S) the probability of S under the U-Topk seman-
tics. That is,

Qk,s(S) =
∑

W∈pwd(Rp)
S=topk,s(W)

Pr(W).

For any world W contributing to Qk,s(S), ti 6∈ W .
Otherwise, since ti �s tj , ti would be in topk,s(W),
which is S. Define a world W ′ = (W\{tj}) ∪ {ti}.
Since ti is independent of any other tuple in R, W ′ ∈

8

pwd(Rp) and Pr(W ′) = Pr(W)p(ti)p̄(tj)
p̄(ti)p(tj)

. More-
over, topk,s(W ′) = (S\{tj}) ∪ {ti}. Let S′ =
(S\{tj}) ∪ {ti}, then W ′ contributes to Qk,s(S′).

Qk,s(S′) =
∑

W∈pwd(Rp)
S′=topk,s(W)

Pr(W)

≥
∑

W∈pwd(Rp)
S=topk,s(W)

Pr((W\{tj}) ∪ {ti})

=
∑

W∈pwd(Rp)
S=topk,s(W)

Pr(W)
p(ti)p̄(tj)
p̄(ti)p(tj)

=
p(ti)p̄(tj)
p̄(ti)p(tj)

∑
W∈pwd(Rp)
S=topk,s(W)

Pr(W)

=
p(ti)p̄(tj)
p̄(ti)p(tj)

Qk,s(S)

> Qk,s(S),

which is a contradiction.

General Probabilistic Relations

The following is a counterexample.

Say k = 2, R = {t1, t2, t3, t4}, t1 �s t2 �s t3 �s t4,
t1 and t2 are exclusive, t3 and t4 are exclusive. p(t1) =
0.5, p(t2) = 0.45, p(t3) = 0.4, p(t4) = 0.3.

By U-Topk, the top-2 answer is {t1, t3}, while t2 �s

t3 and p(t2) > p(t3), which violates Faithfulness.

(6) U-kRanks violates Faithfulness.

The following is a counterexample.

Say k = 2, Rp is simple. R = {t1, t2, t3}, t1 �s

t2 �s t3, p(t1) = 0.48, p(t2) = 0.8, p(t3) = 0.78.

The probabilities of each tuple at each rank are as fol-
lows:

t1 t2 t3
rank 1 0.48 0.416 0.08112
rank 2 0 0.384 0.39936
rank 3 0 0 0.29952

By U-kRanks, the top-2 answer set is {t1, t3} while
t2 � t3 and p(t2) > p(t3), which contradicts Faithful-
ness.

(7) Global-Topk satisfies Stability.

Proof. In the rest of this proof, let A be the set of all
winners under the Global-Topk semantics.

Part I: Probability.

Case 1: Winners.

For any winner t ∈ A, if we only raise the probabil-
ity of t, we have a new probabilistic relation (Rp)′ =
〈R, p′, C〉, where the new probability function p′ is
such that p′(t) > p(t) and for any t′ ∈ R, t′ 6=
t, p′(t′) = p(t′). Note that pwd(Rp) = pwd((Rp)′).
In addition, assume t ∈ Ct, where Ct ∈ C. By Global-
Topk,

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W)

Pr(W)

and

P
(Rp)′

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W)

Pr(W)
p′(t)
p(t)

=
p′(t)
p(t)

PRp

k,s (t).

For any other tuple t′ ∈ R, t′ 6= t, we have the follow-
ing equation:

P
(Rp)′

k,s (t′) =
∑

W∈pwd(Rp)
t′∈topk,s(W),t∈W

Pr(W)
p′(t)
p(t)

+
∑

W∈pwd(Rp)
t′∈topk,s(W), t6∈W
(Ct\{t})∩W=∅

Pr(W)
c− p′(t)
c− p(t)

+
∑

W∈pwd(Rp)
t′∈topk,s(W), t6∈W
(Ct\{t})∩W 6=∅

Pr(W)

≤ p′(t)
p(t)

(
∑

W∈pwd(Rp)
t′∈topk,s(W)
t∈W

Pr(W)

+
∑

W∈pwd(Rp)
t′∈topk,s(W), t6∈W
(Ct\{t})∩W=∅

Pr(W)

+
∑

W∈pwd(Rp)
t′∈topk,s(W), t6∈W
(Ct\{t})∩W 6=∅

Pr(W))

=
p′(t)
p(t)

PRp

k,s (t′),

where c = 1−
∑

t′′∈Ct\{t} p(t′′).

