
 1

Murat Demirbas, Xuming Lu

Dept of Computer Science and Engineering, University at Buffalo, SUNY, NY 14260
{demirbas, xuminglu}@cse.buffalo.edu

Abstract— In contrast to the traditional wireless sensor
network (WSN) applications that perform only data collection
and aggregation, new generation of information processing
applications, such as pursuit-evasion games, tracking, evacuation,
and disaster relief applications, require in-network information
storage and querying. Due to the network dynamics that are
typical of WSNs, it is challenging to implement in-network
information storage and querying in a resilient, energy-efficient,
and distributed manner. To address these challenges, we exploit
location information and geometry of the network and present an
in-network querying infrastructure, namely distributed quad-tree
(DQT) structure. DQT satisfies efficient in-network information
storage as well as distance-sensitive querying: the cost of
answering a query for an event is at most a constant factor (in our
case 22) of the distance “d” to the nearest event in the network.
In addition, DQT can handle range query and complex query
effectively. DQT construction is local and does not require any
communication. Moreover, due to its minimalist infrastructure
and stateless nature, DQT shows graceful resilience to the face of
failures.

I. INTRODUCTION

Traditionally wireless sensor networks (WSNs) have been
treated mostly as data collection and aggregation networks.
Examples of such are WSNs deployed for environmental
monitoring [18][21] and military surveillance [1][2]. However,
as the WSN technology matured, WSNs started to serve more
as active information processing tools instead of passive
information gathering mechanisms. Examples of these
information processing WSNs include pursuer-evader
applications [4][19], evacuation applications [3] etc., where
mobile entities query the WSN on the spot to learn about their
surroundings. Latency and energy-efficiency suffer drastically
if these queries are always routed over multiple hops to a
centralized base station for resolution. Thus, in-network
information storage and querying techniques, such as data
centric storage [20] and geometric hash functions [17] have
been developed to address these issues.

While in-network querying alleviates the latency and
energy-efficiency concerns of information processing WSN
applications, certain requirements need to be satisfied by the
in-network querying service to be deployable in practice.
Firstly, the in-network querying service needs to be

distance-sensitive for querying and also efficient for
information storage. Distance-sensitivity for querying implies
that the cost of answering a query for an event should be at
most a constant factor “s” of the distance “d” to the nearest
event in the network. Efficient information storage for events
implies that the cost of advertising event information is at most
a constant factor of the diameter “D” of the network. It is
challenging to satisfy both properties simultaneously, since the
querying node and the event source are unaware of each other’s
location and straightforward methods satisfy one of the
properties to the extent of violating the other. For example,
directed diffusion [13] chooses to optimize the information
storage (O(1) cost) to the extent of querying (O(d2) cost).
Combs & needles optimizes querying, O(1), to the extent of
information storage O(D2).

Secondly, to be deployable in practice, the in-network
querying service should require minimal infrastructure and its
construction should be low cost. In-network querying
structures that require costly bottom-up constructions are
impractical and error-prone since flooding based constructions
are susceptible to severe message losses due to collisions, and
may even bring the entire network to a grinding halt.
Experimental work found that message loss due to burst of
collisions may amount to 50% of total traffic [1][2].
Furthermore, querying structures that employ an elaborate
structure may require high maintenance costs due to node
failures.

Finally, the in-network querying service should provide
graceful resilience to the face of node failures. By graceful
resilience, we mean that the performance degradation of
querying should be commensurate with the severity of faults.
That is, single mote (a WSN node [1]) failure should not impact
the performance of querying, the failure of large areas of nodes
may impact the performance only proportional to the diameter
of the resultant hole in the network and the functionality of
querying should be preserved unless the network is partitioned.
Contributions and overview: We present an in-network
querying infrastructure, namely Distributed Quad-Tree (DQT)
structure, which satisfies all the requirements above, and is
suitable for real-world WSN deployments.

DQT maintains a minimalist structure, and in fact, DQT can
be considered as stateless. DQT achieves this feat by
employing an encoding technique that maps a quad-tree over
the deployment area. Just by using the location information at a
mote and the coordinates of the top-left and bottom-right

Distributed Quad-Tree for Spatial Querying in
Wireless Sensor Networks

 2

corners of the deployment area, our encoding maps a WSN
mote to the corresponding level 1 box address. A level 1 box is
a smallest partition area in DQT. The addresses of the
clusterhead and neighboring clusterheads at each level for a
given node are easily derivable arithmetically using the node’s
DQT address. The implication is that the construction of DQT
is local and does not require any communication at all. By
exploiting the location information we avoid a costly
bottom-up construction.

In our DQT embedding, we choose clusterheads at each level
to be the ones closest to the base station at the center of the
network rather than the ones closest to the center of the box at
that level. Our use of geometry in selecting clusterheads
ensures that there are no backward links during the querying
and advertise operations. Note that selecting the clusterheads to
be the center of each level box results in backward links, and
suboptimal paths while going to the clusterheads at higher
levels. Our encoding and DQT structure construction is
discussed in Section 4.

