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Abstract— In contrast to the traditional wireless sensor 
network (WSN) applications that perform only data collection 
and aggregation, new generation of information processing 
applications, such as pursuit-evasion games, tracking, evacuation, 
and disaster relief applications,  require in-network information 
storage and querying. Due to the network dynamics that are 
typical of WSNs, it is challenging to implement in-network 
information storage and querying in a resilient, energy-efficient, 
and distributed manner.  To address these challenges, we exploit 
location information and geometry of the network and present an 
in-network querying infrastructure, namely distributed quad-tree 
(DQT) structure. DQT satisfies efficient in-network information 
storage as well as distance-sensitive querying: the cost of 
answering a query for an event is at most a constant factor (in our 
case 22 ) of the distance “d” to the nearest event in the network. 
In addition, DQT can handle range query and complex query 
effectively. DQT construction is local and does not require any 
communication. Moreover, due to its minimalist infrastructure 
and stateless nature, DQT shows graceful resilience to the face of 
failures.  

I. INTRODUCTION 

Traditionally wireless sensor networks (WSNs) have been 
treated mostly as data collection and aggregation networks. 
Examples of such are WSNs deployed for environmental 
monitoring [18][21] and military surveillance [1][2]. However, 
as the WSN technology matured, WSNs started to serve more 
as active information processing tools instead of passive 
information gathering mechanisms. Examples of these 
information processing WSNs include pursuer-evader 
applications [4][19], evacuation applications [3] etc., where 
mobile entities query the WSN on the spot to learn about their 
surroundings. Latency and energy-efficiency suffer drastically 
if these queries are always routed over multiple hops to a 
centralized base station for resolution. Thus, in-network 
information storage and querying techniques, such as data 
centric storage [20] and geometric hash functions [17] have 
been developed to address these issues. 

While in-network querying alleviates the latency and 
energy-efficiency concerns of information processing WSN 
applications, certain requirements need to be satisfied by the 
in-network querying service to be deployable in practice. 
Firstly, the in-network querying service needs to be 

distance-sensitive for querying and also efficient for 
information storage. Distance-sensitivity for querying implies 
that the cost of answering a query for an event should be at 
most a constant factor “s” of the distance “d” to the nearest 
event in the network. Efficient information storage for events 
implies that the cost of advertising event information is at most 
a constant factor of the diameter “D” of the network. It is 
challenging to satisfy both properties simultaneously, since the 
querying node and the event source are unaware of each other’s 
location and straightforward methods satisfy one of the 
properties to the extent of violating the other. For example, 
directed diffusion [13] chooses to optimize the information 
storage (O(1) cost) to the extent of querying (O(d2) cost). 
Combs & needles optimizes querying, O(1), to the extent of 
information storage O(D2). 

Secondly, to be deployable in practice, the in-network 
querying service should require minimal infrastructure and its 
construction should be low cost. In-network querying 
structures that require costly bottom-up constructions are 
impractical and error-prone since flooding based constructions 
are susceptible to severe message losses due to collisions, and 
may even bring the entire network to a grinding halt. 
Experimental work found that message loss due to burst of 
collisions may amount to 50% of total traffic [1][2]. 
Furthermore, querying structures that employ an elaborate 
structure may require high maintenance costs due to node 
failures. 

Finally, the in-network querying service should provide 
graceful resilience to the face of node failures. By graceful 
resilience, we mean that the performance degradation of 
querying should be commensurate with the severity of faults. 
That is, single mote (a WSN node [1]) failure should not impact 
the performance of querying, the failure of large areas of nodes 
may impact the performance only proportional to the diameter 
of the resultant hole in the network and the functionality of 
querying should be preserved unless the network is partitioned.   
Contributions and overview: We present an in-network 
querying infrastructure, namely Distributed Quad-Tree (DQT) 
structure, which satisfies all the requirements above, and is 
suitable for real-world WSN deployments.  

DQT maintains a minimalist structure, and in fact, DQT can 
be considered as stateless. DQT achieves this feat by 
employing an encoding technique that maps a quad-tree over 
the deployment area. Just by using the location information at a 
mote and the coordinates of the top-left and bottom-right 
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corners of the deployment area, our encoding maps a WSN 
mote to the corresponding level 1 box address. A level 1 box is 
a smallest partition area in DQT. The addresses of the 
clusterhead and neighboring clusterheads at each level for a 
given node are easily derivable arithmetically using the node’s 
DQT address. The implication is that the construction of DQT 
is local and does not require any communication at all. By 
exploiting the location information we avoid a costly 
bottom-up construction.  

In our DQT embedding, we choose clusterheads at each level 
to be the ones closest to the base station at the center of the 
network rather than the ones closest to the center of the box at 
that level. Our use of geometry in selecting clusterheads 
ensures that there are no backward links during the querying 
and advertise operations. Note that selecting the clusterheads to 
be the center of each level box results in backward links, and 
suboptimal paths while going to the clusterheads at higher 
levels. Our encoding and DQT structure construction is 
discussed in Section 4. 