Now we can see that, t’s Global-Topk probability in
(Rp)′ will be raised to exactly p′(t)

p(t) times of that in Rp

9

under the same scoring function s, and for any tuple
other than t, its Global-Topk probability in (Rp)′ can
be raised to as much as p′(t)

p(t) times of that in Rp under

the same scoring function s. As a result, P
(Rp)′

k,s (t) is
still among the highest k Global-Topk probabilities in
(Rp)′ under the function s, and therefore still a winner.

Case 2: Losers.

This case is similar to Case 1.

Part II: Score.

Case 1: Winners.

For any winner t ∈ A, we evaluate Rp under a new
scoring function s′. Comparing to s, s′ only raises
the score of t. That is, s′(t) > s(t) and for any
t′ ∈ R, t′ 6= t, s′(t′) = s(t′). Then, in addition to
all the worlds already contributing to t’s Global-Topk
probability when evaluating Rp under s, some other
worlds may now contribute to t’s Global-Topk proba-
bility. Because, under the function s′, t might climb
high enough to be in the top-k answer set of those
worlds.

For any tuple other than t in R, its Global-Topk prob-
ability under the function s′ either stays the same (if
the “climbing” of t does not knock that tuple out of
the top-k answer in some possible world) or decreases
(otherwise).

Consequently, t is still a winner when evaluating Rp

under the function s′.

Case 2: Losers.

This case is similar to Case 1.

(8) U-Topk satisfies Stability.

Proof. In the rest of this proof, let A be the set of all
winners under U-Topk semantics.

Part I: Probability.

Case 1: Winners.

For any winner t ∈ A, if we only raise the probabil-
ity of t, we have a new probabilistic relation (Rp)′ =
〈R, p′, C〉, where the new probabilistic function p′ is
such that p′(t) > p(t) and for any t′ ∈ R, t′ 6=
t, p′(t′) = p(t′). In the following discussion, we use
superscript to indicate the probability in the context of
(Rp)′. Note that pwd(Rp) = pwd((Rp)′).

Recall that Qk,s(At) is the probability of a top-k an-
swer set At ⊆ A under U-Topk semantics, where
t ∈ At. Since t ∈ At, Q′

k,s(At) = Qk,s(At)
p′(t)
p(t) .

For any candidate top-k set B other than At,
i.e. ∃W ∈ pwd(Rp), topk,s(W) = B and B 6= At.

By definition,

Qk,s(B) ≤ Qk,s(At).

For any world W contributing to Qk,s(B), its proba-
bility either increase p′(t)

p(t) times (if t ∈ W), or stays the
same (if t 6∈ W and ∃t′ ∈ W, t′ and t are exclusive),
or decreases (otherwise). Therefore,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)
p(t)

.

Altogether,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)
p(t)

≤ Qk,s(At)
p′(t)
p(t)

= Q′
k,s(At).

Therefore, At is still a top-k answer to (Rp)′ under the
function s and t ∈ At is still a winner.

Case 2: Losers.

It is more complicated in the case of losers. We need
to show that for any loser t, if we decrease its proba-
bility, no top-k candidate set Bt containing t will be
a new top-k answer set under the U-Topk semantics.
The procedure is similar to that in Case 1, except that
when we analyze the new probability of any original
top-k answer set Ai, we need to differentiate between
two cases:

(a) t is exclusive with some tuple in Ai;

(b) t is independent of all the tuples in Ai.

It is easier with (a), where all the worlds contributing
to the probability of Ai do not contain t. In (b), some
worlds contributing to the probability of Ai contain t,
while others do not. And we calculate the new proba-
bility for those two kinds of worlds differently. As we
will see shortly, the probability of Ai stays unchanged
in either (a) or (b).