DQT overlays a quad-tree structure on WSN, and satisfy
distance-sensitive in-network querying as well as efficient
information storage. The motivation for using quad-trees for
in-network querying in WSN comes from the extensive use of
quad-trees [7] in centralized algorithms domains especially in
the computational geometry area. For example, Quad-tree is
used for locating pixels in a 2-D image. Quad-tree partitions the
image into recursively four quadrants, where each node (except
leaf nodes) has four children. Due to the hierarchical
construction, the image can be stored at different layers with
more refined resolution at lower layers. Here, for our DQT
construction, we overlay a quad-tree in a distributed manner on
WSNs. Beside NN query of events, DQT is amenable to being
extended to arbitrary and complex queries rather than the
binary version “is there an event?” queries. For example, report
all the nodes with temperature higher than T1, or report all the
nodes within an certain area with temperature in [T1,T2].
Based on different types of range constraints, we further
classify the complex range query problems into two categories:
range optimization problems and domain optimization
problems. These two different types of problems are handled
by two specific strategies. The analysis of distance sensitivity
of event querying and how DQT is extended to handle the
complex range query are discussed in Section 5.

In DQT, since events and intervals information are stored in
each level clusterheads, a node exploit local information when
the query is introduced or propagated to that node. For example,
an event query introduced from the root node may answer the
query immediately without communicating to any other nodes
simply through searching the local information at various
levels. To solve complex range query problems more effiently,
we further proposed another query optimization scheme which
is called “proactive caching”. The principle is to take
advantage of relations between parent and children nodes and
skip some intermediate querying steps without sacrifice the

result integrity. We analyze the optimization scheme in detail in
Section 6.

The stateless operation of DQT makes it resilient to the face
of node failures and topology changes. To achieve resiliency
while routing to clusterheads or neighbors in the structure,
DQT maps the DQT address of the destination to the physical
coordinates, and leverages on the resilience of a geographic
routing scheme (such as GPSR) [15] for delivering the message.
Since mote failures do not often lead to failure of a level 1 box,
single node failures do not affect the performance of DQT. In
the case of failures of motes in an area, GPSR delivers a
message addressed to a box in that area to a mote on the
boundary of the hole. Since DQT is stateless, the recipient mote
easily acts as a proxy on behalf of the intended destination box,
and determine the next step in the query or advertise operation
by simply plugging the destination box id (instead of its own
box id) into the corresponding procedures for the DQT
operation. This way, failures of motes in an area degrade the
performance of DQT operations proportional to the size of the
area. Essentially, the degradation is equal to that of routing
stretch in GPSR due to the holes. DQT preserves correct
functionality unless the network is partitioned, and even then,
functionality is satisfied within each partition. We discuss the
resilience of DQT in Section 7.

Our simulation results using ns2 serve as empirical
validation of scalability, distance-sensitivity, and resilience of
DQT. We present our simulation results in Section 8.

II. RELATED WORK
Centralized querying has been the common mode of

querying in WSN. For this mode of operation, the base station
acts as the point where the query is introduced and results are
gathered. For example, in TinyDB [16], queries are first parsed
at the base station and disseminated in a simple binary format
into the sensor network to be executed. This centralized
structure may not be feasible for distributed and self-organizing
sensor networks since: (1) such a base station may not exist, (2)
for in-network queries, a query may be introduced from any
node in the network and propagating the query to the base
station is costly.

Geographic Hash Tables (GHT) [17] gives a simple solution
for in-network querying problem: GHT stores and retrieves
information by using a geographic hash function on the type of
the information. GHT can hash event information far away
from the nearby query nodes, and thus violate the distance
sensitivity of querying. The average cost of GHT is D/3
according to [5], where D is the diameter of the network.
Although hierarchical version of GHT alleviates this problem,
the problem cannot be solved entirely. DQT structure improves
over GHT by providing the distance sensitive querying.

To support efficient in-network queries and to store the
indexes of data, some sort of hierarchy seems beneficial. Here
the idea is to push the query to the higher levels until it is

 3

resolved at some level. The query then traverses the subtree to
get relevant information. Distance Sensitive Information
Brokerage (DSIB) protocol [8] achieves distance-sensitivity in
a hierarchically partitioned network by using a push-based
approach: an event advertises to neighbors as well as its parents
at every level of the hierarchy. DSIB does not require
localization information and relies purely on communication
topology. To this end, DSIB introduces a costly bottom-up
construction and a special purpose routing algorithm. In
contrast, DQT assumes localization information and in turn is
able to provide an efficient local construction. Using of
localization information is not impractical via GPS or other
localization techniques. Real-world WSN deployments such as
Lites [1] and Exscal [2] already have utilized localization
information in their construction. Also DQT relies on the
resiliency of the GPSR rather than introducing a routing
algorithm.

Distributed Index for Features in Sensor network protocol [9]
considers arbitrary and complex queries, and extends
traditional binary-tree and quad-tree by allowing multiple
parents and multiple roots. DIFS is susceptible to the distance
sensitivity problem: a node may have several parents, some of
which probably located far away. Moreover, it is costly to
construct the DIFS structure, and update operations are also
expensive. This is the price DIFS pays to handle arbitrary
complex queries about sensor values rather than just binary
event information.