DQT overlays a quad-tree structure on WSN, and satisfy 
distance-sensitive in-network querying as well as efficient 
information storage. The motivation for using quad-trees for 
in-network querying in WSN comes from the extensive use of 
quad-trees [7] in centralized algorithms domains especially in 
the computational geometry area. For example, Quad-tree is 
used for locating pixels in a 2-D image. Quad-tree partitions the 
image into recursively four quadrants, where each node (except 
leaf nodes) has four children. Due to the hierarchical 
construction, the image can be stored at different layers with 
more refined resolution at lower layers. Here, for our DQT 
construction, we overlay a quad-tree in a distributed manner on 
WSNs.  Beside NN query of events, DQT is amenable to being 
extended to arbitrary and complex queries rather than the 
binary version “is there an event?” queries. For example, report 
all the nodes with temperature higher than T1, or report all the 
nodes within an certain area with temperature in [T1,T2].  
Based on different types of range constraints, we further 
classify the complex range query problems into two categories: 
range optimization problems and domain optimization 
problems. These two different types of problems are handled 
by two specific strategies. The analysis of distance sensitivity 
of event querying and how DQT is extended to handle the 
complex range query are discussed in Section 5. 

In DQT, since events and intervals information are stored in 
each level clusterheads, a node exploit local information when 
the query is introduced or propagated to that node. For example, 
an event query introduced from the root node may answer the 
query immediately without communicating to any other nodes 
simply through searching the local information at various 
levels. To solve complex range query problems more effiently, 
we further proposed another query optimization scheme which 
is called  “proactive caching”. The principle is to take 
advantage of relations between parent and children nodes and 
skip some intermediate querying steps without sacrifice the 

result integrity. We analyze the optimization scheme in detail in 
Section 6.  

The stateless operation of DQT makes it resilient to the face 
of node failures and topology changes. To achieve resiliency 
while routing to clusterheads or neighbors in the structure, 
DQT maps the DQT address of the destination to the physical 
coordinates, and leverages on the resilience of a geographic 
routing scheme (such as GPSR) [15] for delivering the message. 
Since mote failures do not often lead to failure of a level 1 box, 
single node failures do not affect the performance of DQT. In 
the case of failures of motes in an area, GPSR delivers a 
message addressed to a box in that area to a mote on the 
boundary of the hole. Since DQT is stateless, the recipient mote 
easily acts as a proxy on behalf of the intended destination box, 
and determine the next step in the query or advertise operation 
by simply plugging the destination box id (instead of its own 
box id) into the corresponding procedures for the DQT 
operation. This way, failures of motes in an area degrade the 
performance of DQT operations proportional to the size of the 
area. Essentially, the degradation is equal to that of routing 
stretch in GPSR due to the holes. DQT preserves correct 
functionality unless the network is partitioned, and even then, 
functionality is satisfied within each partition. We discuss the 
resilience of DQT in Section 7. 

Our simulation results using ns2 serve as empirical 
validation of scalability, distance-sensitivity, and resilience of 
DQT. We present our simulation results in Section 8. 

II. RELATED WORK 
Centralized querying has been the common mode of 

querying in WSN. For this mode of operation, the base station 
acts as the point where the query is introduced and results are 
gathered. For example, in TinyDB [16], queries are first parsed 
at the base station and disseminated in a simple binary format 
into the sensor network to be executed. This centralized 
structure may not be feasible for distributed and self-organizing 
sensor networks since: (1) such a base station may not exist, (2) 
for in-network queries, a query may be introduced from any 
node in the network and propagating the query to the base 
station is costly. 

Geographic Hash Tables (GHT) [17] gives a simple solution 
for in-network querying problem: GHT stores and retrieves 
information by using a geographic hash function on the type of 
the information. GHT can hash event information far away 
from the nearby query nodes, and thus violate the distance 
sensitivity of querying. The average cost of GHT is D/3 
according to [5], where D is the diameter of the network. 
Although hierarchical version of GHT alleviates this problem, 
the problem cannot be solved entirely. DQT structure improves 
over GHT by providing the distance sensitive querying. 

To support efficient in-network queries and to store the 
indexes of data, some sort of hierarchy seems beneficial. Here 
the idea is to push the query to the higher levels until it is 
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resolved at some level. The query then traverses the subtree to 
get relevant information. Distance Sensitive Information 
Brokerage (DSIB) protocol [8] achieves distance-sensitivity in 
a hierarchically partitioned network by using a push-based 
approach: an event advertises to neighbors as well as its parents 
at every level of the hierarchy. DSIB does not require 
localization information and relies purely on communication 
topology. To this end, DSIB introduces a costly bottom-up 
construction and a special purpose routing algorithm. In 
contrast, DQT assumes localization information and in turn is 
able to provide an efficient local construction. Using of 
localization information is not impractical via GPS or other 
localization techniques. Real-world WSN deployments such as 
Lites [1] and Exscal [2] already have utilized localization 
information in their construction. Also DQT relies on the 
resiliency of the GPSR rather than introducing a routing 
algorithm. 