For any loser t ∈ R, t 6∈ A, by applying the tech-
nique used in Case 1, we have a new probabilistic re-
lation (Rp)′ = 〈R, p′, C〉, where the new probabilis-
tic function p′ is such that p′(t) < p(t) and for any
t′ ∈ R, t′ 6= t, p′(t′) = p(t′). Again, pwd(Rp) =
pwd((Rp)′).

For any top-k answer set Ai to Rp under the function
s, Ai ⊆ A. Denote by SAi all the possible worlds
contributing to Qk,s(Ai). Based on the membership
of t, SAi can be partitioned into two subsets St

Ai
and

S t̄
Ai

.

SAi = {W |W ∈ pwd(Rp), topk,s(W) = Ai};
SAi = St

Ai
∪ S t̄

Ai
, St

Ai
∩ S t̄

Ai
= ∅,

∀W ∈ St
Ai

, t ∈ W and ∀W ∈ S t̄
Ai

, t 6∈ W.

10

If t is exclusive with some tuple in Ai, St
Ai

= ∅. In this
case, any world W ∈ S t̄

Ai
contains one of t’s exclusive

tuples, therefore W ’s probability will not be affected
by the change in t’s probability. In this case,

Q′
k,s(Ai) =

∑
W∈pwd(Rp)

W∈St̄
Ai

Pr′(W) =
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W)

= Qk,s(Ai).

Otherwise, t is independent of all the tuples in Ai. In
this case, ∑

W∈pwd(Rp)

W∈St
Ai

Pr(W)∑
W∈pwd(Rp)

W∈St̄
Ai

Pr(W)
=

p(t)
1− p(t)

and

Q′
k,s(Ai) =

∑
W∈pwd(Rp)

W∈St
Ai

Pr(W)
p′(t)
p(t)

+
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W)
1− p′(t)
1− p(t)

=
∑

W∈pwd(Rp)
W∈SAi

Pr(W)

= Qk,s(Ai).

We can see that in both cases, Q′
k,s(Ai) = Qk,s(Ai).

Now for any top-k candidate set containing t, say
Bt such that Bt 6⊆ A, by definition, Qk,s(Bt) <
Qk,s(Ai). Moreover,

Q′
k,s(Bt) = Qk,s(Bt)

p′(t)
p(t)

< Qk,s(Bt).

Therefore,

Q′
k,s(Bt) < Qk,s(Bt) < Qk,s(Ai) = Q′

k,s(Ai).

Consequently, Bt is still not a top-k answer to (Rp)′

under the function s. Since no top-k candidate set con-
taining t can be a top-k answer set to (Rp)′ under the
function s, t is still a loser.

Part II: Score.

Again, Ai ⊆ A is a top-k answer set to Rp under the
function s by U-Topk semantics.

Case 1: Winners.

For any winner t ∈ Ai, we evaluate Rp under a new
scoring function s′. Comparing to s, s′ only raises
the score of t. That is, s′(t) > s(t) and for any
t′ ∈ R, t′ 6= t, s′(t′) = s(t′). In some possible world
such that W ∈ pwd(Rp) and topk,s(W) 6= Ai, t might
climb high enough to be in topk,s′(W). Define T to
the set of such top-k candidate sets.

T = {topk,s′(W)|
W ∈ pwd(Rp), t 6∈ topk,s(W) ∧ t ∈ topk,s′(W)}.

Only a top-k candidate set Bj ∈ T can possibly end
up with a probability higher than that of Ai across all
possible worlds, and thus substitute for Ai as a new
top-k answer set to Rp under the function s′. In that
case, t ∈ Bj , so t is still a winner.

Case 2: Losers.