III. MODEL

We assume that the WSN motes sit on a two dimensional
plane and their coordinates (x,y) are made available to
themselves. We assume a connected network and availability
of geographic routing such as greedy perimeter stateless
routing (GPSR) [15] or CLDP [14]. There may be coverage
holes in the network, but no partitions (i.e., isolated regions).
Our analytical results for DQT are proved in Section V in the
absence of holes in the network, and in Section VII via
simulations we show how they hold up in the presence of holes
in the network.

As we describe in the next Section, the network is divided
into grid cells while embedding a DQT over the network. A
level 1 box in DQT constitutes the smallest cell area in the DQT
structure. We assume that all motes inside a level 1 box are
within one hop distance. In our terminology, a mote refers to a
physical WSN node, while a “node” refers to a virtual DQT
node, such a level 1 box.

The cost of querying an event is measured as the number of
hops traveled from the querying mote to a mote that holds an
advertisement about the event.

IV. DQT STRUCTURE AND CONSTRUCTION

Figure 1, Node addressing and tree structure

For constructing DQT, we employ an encoding trick first

presented in [10]. As such, each level 1 box in the structure is
assigned an ID which uniquely identifies a region. The length
of the ID is equal to the number of levels. We use this
addressing scheme to preserve the location information of a
node. Due to the way we construct level 1 boxes, this scheme is
independent of the number of nodes, but relies on the partition
levels. Fig.1 illustrates the addresses of the nodes in a
partitioned region with 3 partition levels.

Similar to the centralized quad-tree, DQT is a hierarchical
structure. In each level of partition, a node is assigned as
clusterhead node of the region. The clusterhead is always its
own child in lower levels. The clusterhead at each level
partition is statically assigned to be closest node to the
geographic center point of the entire network. For example, in
level 1 partition, node 003 is selected as clusterhead for 00
region, because it is closer to center than nodes 000, 001 and
002. Similarly, node 033 is selected as level 2 clusterhead, as it
is closer to the center than level 2 nodes 003, 013, and 023. The
node closest to the center of the entire network in each
subpartition is selected as the parent node of that subpartition.
The benefit of such a selection is to avoid backward links. For
example, in Fig.1, node 000 propagates the query to its root
node 033 by first contacting parent node 003, then 003’s parent
033. The shortest path is gained since there is no backward link

 4

on the querying path. A DQT node may belong to different
levels in the hierarchy depending on its location. If a node is a
member at level k, it is also a member of level 1. We denote a
node p’s parent as p.parent and children as p.child. The
neighboring nodes are also called siblings, which are denoted
as p.sibling.

 This structure is quite simple and adapts to
multi-dimensional sensor readings, such as (temp, light,
humidity), since the construction of DQT is not related to the
sensor value. Another difference between DQT and the
centralized quad-tree is that DQT does not need a root of the
tree. The four nodes in the top level function as the root.

4.1. Mapping from localization to DQT addressing
Each node in DQT can calculate the DQT address of the

level 1 partition it resides in from its x,y coordinates easily. Let
(xs,ys) at NW and (xe,ye) at SE be the two endpoints of the area
where DQT should be overlayed. Assume DQT have i levels.
The area of each level 1 box of partition is lw* , where width

i
se yyw 2/)(−= and length i

se xxl 2/)(−= . Then DQT
address of a node(x,y) can be calculated as:

2*)2(mod
)(

)2(mod
)(

_ ⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
=

l
yy

w
xx

addrDQT ss

The mapping calculates the X and Y address separately, and

then adds them together. We can verify this from Fig. 1, for
instance, node ID 033 is obtained by adding 011 and 022, and
node ID 332 is obtained by adding 110 and 222. The reason
that the second term in the DQT address calculation is
multiplied by 2 is because the Y addresses pace by 2 for every
increment in DQT addressing scheme. Given this mapping, any
node can locally compute its DQT address based on its
coordinates (x,y).

Besides the DQT address, each node also maintains its (x,y)
coordinate address. This location information is used in GPSR
routing in querying and advertising. Since GPSR routing only
requires single hop information, which has already been cached
as level one neighbors in our structure, it is quite simple to
adapt WSN. When the coverage has irregular holes, local
optimal path can be reached using right hand rules in GPSR. By
using the above encoding trick and assigning DQT addresses
for DQT nodes, we can start constructing the DQT structure.

4.2 DQT Local Construction
DQT uses local construction instead of bottom-up

construction to reduce communication cost during initial
construction. A static and local scheme that uses the address of
the box suffices for calculating every level clusterheads and
neighbors. Each node may have neighbors at N, S, E, W, NE,
NW, SE and SW. The following two methods can be used to
find the clusterhead and neighbors at level i.

The clusterhead find algorithm discovers the relation of the

DQT address to its clusterhead. We find that in NW region of
the map, nodes with DQT-address “3” at level i become the
clusterheads at the corresponding level. Similarly, in NorthEast
partition, nodes with DQT-address “2” at level i become the
clusterheads. In Fig.2, p.address(h) is the highest bit of the
DQT-address, which determines the region of a node. This
algorithm guarantees the clusterheads at each level are closer to
the map center than any children (except for itself).