Distributed Index for Features in Sensor network protocol [9] 
considers arbitrary and complex queries, and extends 
traditional binary-tree and quad-tree by allowing multiple 
parents and multiple roots. DIFS is susceptible to the distance 
sensitivity problem: a node may have several parents, some of 
which probably located far away. Moreover, it is costly to 
construct the DIFS structure, and update operations are also 
expensive. This is the price DIFS pays to handle arbitrary 
complex queries about sensor values rather than just binary 
event information.  

III. MODEL 

We assume that the WSN motes sit on a two dimensional 
plane and their coordinates (x,y) are made available to 
themselves. We assume a connected network and availability 
of geographic routing such as greedy perimeter stateless 
routing (GPSR) [15] or CLDP [14]. There may be coverage 
holes in the network, but no partitions (i.e., isolated regions). 
Our analytical results for DQT are proved in Section V in the 
absence of holes in the network, and in Section VII via 
simulations we show how they hold up in the presence of holes 
in the network. 

As we describe in the next Section, the network is divided 
into grid cells while embedding a DQT over the network. A 
level 1 box in DQT constitutes the smallest cell area in the DQT 
structure. We assume that all motes inside a level 1 box are 
within one hop distance. In our terminology, a mote refers to a 
physical WSN node, while a “node” refers to a virtual DQT 
node, such a level 1 box. 

The cost of querying an event is measured as the number of 
hops traveled from the querying mote to a mote that holds an 
advertisement about the event. 

 

IV. DQT STRUCTURE AND CONSTRUCTION 
 

 

 
Figure 1, Node addressing and tree structure 

 
For constructing DQT, we employ an encoding trick first 

presented in [10]. As such, each level 1 box in the structure is 
assigned an ID which uniquely identifies a region. The length 
of the ID is equal to the number of levels. We use this 
addressing scheme to preserve the location information of a 
node. Due to the way we construct level 1 boxes, this scheme is 
independent of the number of nodes, but relies on the partition 
levels. Fig.1 illustrates the addresses of the nodes in a 
partitioned region with 3 partition levels. 

Similar to the centralized quad-tree, DQT is a hierarchical 
structure. In each level of partition, a node is assigned as 
clusterhead node of the region. The clusterhead is always its 
own child in lower levels. The clusterhead at each level 
partition is statically assigned to be closest node to the 
geographic center point of the entire network. For example, in 
level 1 partition, node 003 is selected as clusterhead for 00 
region, because it is closer to center than nodes 000, 001 and 
002. Similarly, node 033 is selected as level 2 clusterhead, as it 
is closer to the center than level 2 nodes 003, 013, and 023. The 
node closest to the center of the entire network in each 
subpartition is selected as the parent node of that subpartition. 
The benefit of such a selection is to avoid backward links.  For 
example, in Fig.1, node 000 propagates the query to its root 
node 033 by first contacting parent node 003, then 003’s parent 
033. The shortest path is gained since there is no backward link 
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on the querying path. A DQT node may belong to different 
levels in the hierarchy depending on its location. If a node is a 
member at level k, it is also a member of level 1. We denote a 
node p’s parent as p.parent and children as p.child. The 
neighboring nodes are also called siblings, which are denoted 
as p.sibling.  

   This structure is quite simple and adapts to 
multi-dimensional sensor readings, such as (temp, light, 
humidity), since the construction of DQT is not related to the 
sensor value. Another difference between DQT and the 
centralized quad-tree is that DQT does not need a root of the 
tree. The four nodes in the top level function as the root.  

4.1. Mapping from localization to DQT addressing 
Each node in DQT can calculate the DQT address of the 

level 1 partition it resides in from its x,y coordinates easily. Let 
(xs,ys) at NW and (xe,ye) at SE be the two endpoints of the area 
where DQT should be overlayed. Assume DQT have i levels. 
The area of each level 1 box of partition is lw* , where width 

i
se yyw 2/)( −=  and length i

se xxl 2/)( −= . Then DQT 
address of a node(x,y) can be calculated as: 

2*)2(mod
)(

)2(mod
)(

_ ⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
=

l
yy

w
xx

addrDQT ss

 
The mapping calculates the X and Y address separately, and 

then adds them together. We can verify this from Fig. 1, for 
instance, node ID 033 is obtained by adding 011 and 022, and 
node ID 332 is obtained by adding 110 and 222. The reason 
that the second term in the DQT address calculation is 
multiplied by 2 is because the Y addresses pace by 2 for every 
increment in DQT addressing scheme. Given this mapping, any 
node can locally compute its DQT address based on its 
coordinates (x,y).  

Besides the DQT address, each node also maintains its (x,y) 
coordinate address. This location information is used in GPSR 
routing in querying and advertising. Since GPSR routing only 
requires single hop information, which has already been cached 
as level one neighbors in our structure, it is quite simple to 
adapt WSN. When the coverage has irregular holes, local 
optimal path can be reached using right hand rules in GPSR. By 
using the above encoding trick and assigning DQT addresses 
for DQT nodes, we can start constructing the DQT structure. 