For any loser t ∈ R, t 6∈ A. Using a similar tech-
nique to Case 1, the new scoring function s′ is such
that s′(t) < s(t) and for any t′ ∈ R, t′ 6= t, s′(t′) =
s(t′). When evaluating Rp under the function s′, for
any world W ∈ pwd(Rp) such that t 6∈ topk,s(W),
the score decrease of t will not effect its top-k an-
swer, i.e. topk,s′(W) = topk,s(W). For any world
W ∈ pwd(Rp) such that t ∈ topk,s(W), t might go
down enough to drop out of topk,s′(W). In this case,
W will contribute its probability to a top-k candidate
set without t, instead of the original one with t. In
other words, under the function s′, comparing to the
evaluation under the function s, the probability of a
top-k candidate set with t is non-increasing, while the
probability of a top-k candidate set without t is non-
decreasing3.

Since any top-k answer set to Rp under the function s
does not contain t, it follows from the above analysis
that any top-k candidate set containing t will not be a
top-k answer set to Rp under the new function s′, and
thus t is still a loser.

(9) U-kRanks violates Stability.

The following is a counterexample.

Say k = 2, Rp is simple. R = {t1, t2, t3}, t1 �s

t2 �s t3. p(t1) = 0.3, p(t2) = 0.4, p(t3) = 0.3.

t1 t2 t3
rank 1 0.3 0.28 0.126
rank 2 0 0.12 0.138
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is {t1, t3}.

Now raise the score of t3 such that t1 �s′ t3 �s′ t2.
3Here, any subset of R with cardinality at most k that is not a top-

k candidate set under the function s is conceptually regarded as a top-k
candidate set with probability zero under the function s.

11

t1 t3 t2
rank 1 0.3 0.21 0.196
rank 2 0 0.09 0.168
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is {t1, t2}. By rais-
ing the score of t3, we actually turn the winner t3 to a
loser, which contradicts Stability.

7.2. Proof of Thm. 4.1

Theorem 4.1. Given a simple probabilistic relation Rp =
〈R, p, C〉 and an injective scoring function s over Rp, if R =
{t1, t2, . . . , tn} and t1 �s t2 �s . . . �s tn, the following
recursion on Global-Topk queries holds.

q(k, i) =


0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i− 1) p̄(ti−1)
p(ti−1)

+ q(k − 1, i− 1))p(ti)
otherwise

where q(k, i) = Pk,s(ti) and p̄(ti−1) = 1− p(ti−1).

Proof. By induction on k and i.

• Base case.

– k = 0
For any W ∈ pwd(Rp), top0,s(W) = ∅. There-
fore, for any ti ∈ R, the Global-Topk probability
of ti is 0.

– k > 0 and i = 1
t1 has the highest score among all tuples in R. As
long as tuple t1 appears in a possible world W ,
it will be in the topk,s(W). So the Global-Topk
probability of ti is the probability that t1 appears
in possible worlds, i.e. q(k, 1) = p(t1).

• Inductive step.

Assume the theorem holds for 0 ≤ k ≤ k0 and
1 ≤ i ≤ i0. For any W ∈ pwd(Rp), ti0 ∈ topk0,s(W)
iff ti0 ∈ W and there are at most k0 − 1 tuples with
higher score in W . Note that any tuple with score
lower than the score of ti0 does not have any influence
on q(k0, i0), because its presence/absence in a possible
world will not affect the presence of ti0 in the top-k an-
swer of that world.

Since all the tuples are independent,

q(k0, i0) = p(ti0) ·
∑

W∈pwd(Rp)
|{t|t∈W∧t�sti0}|<k0

Pr(W).

(1) q(k0, i0 + 1) is the Global-Topk0 probability of
tuple ti0+1.

q(k0, i0 + 1) =
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W)

ti0∈topk0,s(W)

Pr(W)

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W)

ti0∈W, ti0 6∈topk0,s(W)

Pr(W)

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W)
ti0 6∈W

Pr(W).

For the first part of the left hand side,

∑
W∈pwd(Rp)
ti0+1∈topk0,s(W)

ti0∈topk0−1,s(W)

Pr(W) = p(ti0+1)q(k0−1, i0).