To find the neighbors, we make use of the location
information. We use node p and node q to represent the
originator and its neighbor. First we use p’s location
information and increase its coordinates x, y value by a level i
box lateral length to find a neighbor node in each direction. If
either of x or y value exceeds the range of the map, we ignore
that neighbor. For each of these nodes, we find their level i
clusterheads. These clusterheads are node p’s level i neighbors.
For instance, given a node 20l at level 2, we can find its
neighbor at north direction by following two steps: (1) Reduce
Y value by a level two box length, then we can locate the node
021 through the new (x,y) coordinates; (2). Find the
clusterhead for node 021 at level 2, which is 023.

V. EVENT QUERY IN DQT
 Before discussing querying in detail, we discuss how events

are indexed in DQT.

Procedure Cluster_head_Validate (node p,level i)
Switch (p.address(h))
Case 3: //p in SE region
 { If p.address(i) == 0, then return true; else return false}
Case 2: /p in SW region
 { If p.address(i) == 1,then return true, else return false}
Case 1: //p in NE region
 { If p.address(i) == 2, then return true, else return false}
Case 0: // p in NW region
 { If p.address(i) == 3, then return true, else return false}

Figure 2 clusterhead validate algorithm

Procedure Neighbor_find (node p,level i)
For each direction(N,S,E,W,NE,NW,SE,SW)
{
q.x =p.x + 2i*l
q.y= p.y + 2i*w
while(p.x &&p.y)
 { Cluster_head_Validate(node q, level i)}
}

 Figure 3: Neighbor finding algorithm

 5

5.1 Indexing of event information

Figure 4, node 003’s sibling structure
In any hierarchical structures as with DQT, some multi-level

boundary nodes are far away from each other, while actually
they are placed nearby. High latency maybe introduced if the
search follows the path of the tree strictly. For example in Fig.1,
node 011 and 100 are neighbors. A query from node 011 to
node 100 may route to higher level clusterheads such as node
013 and node 033. Our solution is to use sibling links to nearby
intermediate nodes. A sibling link is the link between a node
and its neighbors in each direction (so each may at most have 8
sibling neighbors). The sibling links only exists between nodes
on the same level in the structure. Fig.4 illustrates the vision of
an intermediate node 003 in the distributed quad-tree structure.
The nodes with “#” are level 1 sibling nodes, the nodes with
“##” are level 2 sibling nodes. A node at level i maintains the
event information of its cluster, as well as the event information
of its neighbors. A node at level i also maintains the interval
[Min,Max] information of its cluster for each attribute. Higher
level nodes holds wider interval ranges but less detailed
information of its subtree. For root nodes also exchanges their
interval information so that each root knows the interval of
entire structure. This is costless and reasonable since root nodes
are adjacent neighbors geographically.

When an event is detected at a level 1 node p, p contacts its
immediate parent node at level 1. The parent node updates its
record for that child. Node p also contacts it sibling nodes to
update their records accordingly. Recursively, the update
operation is executed till the top level. This is similar to the
information storage scheme discussed in [8] and the sibling
links in Stalk [6].

5.2 Nearest Neighbor query
Nearest Neighbor (NN) query is defined as, finding the data

object which is closest to the querying object given a set of
objects. The classic NN query returns exactly one object as a
result. In WSNs, a query can be started at any location. The
initiator of a query is the node where the query is entered into
the system. The query point is the node for which you want to
get NN query result. Query point by default is the same node as
initiator of query but it may be specified to be any point in the
network.

Our algorithm prevents the propagation of searching to
higher levels, if it can be answered locally. Through taking
advantage of the spatiality information, both the query
efficiency and latency is greatly improved. Our query strategy
is to start the query at the query point using local information
because the node may belong to multiple levels and therefore
hold multi-layer information locally. If no result is obtained,
the query is propagated to its parent recursively. At some level
the event information is reached, the query is then stopped and
returned to the originator.

What if the query point is at another location? That means
the initiator of the query and the query point belong to two
different nodes. First the query is passed to the query point
from the initiator of the query using GPSR routing scheme, and
then this querying process is started from the query point. The
following results are in the absence of faults. In the simulation
section, we talk about the presence of faults.
Theorem 1. A DQT node at level i stores O (i) information.
Proof. A node at level i is clusterhead from level 1 to i along the
path. The number of neighbor nodes at each level is less than or
equal to eight. Therefore the node need 9*i (including one
interval record for its subtree) space and stores O(i)
information.
Theorem 2. The total space needed for the construction of
distributed quad-tree is less than 12*b.
Proof: According to Theorem 1, level 1 nodes use up a 9*b
space internal, where b is the total number of level 1 nodes.
Similarly, all level 2 nodes total to a 9*b/4 space usage. Thus,
the total space needed for constructing the distributed quad-tree
is:

b
b

bbbb 12)11(*12)1...
44

(*9 2 <−=++++

Theorem 3. The distance between a level i node and its
neighbors is at most 2*2 i hops.
Proof: According to the partition rule of quad-tree, a level i
node is the clusterhead of a 2i *2i area. The distance between a
level i node and its neighbors is either 2i (for N,S,E,W
neighbors)or 2*2 i (for NE,NW,SE,SW neighbors)
depending on the Direction. Since the clusterhead is one of its
neighbors at level i, so the distance between a level i node and
its clusterhead is also less than 2*2 i hops, which is the
diagonal distance of a level i partition.
Theorem 4. The distance stretch factor s for spatial query in
our structure is 22 in worst case. In another words, an event
d hops away can be achieved by the querying node within

22*d hops.
Proof: A query from an intermediate level node does not
constitute the worst case. The reason is that the clusterhead
nodes holds multi-levels information locally and this local
cache can be used to answer queries. So, let’s consider a query
from a bottom level node that reaches a level j clusterhead. We
define the query cost as the number of hops from the query
point to the node that holds the result.