4.2 DQT Local Construction 
DQT uses local construction instead of bottom-up 

construction to reduce communication cost during initial 
construction. A static and local scheme that uses the address of 
the box suffices for calculating every level clusterheads and 
neighbors. Each node may have neighbors at N, S, E, W, NE, 
NW, SE and SW. The following two methods can be used to 
find the clusterhead and neighbors at level i. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The clusterhead find algorithm discovers the relation of the 

DQT address to its clusterhead. We find that in NW region of 
the map, nodes with DQT-address “3” at level i become the 
clusterheads at the corresponding level. Similarly, in NorthEast 
partition, nodes with DQT-address “2” at level i become the 
clusterheads. In Fig.2, p.address(h) is the highest bit of the 
DQT-address, which determines the region of a node.  This 
algorithm guarantees the clusterheads at each level are closer to 
the map center than any children (except for itself).  

To find the neighbors, we make use of the location 
information. We use node p and node q to represent the 
originator and its neighbor. First we use p’s location 
information and increase its coordinates x, y value by a level i 
box lateral length to find a neighbor node in each direction. If 
either of x or y value exceeds the range of the map, we ignore 
that neighbor. For each of these nodes, we find their level i 
clusterheads. These clusterheads are node p’s level i neighbors. 
For instance, given a node 20l at level 2, we can find its 
neighbor at north direction by following two steps: (1) Reduce 
Y value by a level two box length, then we can locate the node 
021 through the new (x,y) coordinates; (2). Find the 
clusterhead for node 021 at level 2, which is 023. 

 
 
 
 
 
 
 
 
 
 
 
 

V. EVENT QUERY IN DQT 
 Before discussing querying in detail, we discuss how events 

are indexed in DQT. 
 

Procedure Cluster_head_Validate (node p,level i) 
Switch (p.address(h)) 
Case 3: //p in SE region 
 { If p.address(i) == 0, then return true; else return false} 
Case 2: /p in SW region 
 { If p.address(i) == 1,then return true, else return false}
Case 1: //p in NE region 
 { If p.address(i) == 2, then return true, else return false}
Case 0: // p in NW region 
 { If p.address(i) == 3, then return true, else return false}

 
Figure 2 clusterhead validate algorithm 

Procedure Neighbor_find (node p,level i) 
For each direction( N,S,E,W,NE,NW,SE,SW) 
{ 
q.x =p.x + 2i*l 
q.y= p.y + 2i*w 
while( p.x &&p.y ) 
 { Cluster_head_Validate(node q, level i)} 
} 

 Figure 3: Neighbor finding algorithm 
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5.1 Indexing of event information 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4, node 003’s sibling structure 
In any hierarchical structures as with DQT, some multi-level 

boundary nodes are far away from each other, while actually 
they are placed nearby. High latency maybe introduced if the 
search follows the path of the tree strictly. For example in Fig.1, 
node 011 and 100 are neighbors. A query from node 011 to 
node 100 may route to higher level clusterheads such as node 
013 and node 033. Our solution is to use sibling links to nearby 
intermediate nodes. A sibling link is the link between a node 
and its neighbors in each direction (so each may at most have 8 
sibling neighbors). The sibling links only exists between nodes 
on the same level in the structure. Fig.4 illustrates the vision of 
an intermediate node 003 in the distributed quad-tree structure. 
The nodes with “#” are level 1 sibling nodes, the nodes with 
“##” are level 2 sibling nodes. A node at level i maintains the 
event information of its cluster, as well as the event information 
of its neighbors. A node at level i also maintains the interval 
[Min,Max] information of its cluster for each attribute.  Higher 
level nodes holds wider interval ranges but less detailed 
information of its subtree. For root nodes also exchanges their 
interval information so that each root knows the interval of 
entire structure. This is costless and reasonable since root nodes 
are adjacent neighbors geographically. 

When an event is detected at a level 1 node p, p contacts its 
immediate parent node at level 1. The parent node updates its 
record for that child. Node p also contacts it sibling nodes to 
update their records accordingly. Recursively, the update 
operation is executed till the top level. This is similar to the 
information storage scheme discussed in [8] and the sibling 
links in Stalk [6]. 

5.2 Nearest Neighbor query 
Nearest Neighbor (NN) query is defined as, finding the data 

object which is closest to the querying object given a set of 
objects. The classic NN query returns exactly one object as a 
result. In WSNs, a query can be started at any location. The 
initiator of a query is the node where the query is entered into 
the system. The query point is the node for which you want to 
get NN query result. Query point by default is the same node as 
initiator of query but it may be specified to be any point in the 
network.  