The second part is zero. Since ti0 �s ti0+1, if
ti0+1 ∈ topk0,s(W) and ti0 ∈ W , then ti0 ∈
topk0,s(W).
The third part is the sum of the probabilities of
all possible worlds such that ti0+1 ∈ W, ti0 6∈ W
and there are at most k0 − 1 tuples with score
higher than the score of ti0 in W . So it is equiv-
alent to

p(ti0+1)p(ti0) ·
∑

|{t|t∈W∧t�sti0}|<k0

Pr(W)

= p(ti0+1)p(ti0)
q(k0, i0)
p(ti0)

.

Altogehter, we have

q(k0, i0 + 1)
= p(ti0+1)q(k0 − 1, i0) + p(ti0+1)p(ti0)

q(k0,i0)
p(ti0)

= (q(k0 − 1, i0) + q(k0, i0)
p(ti0)

p(ti0))p(ti0+1).

(2) q(k0+1, i0) is the Global-Top(k0+1) probability
of tuple ti0 . Use a similar argument as above, it
can be shown that this case is correctly computed
by Eqn. (2) as well.

7.3. Proof for Thm. 4.2

Theorem 4.2 (Correctness). Given a simple probabilistic
relation Rp = 〈R, p, C〉, a non-negative integer k and an in-
jective scoring function s over Rp, the above TA-based al-
gorithm correctly finds a top-k answer under Global-Topk
semantics.

12

Proof. In every iteration of Step (2), say t = ti, for any
unseen tuple t, s′ is an injective scoring function over Rp,
which only differs from s in the score of t. Under the func-
tion s′, ti �s′ t �s′ ti+1. If we evaluate the top-k query in
Rp under s′ instead of s, Pk,s′(t) = p(t)

p UP . On the other
hand, for any W ∈ pwd(Rp), W contributing to Pk,s(t)
implies that W contributes to Pk,s′(t), while the reverse is
not necessarily true. So, we have Pk,s′(t) ≥ Pk,s(t). Re-
call that p ≥ p(t), therefore UP ≥ p(t)

p UP = Pk,s′(t) ≥
Pk,s(t). The conclusion follows from the correctness of the
original TA algorithm and Alg. 1.

7.4. Proof for Lemma 4.1

Lemma 4.1. Given a probabilistic relation Rp = 〈R, p, C〉
and an injective scoring function s, for any t ∈ R, Ep =
〈E, pE , CE〉. Let Qp = 〈E − {tet}, pE , CE − {{tet}}〉.
Then, the Global-Topk probability of t satisfies the follow-
ing:

PRp

k,s (t) = p(t) · (
∑

We∈pwd(Qp)
|We|<k

p(We)).

Proof. Given t ∈ R, k and s, let A be a subset of pwd(Rp)
such that W ∈ A ⇔ t ∈ topk,s(W). If we group all the
possible worlds in A by the set of parts whose tuple in W
has higher score than the score of t, then we will have the
following partition:

A = A1 ∪A2 ∪ . . . ∪Aq, Ai ∩Aj = ∅, i 6= j

and

∀Ai,∀W1,W2 ∈ Ai, i = 1, 2, . . . , q,
{Cj |∃t′ ∈ W1 ∩ Cj , t

′ �s t} = {Cj |∃t′ ∈ W2 ∩ Cj , t
′ �s t}.

Moreover, denote CharParts(Ai) to Ai’s characteristic
set of parts.

Now, let B be a subset of pwd(Ep), such that We ∈
B ⇔ |We| < k. There is a bijection g : {Ai|Ai ⊆ A} →
B, mapping each part Ai in A to the a possible world in
B which contains only tuples belonging to parts in Ai ’s
characteristic set.

g(Ai) = {teCj
|Cj ∈ CharParts(Ai)}.

The following equation holds from the definition of in-
duced event relation and Prop. 4.1.∑

W∈Ai

Pr(W) = p(t) ·
∏

Ci∈CharParts(Ai)

p(teCi
)

= p(t)Pr(g(Ai)).

Therefore,

PRp

k,s (t) =
∑

W∈A

Pr(W) =
q∑

i=1

(
∑

W∈Ai

Pr(W))

=
q∑

i=1

p(t)Pr(g(Ai)) = p(t)
q∑

i=1

Pr(g(Ai))

= p(t)
∑

We∈B

Pr(We).