000

001

011

012 100

002

003 012

013

102

020

021

030

031 120

021 023

032 033

122

022 201 210 211 300

 6

d

d1

P

M

Q

Figure 5. Distance stretch factor s analysis

In Fig.5, d1 is the distance from querying point P to the level
node M that the query is propagated, and d is the distance from
P to Q. Distance stretch factor s is dds /1= .

According theorem 3, the distance from level i-1 node to its
parent node (level i) is 2*2 1−i hops. Since the backward
links are avoided in going-up phase, the total distance from
level 1 to level j can be calculated as

2*)2..2(2 1-j21 +++ ,which is overall
jd 2*21 = hops. Since P and Q are not i-1 level neighbors,

the distance 12 −≥ jd . The equivalence is true when P and Q
are located exactly on the opposite borders of a level i-1 box.
Hence:

dds /1= 12/2*2 −≤ jj 22=
 Based on the result on case 1 and case 2 analyses, we
conclude that our structure is distance sensitive with a distance
stretch factor 22 .

5.3 Event query optimization
As a variation of our event query algorithm, we provide an

optimization scheme for event query in the case when the event
is not advertised in the neighbors. This means only its parents
are published of the events. Thinking of the following query
problem: reporting all the event information in the list of
IDs(ID1,ID2,..). With brute force solution, this query is sent to
all of included nodes. But if there is a query that discovers two
sibling nodes which share the same parent, the query could be
sent to its parent node directly, since the parent node hold their
information. Let’s analyze how it can reduce communication
costs through proactive caching.
Figure 8 shows an example of parts of the region. The gray

nodes (013/102/033/122) are level 1 cluster heads. Suppose the
query is introduced through node 013. Since node 030 and
node 031 in SW region are neighbors, node 013 may contact
the cluster head (node 033) directly, instead of the contact node
030 and node 031 respectively. The table shows that in overall
costs, the proactive caching scheme can reduce communication
costs (measured as number of hops). In this example, five hops

are reduced for south and southeast and east neighbors. The
cost in going up phase is reduce by 38% (Tup is 13 hops).

Figure 6: proactive caching to reduce communication costs

 Let λ i

j
 be the querying node’s neighbor j at level i. The

communication cost i
jC is measured as the number of round

trip hops from the querying node to the target node. The total
cost for going up phase without proactive hashing is:

∑ ∑
= =

=
L

i

N

j

i
j

i

jup CT
1 1

*λ

where L is the highest level that the query is propagated and N
is the maximum number of sibling neighbors at level i. We
have L <= O(logn) and N <= 8. The cost is not only rely on the
query itself (Which level the query may arrive), but also
depends on the location of the query point. For example, the
nodes at boundary area have fewer neighbors at each level than
internal nodes. The nodes close to center point may have fewer
costs for some neighbors.
 The optimization scheme mainly optimized the going up
phase. We denote Ui as the nodes (),0[NU i ∈) in level i
neighbors that also belongs to level i+1 cluster heads, and have
additional neighbors belongs to children; denote Vi as the nodes
in level i neighbors that also belongs to level i+1 cluster heads,
but do not contain any children in level i neighbors. We have
Ui+Vi <=8. For example node 030 in figure 1, the level-2
neighbor at SE is node 300, which do not have other 030’s
neighbor nodes whose parent is node 300. So node 030 belongs
to Vi and node 211 belongs to Ui.. So the reduced cost (Rc) in
our scheme is:

∑∑∑∑
== =

+=
L

i

V

j

i
j

i

j

L

i

U

j

i
j

i

jc

ii

CCR
11

2

1
** λλ

We find from the equation that the reduced cost is more
sensitive to the first part: that is the nodes belong to Ui group
make more contributions to reduce the communication cost in
our algorithm. The best case is when Vi =0, all neighbors belong
to Ui group, the cost reduction is ∑ ∑

= =

L

i

U

j

i
j

i

j

i

C
1

2

1

*λ ; whereas the

 L1 L2 Total
without 1 2 3
with 2 0 2
SE neighbors of node 013

 L1 L2 Total

without 2 2 4

with 1 0 1
South neighbors of node 013

without proactive caching
with proactive caching

010 011 100 101

012 013 102 103

030 031 120 121

032 033 122 123

 7

worst case is when Ui =0, all the neighbors belong to Vi group,
the cost reduction is ∑ ∑

=

L

i

V

j

i
j

i

j

i

C
1

*λ . The best case happens

when the level i partition is an internal box, with no neighbor
crossing the highest level partition borders, while worst case
happens if that box contains the center point.