Our algorithm prevents the propagation of searching to 
higher levels, if it can be answered locally. Through taking 
advantage of the spatiality information, both the query 
efficiency and latency is greatly improved. Our query strategy 
is to start the query at the query point using local information 
because the node may belong to multiple levels and therefore 
hold multi-layer information locally. If no result is obtained, 
the query is propagated to its parent recursively. At some level 
the event information is reached, the query is then stopped and 
returned to the originator. 

What if the query point is at another location? That means 
the initiator of the query and the query point belong to two 
different nodes. First the query is passed to the query point 
from the initiator of the query using GPSR routing scheme, and 
then this querying process is started from the query point. The 
following results are in the absence of faults. In the simulation 
section, we talk about the presence of faults.  
Theorem 1. A DQT node at level i stores O (i ) information. 
Proof. A node at level i is clusterhead from level 1 to i along the 
path. The number of neighbor nodes at each level is less than or 
equal to eight. Therefore the node need 9*i (including one 
interval record for its subtree) space and stores O(i) 
information.  
Theorem 2. The total space needed for the construction of 
distributed quad-tree is less than 12*b. 
Proof: According to Theorem 1, level 1 nodes use up a 9*b 
space internal, where b is the total number of level 1 nodes. 
Similarly, all level 2 nodes total to a 9*b/4 space usage. Thus, 
the total space needed for constructing the distributed quad-tree 
is: 

b
b

bbbb 12)11(*12)1...
44

(*9 2 <−=++++  

Theorem 3. The distance between a level i node and its 
neighbors is at most 2*2 i hops. 
Proof: According to the partition rule of quad-tree, a level i 
node is the clusterhead of a 2i *2i area. The distance between a 
level i node and its neighbors is either 2i (for N,S,E,W 
neighbors)or 2*2 i (for NE,NW,SE,SW neighbors) 
depending on the Direction. Since the clusterhead is one of its 
neighbors at level i, so the distance between a level i node and 
its clusterhead is also less than 2*2 i   hops, which is the 
diagonal distance of a level i partition.  
Theorem 4. The distance stretch factor s for spatial query in 
our structure is 22 in worst case. In another words, an event 
d hops away can be achieved by the querying node within 

22*d hops. 
Proof: A query from an intermediate level node does not 
constitute the worst case. The reason is that the clusterhead 
nodes holds multi-levels information locally and this local 
cache can be used to answer queries. So, let’s consider a query 
from a bottom level node that reaches a level j clusterhead. We 
define the query cost as the number of hops from the query 
point to the node that holds the result. 
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Figure 5. Distance stretch factor s analysis   

In Fig.5, d1 is the distance from querying point P to the level 
node M that the query is propagated, and d is the distance from 
P to Q. Distance stretch factor s is  dds /1= . 

According theorem 3, the distance from level i-1 node to its 
parent node (level i) is 2*2 1−i  hops. Since the backward 
links are avoided in going-up phase, the total distance from 
level 1 to level j can be calculated as 

2*)2..2(2 1-j21 +++ ,which is overall 
jd 2*21 = hops. Since P and Q are not i-1 level neighbors, 

the distance 12 −≥ jd . The equivalence is true when P and Q 
are located exactly on the opposite borders of a level i-1 box. 
Hence: 

dds /1= 12/2*2 −≤ jj  22=  
 Based on the result on case 1 and case 2 analyses, we 
conclude that our structure is distance sensitive with a distance 
stretch factor 22 . 

5.3 Event query optimization 
As a variation of our event query algorithm, we provide an 

optimization scheme for event query in the case when the event 
is not advertised in the neighbors. This means only its parents 
are published of the events. Thinking of the following query 
problem: reporting all the event information in the list of 
IDs(ID1,ID2,..). With brute force solution, this query is sent to 
all of included nodes. But if there is a query that discovers two 
sibling nodes which share the same parent, the query could be 
sent to its parent node directly, since the parent node hold their 
information. Let’s analyze how it can reduce communication 
costs through proactive caching.  
Figure 8 shows an example of parts of the region. The gray 

nodes (013/102/033/122) are level 1 cluster heads. Suppose the 
query is introduced through node 013. Since node 030 and 
node 031 in SW region are neighbors, node 013 may contact 
the cluster head (node 033) directly, instead of the contact node 
030 and node 031 respectively. The table shows that in overall 
costs, the proactive caching scheme can reduce communication 
costs (measured as number of hops). In this example, five hops 

are reduced for south and southeast and east neighbors. The 
cost in going up phase is reduce by 38% (Tup is 13 hops). 