7.5. Proof for Thm. 4.3

Theorem 4.3. Given a probabilistic relation Rp =
〈R, p, C〉 and an injective scoring function s, for any t ∈
Rp, the Global-Topk probability of t equals the Global-
Topk probability of tet

when evaluating top-k in the induced
event relation Ep = 〈E, pE , CE〉 under the injective scor-
ing function sE : E → R, sE(tet) = 1

2 and sE(teCi
) = i:

PRp

k,s (t) = PEp

k,sE (tet
).

Proof. Since tet has the lowest score under sE , for any
We ∈ pwd(Ep), the only chance tet ∈ topk,sE (We) is
when there are at most k tuples in We, including tet .

∀We ∈ pwd(Ep),
tet ∈ topk,s(We) ⇔ (tet ∈ We ∧ |We| ≤ k).

Therefore,

PEp

k,sE (tet) =
∑

tet∈We∧|We|≤k

Pr(We).

In the proof of Lemma 4.1, B contains all the possible
worlds having at most k − 1 tuples from E − {tet}. By
Prop. 4.1, ∑

tet∈We∧|We|≤k

Pr(We) = p(t)
∑

W ′
e∈B

Pr(W ′
e).

By Lemma 4.1,

p(t)
∑

W ′
e∈B

Pr(W ′
e) = PRp

k,s (t).

Consequently,

PRp

k,s (t) = PEp

k,sE (tet).

7.6. Complexity Analysis on U-Topk and U-kRanks

7.6.1 U-Topk

We study the OptU-Topk algorithm proposed in [20] for U-
Topk. First of all, it is worth mentioning that in OptU-Topk,
the notation sl,i does not uniquely denote a state. It can be
any state such that it is

13

• a top-l tuple vector in one or more possible worlds;

• ti is the tuple last seen in the score-ranked stream for
that state.

For example, we have seen t1 and t2 in the score-ranked
stream. s1,2 could be 〈t1,¬t2〉 or 〈¬t1, t2〉.

In the following discussion, we are going to use super-
script to refer to a unique state. The superscript is a bit vec-
tor indicating the membership of tuples seen so far for that
state. For example, s10

1,2 = 〈t1,¬t2〉 and s01
1,2 = 〈¬t1, t2〉.

Now, assume n is the number of all tuples, consider an
example satisfying the following two conditions:

• Condition 1: all the tuples are of positive probability
less than 1

2 , i.e. ∀t, 0 < p(t) < 1
2 ;

• Condition 2: state sb1
k,n is the winner under OptU-

Topk. Note that the bit vector ends with 1, which
means the last tuple seen, i.e. tn, is in sb1

k,n. In other
words, we need to exhaust the source to find the final
answer.

In this case, because all the tuples have probability less
than 1

2 , for all l′ < l and all possible bit vectors b′ for state
sb′

l′,i

Pr(sb′

l′,i) > Pr(sb
l,i) (3)

That is, the probability of sb
l,i is less than the probability of

any state that has seen the same tuples but is of lower length.
On the other hand, we have

Pr(sb
l−1,i−1) > Pr(sb0

l−1,i) > Pr(sb1
l,i) (4)

Eqn. (4) says the probability of sb
l−1,i−1 is higher than the

probability of any state derived directly from it (Property
1 in [20]). The second inequality in Eqn. (4) follows from
Eqn. (3).

By Condition 2 above, sb1
k,n is a winner. By applying

Eqn. (3) (4) recursively, in the worst case, it will enumerates
at least all the states of length k − 1. Therefore, there can
be at least

∑k−1
i=1

(
n
i

)
states being generated and inserted

into the priority queue before the source is exhausted or an
answer has to be reported. That implies that there could be
this many while loops (Line 5-19) in OptU-Topk algorithm.
At the jth iteration, the state extension at Line 16 takes 2m,
where m is a rule engine factor. The insertion to the priority
queue at Line 17 takes 2 log(j − 1) for the length (j − 1)
queue. Altogether, the algorithm costs

4m(
(
Pk−1

i=1 (n
i))∑

j=1

log j)

= 4m(log(
k−1∑
i=1

(
n

i

)
)!)