VI. COMPLEX RANGE QUERY
The purpose of range query is to find a group of nodes in a

given query range. The results are unknown, it may involve all
the nodes if the range covers, or may return empty if the query
is out of the range limitation. Very similarly, the query can be
started from any nodes and is executed in a distributed manner.
Following are some of the range query examples in WSN:
What are the nodes whose temperature is great than T1 within a
certain area? Reporting or counting the sensor nodes within the
temperature range [T1,T2] and pressure range [P1,P2] ? In
general cases, the queries are associated with geographic
constrains, e.g, report the nodes with temperature greater than
T1 within the rectangle area enclosed by [x1,x2] and [y1,y2]. If
there is no explicit range constrains in the query, e.g, reporting
the nodes with the temperature in [T1,T2] and pressure in
[P1,P2], by default the query range is the entire coverage area.
This is considered as a special case in complex range query. In
this section, we propose a generalized algorithm to resolve the
complex range query problems.

In complex range queries, the results are a set of ordered
nodes in compliance to the measurement. Another difference is
range query contain both going-up and going-down phase,
while only going-up phase in necessary for event query. Our
algorithm reduces the complexity and space in [9] in that
instead of storing the T(p) information for all the siblings from
p to the root, this algorithm only stores the information of the
sibling for current level, except some nodes that belongs
several levels. Each sensor node p at level i stores the neighbor
information at current level, as well as the T(p) information for
it’s subtree. If the entry node itself is the cluster head for
multi-levels, even more efficiency is achieved through local
caching, because the locally saved high level information can
be used to answer query or prune branches. This is because a
level 3 node is also a level 2 and level 1 node, and a level 2 node
is also a level 1 node. In the case a query is sent to a level 2
node from child, if it is also a level 3 node, then the query is
pushed to level 3 without any communication cost.

Our strategy to resolve complex range queries is to make use
of the geometric information. Suppose query range is enclosed
area with points (x1,y1) and (x2,y2). First we calculate the span
of each direction Sh and Sv:

112(log

1)12(log

2

2

+
−

=

+
−

=

w
yyS

l
xxS

v

h

where w and l is calculated in section 4.1. Then we are
confident about the following facts: horizontal constrain is
within two level Sh neighbors, and the vertical constrain is

within two level Sv neighbors. Then, the constrained area lies
within two level MAX(Sh, Sv) neighbors overall. The query is
then directly propagated to a level MAX(Sh,Sv) node in the
constrained range. For example, if MAX(Sh,Sv)==1, the query
region lies within two level 1 neighbors. We need to proof this
query strategy does not leak any results. Since we choose
MAX(Sh,Sv) as the level of nodes to query, we only need to
guarantee that in each direction our strategy contains all the
possible nodes. It is simple to verify that for unit length l and
width w , they can only lie within 2*l and 2*w(which is two
level 1 neighbors) distance in each corresponding directions;
similarly, for each 2*l and 2*w, they lie within 2*(2*l) and
2*(2*w), which is two level 2 neighbors; and so on and so
forth…so this scheme is guaranteed of correctness. Our
algorithm to solve complex range query problems is show in
Figure 6 and Figure 7. The general idea is to find the least level
pair of neighbors which can cover range constraints and send
the query to that clusterhead using GPSR protocol. This is a top
down scheme. It is efficient because we simplified the going
up phase and reduced cost, it is correctness

For the special case as we mentioned before, the query is sent
to the root node since the root nodes hold the interval
information of the entire network. The result of MAX(Sh,Sv)
equals to the number of levels in the structure. If any of the
query range is beyond the recorded interval, then empty result
is returned immediately. Otherwise, select one of requirement
with tight most constraint attributes as the primary pruning key.
Then this query is pushed down to each child with necessities
pruning of subtrees.

RangeQuery_topdown (Node q, Nodeset p, Metric m) {
While(q.sibling){
If (m∈T(q)
then
 { initialize the partition list of p=q.children
 for each p=p.child in the list
 { If(m∈T(p))

if p is a leaf node
 {then add p to the nodeset RQp}

else (add p to the nodeset RQp and
send query to its children)

 else prune the subtree
 }

}
Return RQp;

}
else
 return EMPTY
}

Figure 7: Top down procedure for clusterhead nodes.

 8

Why we use top-down querying scheme to answer range

query? The reason is that any value can be located anywhere in
theory. We cannot filter out any nodes unless the range is
specified explicitly in the query. But if some model of sensor
data is available, other optimization schemes can be applied
such as proactive caching and bottom-up approaches, which
are left for future work.

VII. FAULT TOLERANCE
DQT is fault tolerant due to several aspects.
First, any leaf mote failure does not cause any update

operation and structure change. For a dense sensor network,
each level 1 partition contains several nodes. All nodes in the
same partition share a common DQT ID. DQT structure is
stateless, which means the nodes do not need to maintain a state
of its own. The neighbors are computed in initial construction
phase through local computing, which not only reduces
communication cost but also improves the system reliability.

Second, DQT can handle coverage holes nicely. Only if all
the motes inside a level 1 partition fail (although this is unlikely
to happen) a hole may be formed in DQT. Using the right hand
rule, GPSR re-routes the information to the closest node to the
target node, which we call proxy node. The proxy node
pretends to be the target node and find its neighbors through
local computation. Then it follows the event or range searching
algorithm we discussed in previous sections. The structure is
robust once constructed. Shape change of a hole only changes
the selection of proxy nodes, and has little influence on other
nodes.