 
Figure 6: proactive caching to reduce communication costs 

 Let λ i

j
 be the querying node’s neighbor j at level i. The 

communication cost i
jC  is measured as the number of round 

trip hops from the querying node to the target node. The total 
cost for going up phase without proactive hashing is: 

∑ ∑
= =

=
L

i

N

j

i
j

i

jup CT
1 1

*λ  

where L is the highest level that the query is propagated and N 
is the maximum number of sibling neighbors at level i. We 
have L <= O(logn) and N <= 8. The cost is not only rely on the 
query itself ( Which level the query may arrive), but also 
depends on the location of the query point. For example, the 
nodes at boundary area have fewer neighbors at each level than 
internal nodes. The nodes close to center point may have fewer 
costs for some neighbors. 
 The optimization scheme mainly optimized the going up 
phase. We denote Ui as the nodes ( ),0[ NU i ∈ ) in level i 
neighbors that also belongs to level i+1 cluster heads, and have 
additional neighbors belongs to children; denote Vi as the nodes 
in level i neighbors that also belongs to level i+1 cluster heads, 
but do not contain any children in level i neighbors. We have 
Ui+Vi <=8. For example node 030 in figure 1, the level-2 
neighbor at SE is node 300, which do not have other 030’s 
neighbor nodes whose parent is node 300. So node 030 belongs 
to Vi and node 211 belongs to Ui.. So the reduced cost (Rc) in 
our scheme is: 

∑∑∑∑
== =
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L

i

V
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j
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We find from the equation that the reduced cost is more 
sensitive to the first part: that is the nodes belong to Ui group 
make more contributions to reduce the communication cost in 
our algorithm. The best case is when Vi =0, all neighbors belong 
to Ui group, the cost reduction is ∑ ∑

= =

L

i

U

j

i
j

i

j

i

C
1

2

1

*λ ; whereas the 

 L1 L2 Total
without 1 2 3 
with 2 0 2 
SE neighbors of node 013 

 L1 L2 Total 

without 2 2 4 

with 1 0 1 
South neighbors of node 013 

without proactive caching 
with proactive caching 

010 011 100 101 

012 013 102 103 

030 031 120 121 

032 033 122 123 
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worst case is when Ui =0, all the neighbors belong to Vi group, 
the cost reduction is ∑ ∑

=

L

i

V

j

i
j

i

j

i

C
1

*λ . The best case happens 

when the level i partition is an internal box, with no neighbor 
crossing the highest level partition borders, while worst case 
happens if that box contains the center point. 

VI.  COMPLEX RANGE QUERY 
The purpose of range query is to find a group of nodes in a 

given query range. The results are unknown, it may involve all 
the nodes if the range covers, or may return empty if the query 
is out of the range limitation. Very similarly, the query can be 
started from any nodes and is executed in a distributed manner. 
Following are some of the range query examples in WSN: 
What are the nodes whose temperature is great than T1 within a 
certain area? Reporting or counting the sensor nodes within the 
temperature range [T1,T2] and pressure range [P1,P2] ? In 
general cases, the queries are associated with geographic 
constrains, e.g, report the nodes with temperature greater than 
T1 within the rectangle area enclosed by [x1,x2] and [y1,y2]. If 
there is no explicit range constrains in the query, e.g, reporting 
the nodes with the temperature in [T1,T2] and pressure in 
[P1,P2],  by default the query range is the entire coverage area. 
This is considered as a special case in complex range query. In 
this section, we propose a generalized algorithm to resolve the 
complex range query problems. 

In complex range queries, the results are a set of ordered 
nodes in compliance to the measurement. Another difference is 
range query contain both going-up and going-down phase, 
while only going-up phase in necessary for event query. Our 
algorithm reduces the complexity and space in [9] in that 
instead of storing the T(p) information for all the siblings from 
p to the root, this algorithm only stores the information of the 
sibling for current level, except some nodes that belongs 
several levels. Each sensor node p at level i stores the neighbor 
information at current level, as well as the T(p) information for 
it’s subtree. If the entry node itself is the cluster head for 
multi-levels, even more efficiency is achieved through local 
caching, because the locally saved high level information can 
be used to answer query or prune branches. This is because a 
level 3 node is also a level 2 and level 1 node, and a level 2 node 
is also a level 1 node. In the case a query is sent to a level 2  
node  from child, if it is also a level 3 node, then the query is 
pushed to level 3 without any communication cost.  

Our strategy to resolve complex range queries  is to make use 
of the geometric information.  Suppose query range is enclosed 
area with points (x1,y1) and (x2,y2). First we calculate the span 
of each direction Sh and Sv: 

112(log

1)12(log

2

2

+
−

=

+
−

=

w
yyS

l
xxS

v

h  

where w and l is calculated in section 4.1. Then we are 
confident about the following facts: horizontal constrain is 
within two level Sh neighbors, and the vertical constrain is 

within two level Sv neighbors. Then, the constrained area lies 
within two level MAX(Sh, Sv) neighbors overall. The query is 
then directly propagated to a level MAX(Sh,Sv) node in the 
constrained range.  For example, if MAX(Sh,Sv)==1, the query 
region lies within two level 1 neighbors. We need to proof this 
query strategy does not leak any results. Since we choose 
MAX(Sh,Sv) as the level of nodes to query, we only need to 
guarantee that in each direction our strategy contains all the 
possible nodes. It is simple to verify that for unit length l and 
width w , they can only lie within 2*l and 2*w( which is two 
level 1 neighbors) distance in each corresponding directions; 
similarly, for each 2*l and 2*w, they lie within 2*(2*l) and 
2*(2*w), which is two level 2 neighbors; and so on and so 
forth…so this scheme is guaranteed of correctness. Our 
algorithm to solve complex range query problems is show in 
Figure 6 and Figure 7. The general idea is to find the least level 
pair of neighbors which can cover range constraints and send 
the query to that clusterhead using GPSR protocol. This is a top 
down  scheme. It is efficient because we simplified the going 
up phase and reduced cost, it is correctness   