= Θ(m(
k−1∑
i=1

(
n

i

)
) log(

k−1∑
i=1

(
n

i

)
)).

By assuming k � n, and thus (
∑k−1

i=1

(
n
i

)
) = Θ(nk−1),

the above equation yields

Θ(kmnk−1 log n).

7.6.2 U-kRanks

We study the OptU-kRanks algorithm proposed in [20] for
U-kRanks. In the worst case when the source is exhausted,
the while loop (Line 6-25) will run n times. The for loop
(Line 8-23) runs for k times when depth > k. For each
for loop, in Line 9, there could be

(
depth
i−1

)
many states, each

needs the rule engine factor m for the extension. Altogether,
the algorithm costs

m

n∑
depth=1

(
k∑

i=1

(
depth

i− 1

)
).

By assuming k � depth < n in general, and thus
(
∑k

i=1

(
depth
i−1

)
) = Θ(depthk−1), the above equation yields

Ω(mnk−1).

7.6.3 Simple Probabilistic Relations

For a simple probabilistic relation, where all the tuples
are independent, [20] provides efficient optimization algo-
rithms IndepU-Topk and IndepU-kRanks for U-Topk and
U-kRanks respectively. IndepU-Topk keeps one state for
each length. IndepU-kRanks uses dynamic programming.
Both optimization algorithms are of O(kn) time complex-
ity.

7.6.4 Comments

The worst case happens to OptU-Topk and OptU-kRanks
when all the tuples are independent but no optimization
technique is used. Since [20] has separate optimization for
the independent case, the worst case will thus be the “al-
most” independent case, where most tuples are independent
but not all.

14

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases : The Logical Level. Addison Wesley, 1994.

[2] L. Antova, C. Koch, and D. Olteanu. World-set decompo-
sitions: Expressiveness and efficient algorithms. In ICDT,
2007.

[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
Uldbs: Databases with uncertainty and lineage. In VLDB,
2006.

[4] N. Bruno and H. Wang. The threshold algorithm: From
middleware systems to the relational engine. IEEE Trans.
Knowl. Data Eng., 19(4):523–537, 2007.

[5] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. In VLDB, 1987.

[6] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB J., 16(4):523–544, 2007.

[7] R. Fagin. Combining fuzzy information from multiple sys-
tems. J. Comput. Syst. Sci., 58(1):83–99, 1999.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. In PODS, 2001.

[9] N. Fuhr and T. Rölleke. A probabilistic relational algebra
for the integration of information retrieval and database sys-
tems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[10] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merg-
ing the results of approximate match operations. In VLDB,
pages 636–647, 2004.

[11] J. Y. Halpern. An analysis of first-order logics of probability.
Artif. Intell., 46(3):311–350, 1990.

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining
ranked inputs in practice. In VLDB, 2002.

[13] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. In VLDB, 2003.

[14] T. Imielinski and W. L. Jr. Incomplete information in rela-
tional databases. J. ACM, 31(4):761–791, 1984.

[15] L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Sub-
rahmanian. Probview: A flexible probabilistic database sys-
tem. ACM Trans. Database Syst., 22(3):419–469, 1997.

[16] A. Marian, N. Bruno, and L. Gravano. Evaluating
top- queries over web-accessible databases. ACM Trans.
Database Syst., 29(2):319–362, 2004.

[17] http://www.infosys.uni-sb.de/projects/maybms/.
[18] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.

Supporting incremental join queries on ranked inputs. In
VLDB, 2001.

[19] C. Ré, N. N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE, 2007.

[20] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query
processing in uncertain databases. In ICDE, 2007.

[21] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, 2005.

[22] X. Zhang and J. Chomicki. On the semantics and evaluation
of top-k queries in probabilistic databases. Technical report,
Dept. of Comp. Sci. and Engr., University at Buffalo, SUNY,
Dec 2007.

[23] E. Zimányi. Query evaluation in probabilistic relational
databases. Theor. Comput. Sci., 171(1-2):179–219, 1997.

15