In event query scenarios, failure of nodes may cause the
following two cases. Case 1: Failures happen before the event
advertisement. When a target node of event advertising fails,
the event is published to proxy node by default, which in theory
is the closest node to the failure node. The failure of advertising
destination node will not affect the query result in theory, since
it can reach the proxy node. Case 2: The event has already been
published in the structure before the failure happens. In this
case, the event is still reachable unless all the nodes along the
querying path were dead. When a node with event
advertisement dies, queries to this node are passed to its parent
node. We will further discuss the performance of each case in
simulation part.

VIII. SIMULATION
We investigate the performance characteristic of DQT using

the ns-2 wireless network simulator. Our simulations mainly
focus on two aspects: stretch factor and fault tolerance. 256
nodes are simulated in our experiment, which are uniformly
distributed in a 2-dimensional square of 3200x3200. The
distance between each node is 200m, while the transmission
range is set to be 250m. Therefore the average degree is about 4
in the field except some border nodes. That is, not all the level 1
neighbors are reachable via single hop. The geographic
location of each node is available, and is used to construct the
DQT structure in initial phase. The height of the DQT tree is 4,
with 4 roots at the top level. The cost of querying an event is
measured as the number of hops from the querying node to the
node that holds an advertisement about the event.

Our experiments focus on node-level behavior instead of
mote-level behavior. Recall that each node represents a level 1
box in the map. As a result, a node failure in our experiment
means all the motes in an area of the corresponding level 1 box
failed. Currently our simulation only handles the event
querying. The performance for complex range query is left for
future work.

8.1. Stretch factor in the absence of faults
 We have proved in Theorem 4 that the stretch factor in worst
case is 22 . We calculate the average distance stretch factor
through 100 runs of each experiment. In each round, a
query/sink node pair is randomly chosen. We use two
measurements s and s’, where s is the ratio of the DQT
querying cost to the distance between the query and the event
node and s’ is the ratio of the DQT querying cost to the GPSR
cost. The value of s show the ratio to ideal cost, whereas s’ ratio
of routing a message from the querying point to the event. We
found the average s is around 0.6 and s’ is around 0.5 in
absence of faults. The reason that s is much smaller than

22 is that the worst case scenarios only occupy a small
percentage of the total. Our scheme has a considerably smaller
stretch factor compared to the DSIB scheme, which has an
average value 0.9~1.

Fig.9 illustrates the average stretch factor s and s´, as well as
their standard deviations where the event and querying pairs
are randomly selected with varied distance between the query
node and event node. For nearby pairs, the s and s´ tend to be
close to 1, since either GPSR or DQT makes little difference.
The average stretch factor s decreases with the increase of the
distance of query/event pairs. But we also find, that when the
distance is close to the diameter of the map (such as to 14/16
etc), s and s´ slightly increase again. We call this phenomenon
border effect. The reason is that when the pair of nodes
approach the borders of the maps, they are less likely to be
connected through their common neighbors.

RangeQuery (Node q, Nodeset p, Metric m) {
calculate i = Max(Sh,Sv);
Cluster_head_validate(node q’, level i);
send query q’;
Start RangeQuery_domain procedure in the current node;
}

Figure 8: Algorithm for complex range queries.

 9

Figure 9: Stretch factor s and s´ with varied query distance

8.2 Fault tolerance
DQT is robust in that a single mote failure will not change

the structure and the query operation. To evaluate the
performance of DQT, node failure in the structure is
experimented. We use the same topology and setting in our
experiment. We randomly remove a certain percentage of
nodes, namely from 2% to 20%.

We first experiment on the DQT query success rate with
node failure. Note that, for case 1, the event still publishes in
proxy node when the destination node fails. Theoretically there
is no failure for querying, unless GPSR fails to forward along
the path or the network is isolated. In case 2, the query is
extended to the parent node when a node with event
advertisement fails. A query may fail when all event nodes
along the querying path fail. Fig.10 shows that for case 1, when
query success rate can drop down to 95% when 20% of nodes
fail. However, for case2, the DQT scheme itself may fail
besides the GPSR routing failure. The failure rate goes up to

Figure 10: DQT success rate for case 1 and case 2

Figure 11: Stretch factor with node failure: Case 1

15% in case 2. The result may vary in real environment due to
the increase of GPSR failure and link asymmetry. Increasing
the degree of nodes or node density is helpful in improving the
query success rate.

From the stretch factor point of view, case 2 is also worse
than case 1. Fig.11 and Fig.12 illustrate the stretch factor with
varied possibilities of node failure for case 1 and case 2. In both
cases, DQT works fairly well within 10% failure of nodes.
With the increase in the failure rate, the value s get worse
quickly for both cases, because the query circumvents the holes
(due to failure), which increases the cost of searching rapidly.
Case 1 performs better than case 2 because in the occurrence of
holes, case 2 circumvents the hole and query its parent, while in
case 1, the event is achievable through a proxy node. The s´

remains relatively small since the same overhead applies for
GPSR to overcome the coverage holes. The results also
indicate that the degradation of performance is smooth overall.