For the special case as we mentioned before, the query is sent 
to the root node since the root nodes hold the interval 
information of the entire network. The result of MAX(Sh,Sv) 
equals to the number of levels in the structure. If any of the 
query range is beyond the recorded interval, then empty result 
is returned immediately. Otherwise, select one of requirement 
with tight most constraint attributes as the primary pruning key. 
Then this query is pushed down to each child with necessities 
pruning of subtrees.  

 

RangeQuery_topdown (Node q, Nodeset p, Metric m) { 
While(q.sibling){ 
If (m∈T(q) 
then 
 { initialize the partition list of p=q.children 
  for each p=p.child in the list 
   {  If(m∈T(p)) 

if p is a leaf node 
    {then add p to the nodeset RQp} 

else (add p to the nodeset RQp and 
send query to its children) 

      else prune the subtree 
   } 

} 
Return RQp; 

} 
else  
 return EMPTY 
} 

Figure 7: Top down procedure for clusterhead nodes. 
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Why we use top-down querying scheme to answer range 

query? The reason is that any value can be located anywhere in 
theory. We cannot filter out any nodes unless the range is 
specified explicitly in the query. But if some model of sensor 
data is available, other optimization schemes can be applied 
such as proactive caching and bottom-up approaches, which 
are left for future work. 

VII. FAULT  TOLERANCE 
DQT is fault tolerant due to several aspects. 
First, any leaf mote failure does not cause any update 

operation and structure change. For a dense sensor network, 
each level 1 partition contains several nodes. All nodes in the 
same partition share a common DQT ID. DQT structure is 
stateless, which means the nodes do not need to maintain a state 
of its own. The neighbors are computed in initial construction 
phase through local computing, which not only reduces 
communication cost but also improves the system reliability. 

Second, DQT can handle coverage holes nicely. Only if all 
the motes inside a level 1 partition fail (although this is unlikely 
to happen) a hole may be formed in DQT. Using the right hand 
rule, GPSR re-routes the information to the closest node to the 
target node, which we call proxy node. The proxy node 
pretends to be the target node and find its neighbors through 
local computation. Then it follows the event or range searching 
algorithm we discussed in previous sections. The structure is 
robust once constructed. Shape change of a hole only changes 
the selection of proxy nodes, and has little influence on other 
nodes.  

In event query scenarios, failure of nodes may cause the 
following two cases. Case 1: Failures happen before the event 
advertisement. When a target node of event advertising fails, 
the event is published to proxy node by default, which in theory 
is the closest node to the failure node. The failure of advertising 
destination node will not affect the query result in theory, since 
it can reach the proxy node. Case 2: The event has already been 
published in the structure before the failure happens. In this 
case, the event is still reachable unless all the nodes along the 
querying path were dead. When a node with event 
advertisement dies, queries to this node are passed to its parent 
node. We will further discuss the performance of each case in 
simulation part.   

VIII. SIMULATION 
We investigate the performance characteristic of DQT using 

the ns-2 wireless network simulator. Our simulations mainly 
focus on two aspects: stretch factor and fault tolerance. 256 
nodes are simulated in our experiment, which are uniformly 
distributed in a 2-dimensional square of 3200x3200. The 
distance between each node is 200m, while the transmission 
range is set to be 250m. Therefore the average degree is about 4 
in the field except some border nodes. That is, not all the level 1 
neighbors are reachable via single hop. The geographic 
location of each node is available, and is used to construct the 
DQT structure in initial phase. The height of the DQT tree is 4, 
with 4 roots at the top level. The cost of querying an event is 
measured as the number of hops from the querying node to the 
node that holds an advertisement about the event.  

Our experiments focus on node-level behavior instead of 
mote-level behavior. Recall that each node represents a level 1 
box in the map. As a result, a node failure in our experiment 
means all the motes in an area of the corresponding level 1 box 
failed. Currently our simulation only handles the event 
querying. The performance for complex range query is left for 
future work. 

8.1. Stretch factor in the absence of faults 
  We have proved in Theorem 4 that the stretch factor in worst 
case is 22 . We calculate the average distance stretch factor 
through 100 runs of each experiment. In each round, a 
query/sink node pair is randomly chosen.  We use two 
measurements s and s’, where s is the ratio of the DQT 
querying cost to the distance between the query and the event 
node and s’ is the ratio of the DQT querying cost to the GPSR 
cost. The value of s show the ratio to ideal cost, whereas s’ ratio 
of routing a message from the querying point to the event. We 
found the average s is around 0.6 and s’ is around 0.5 in 
absence of faults. The reason that s is much smaller than 

22 is that the worst case scenarios only occupy a small 
percentage of the total. Our scheme has a considerably smaller 
stretch factor compared to the DSIB scheme, which has an 
average value 0.9~1.  