Finally, for case 2, we plot the trends of s and s’ with respect
to query distance in Fig.13. Obviously, the failure of nodes
affects the overall performance of the DQT. When the failure
rate increase, both s and s’ will increase for each distance. The s
and s’ is more closely related in the absence of failure or when
the failure rate is small.

Figure 12: Stretch factor with node failure: Case 2

 10

Figure 13: Stretch factor under different failure rate

IX. CONCLUSION
We presented an in-network querying infrastructure, namely

distributed quad-tree (DQT) structure, suitable for use in
real-world WSN deployments. DQT satisfies
distance-sensitive querying as well as efficient information
storage in network. DQT construction is local and does not
require any communication. Moreover, due to its minimalist
infrastructure and stateless nature, DQT shows graceful
resilience to the face of node failures.

 DQT is amenable to being extended to arbitrary and
complex queries rather than the binary version “is there an
event?” queries we presented here. Since the queries are
arbitrary, the information advertisement cannot anticipate all
queries, and only a summary of sensor data is stored for
energy-efficiency purposes. As such, for resolution of queries
there may be several matching options that need to be explored
but may not satisfy the query and may result in back-tracking.
In this case several query optimizations are possible to improve
the performance. We present a DQT solution for answering
complex range querying and a “proactive caching”
optimization scheme further to improve query efficiency.

 The stateless nature of DQT makes it resilient to topology
changes. In fact, it may be possible to extend DQT to provide a
location service for mobile ad hoc networks. The idea is to retry
a query until it catches up with the mobile target. Even though a
target node may move during the query execution and leads to a
miss, the query when invoked from this new location closer to
the target node will have a better chance to catch up to the
target node due to the distance-sensitivity property in DQT.

REFERENCES.
[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, et al., A Line in

the Sand: A Wireless Sensor Network for Target Detection, Classification,
and Tracking, Computer Networks, Vol. 46, Issue 5, pp. 605-634, Dec. 5,
2004.

[2] A. Arora, R. Ramnath, E. Ertin, and P. S. et. al., Exscal: Elements of an
extreme scale wireless sensor network, in 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2005.

[3] C.K.Constantine, Sensor Networks Applied to the Problem of Building
Evacuation: An Evaluation in Simulation, Proceedings of the 15th IST
Mobile and Wireless Summit, June 2006, Mykonos, Greece.

[4] M. Demirbas, A. Arora, and M. Gouda, Pursuer - Evader Tracking in
Sensor Networks. Sensor Network Operations, chp.9, IEEE Press, May
2006.

[5] M. Demirbas, A. Arora, and V. Kulathumani. Glance: A Lightweight
Querying Service for Wireless Sensor Networks. OPODIS'06 December
2006.

[6] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A Hierarchy-based
Fault-local Stabilizing Algorithm for Tracking in Sensor Networks. 8th
International Conference on Principles of Distributed Systems (OPODIS),
France, December 2004.

[7] R. Finkel and J.L. Bentley , Quad Trees: A Data Structure for Retrieval on
Composite Keys. Acta Informatica ,1974,4 (1): 1-9.

[8] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distancesensitive
routing and information brokerage in sensor networks. In DOCSS, 2006.

[9] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker.
Difs: A distributed index for features in sensor networks. First IEEE
Ineternational Workshop on Sensor Network Protocols and Applications,
May 2003.

[10] I. Gargantini. An effective way to represent quad-trees. Commun. ACM,
5(12):905--910, 1982.

[11] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, Fractionally Cascaded
Information in a Sensor Network, Proc. of the 3rd International
Symposium on Information Processing in Sensor Networks (IPSN'04),
311-319, April, 2004.

[12] J.Hightower, G.Borriello,"Location systems for ubiquitous computing."
IEEE Computer, Vol. 34, No. 8, August 2001 pp 57-66

[13] C. Intanagonwiwat, R.Govindan ,D.Estrin, Directed diffusion: a scalable
and robust communication paradigm for sensor networks, Proceedings of
the 6th annual international conference on Mobile computing and
networking, p.56-67, August 06-11, 2000, Boston, United States.

[14] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing
made practical. In Proceedings of NSDI 2005, pages 217.230, May 2005.

[15] B. Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for
wireless networks. In MobiCom: Proceedings of the 6th annual
international conference on Mobile computing and networking, pages
243–254, 2000.

[16] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design
of an acquisitional query processor for sensor networks. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, San Diego, June 2003.

[17] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker. Ght: a geographic hash table for datacentric storage. In
WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 78–87, 2002.

[18] R. Szewczyk, A. Mainwaring, J. Polastre and D. Culler, An Analysis of a
Large Scale Habitat Monitoring Application, Sensys 2004.

[19] L. Schenato, S. Oh, and S. Sastry, Swarm coordination for pursuit evasion
games using sensor networks, in Proc. of the International Conference on
Robotics and Automation, Barcelona, Spain, 2005.

[20] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan and D. Estrin,
Data-centric Storage in Sensornets, in Workshop Record of the First
Workshop on Hot Topics in Networks (HotNets-I), October 2002

[21] G.Tolle, J.Polastre, et.al, A Macroscope in the Redwoods, In Proceedings
of the Third ACM Conference on Embedded Networked Sensor Systems
(SenSys), November 2-4, 2005.