Fig.9 illustrates the average stretch factor s and s´, as well as 
their standard deviations where the event and querying pairs 
are randomly selected with varied distance between the query 
node and event node. For nearby pairs, the s and s´ tend to be 
close to 1, since either GPSR or DQT makes little difference. 
The average stretch factor s decreases with the increase of the 
distance of query/event pairs. But we also find, that when the 
distance is close to the diameter of the map (such as to 14/16 
etc), s and s´ slightly increase again. We call this phenomenon 
border effect. The reason is that when the pair of nodes 
approach the borders of the maps, they are less likely to be 
connected through their common neighbors.  

 

RangeQuery (Node q, Nodeset p, Metric m) { 
calculate i = Max(Sh,Sv); 
Cluster_head_validate(node q’, level i); 
send query q’;  
Start RangeQuery_domain procedure in the current node;
} 

Figure 8: Algorithm for complex range queries. 
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Figure 9: Stretch factor s and s´ with varied query distance 

8.2 Fault tolerance 
DQT is robust in that a single mote failure will not change 

the structure and the query operation. To evaluate the 
performance of DQT, node failure in the structure is 
experimented. We use the same topology and setting in our 
experiment. We randomly remove a certain percentage of 
nodes, namely from 2% to 20%.  

We first experiment on the DQT query success rate with 
node failure. Note that, for case 1, the event still publishes in 
proxy node when the destination node fails. Theoretically there 
is no failure for querying, unless GPSR fails to forward along 
the path or the network is isolated. In case 2, the query is 
extended to the parent node when a node with event 
advertisement fails. A query may fail when all event nodes 
along the querying path fail. Fig.10 shows that for case 1, when 
query success rate can drop down to 95% when 20% of nodes 
fail. However, for case2, the DQT scheme itself may fail 
besides the GPSR routing failure. The failure rate goes up to  

 
Figure 10: DQT success rate for case 1 and case 2 

 

 
Figure 11: Stretch factor with node failure: Case 1 

15% in case 2. The result may vary in real environment due to 
the increase of GPSR failure and link asymmetry. Increasing 
the degree of nodes or node density is helpful in improving the 
query success rate. 

From the stretch factor point of view, case 2 is also worse 
than case 1. Fig.11 and Fig.12 illustrate the stretch factor with 
varied possibilities of node failure for case 1 and case 2. In both 
cases, DQT works fairly well within 10% failure of nodes. 
With the increase in the failure rate, the value s get worse 
quickly for both cases, because the query circumvents the holes 
(due to failure), which increases the cost of searching rapidly. 
Case 1 performs better than case 2 because in the occurrence of 
holes, case 2 circumvents the hole and query its parent, while in 
case 1, the event is achievable through a proxy node. The s´ 

remains relatively small since the same overhead applies for 
GPSR to overcome the coverage holes. The results also 
indicate that the degradation of performance is smooth overall.  

Finally, for case 2, we plot the trends of s and s’ with respect 
to query distance in Fig.13. Obviously, the failure of nodes 
affects the overall performance of the DQT. When the failure 
rate increase, both s and s’ will increase for each distance. The s 
and s’ is more closely related in the absence of failure or when 
the failure rate is small. 

 
Figure 12: Stretch factor with node failure: Case 2 
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Figure 13: Stretch factor under different failure rate 

     

IX. CONCLUSION 
We presented an in-network querying infrastructure, namely 

distributed quad-tree (DQT) structure, suitable for use in 
real-world WSN deployments. DQT satisfies 
distance-sensitive querying as well as efficient information 
storage in network. DQT construction is local and does not 
require any communication. Moreover, due to its minimalist 
infrastructure and stateless nature, DQT shows graceful 
resilience to the face of node failures. 

 DQT is amenable to being extended to arbitrary and 
complex queries rather than the binary version “is there an 
event?” queries we presented here. Since the queries are 
arbitrary, the information advertisement cannot anticipate all 
queries, and only a summary of sensor data is stored for 
energy-efficiency purposes. As such, for resolution of queries 
there may be several matching options that need to be explored 
but may not satisfy the query and may result in back-tracking. 
In this case several query optimizations are possible to improve 
the performance. We present a DQT solution for answering 
complex range querying and a “proactive caching” 
optimization scheme further to improve query efficiency.  

 The stateless nature of DQT makes it resilient to topology 
changes. In fact, it may be possible to extend DQT to provide a 
location service for mobile ad hoc networks. The idea is to retry 
a query until it catches up with the mobile target. Even though a 
target node may move during the query execution and leads to a 
miss, the query when invoked from this new location closer to 
the target node will have a better chance to catch up to the 
target node due to the distance-sensitivity property in DQT.  
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