NOVEL TECHNIQUES FOR DATA WAREHOUSING AND
ONLINE ANALYTICAL PROCESSING IN EMERGING
APPLICATIONS

by
Moonjung Cho

September 1, 2006

A dissertation submitted to the
Faculty of the Graduate School of
State University of New York at Buffalo

in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

To my eternal mentor Daisaku Ikeda

Acknowledgements

This thesis could not have been written without the invaluable support of my advisor, Dr. Jian
Pei. His promptness, sincerity, patience, and challenging spirit are great forces for me to break
through every deadlock in the process of researches. It is impossible for me to express how
much | appreciate to his unflagging trust and encouragements.

| am very grateful to Dr. Xin He and Dr. Venugopal Govindaraju for review and advices
on my thesis. Also, | should not omit to express my thanks to Dr. Kenneth W. Regan for his
encouragement, and Dr. Guozhu Dong for a thorough review and comments.

My family has provided support from behind the scenes. This thesis is dedicated to my
parents, to whom | owe the most. | wish to thank to my six roommates in Buffalo and many
friends in the world. | will not forget our precious memories of hearty laughs, smiles, tears, and
joy. | also strongly hope that all of my friends will fulfill their dreams and goals. | especially
thank to eternal friends in SGI for unlimited and unconditional encouragements. They have
shown me what true friendship is and how wonderful and powerful heart-to-heart connections
are.

| am for sure that the only way to pay my gratitude in debt to all is to never stop developing
myself so that | am able to contribute something more positive value to this world. | will not let

you down.

Abstract

A data warehouse is a collection of data for supporting of decision making process. Data cubes
and on-line analytical processing(OLAP) have become very popular techniques to help users
analyze data in a warehouse. Even though previous studies on a data warehouse and data cube
have been proposed and developed, as new applications emerging, there are still technical chal-
lenges which have not been addressed well.

We propose effective and efficient solutions to the challenging problems in the areas of (1)
mining iceberg cube from multiple tables, (2) online answering ad-hoc aggregate queries on
data streams, and (3) warehousing pattern-based clusters.

Firstly, we argue that the materialized base table assumption in most of the previous studies
on computing iceberg cubes is often infeasible in practice. Instead, a data warehouse is often
organized with multiple tables in schemas such as star schema, snowflake schema, and constel-
lation schema. We propose a novel approach to compute an iceberg cube from multiple tables
in a data warehouse in order to avoid costly materialization of a base table. Secondly, it is infea-
sible to compute a full data cube for answering ad-hoc aggregate queries on data streams due to
a rapid data input and the huge size of data. We develop a new method to answer online ad-hoc
aggregate queries on data streams, which is to maintain and index a small subset of aggregate
cells on a designed data structure. Last, we extend the data warehousing and OLAP techniques
to tackle pattern-based clusters. We propose an efficient method to construct a data warehouse

of non-redundant pattern-based clusters.

Table of Contents

Acknowledgements
Abstract
Table of Contents

1 Introduction

1.1 Datawarehouseand OLAP
1.2 Motivations
1.3 Contributions
1.4 DissertationOutline

2 Computing data cube and iceberg cube from data warehouses

2.1 Preliminaries
2.2 Problem Definition and Related Work
2.2.1 Problem Definition L.
222 RelatedWork
2.3 CTC: A Cross Table Cubing Algorithm
2.3.1 Propagation AcrossTables
2.3.2 Computation of Local Iceberg Cubes
2.3.3 Computation of Global IcebergCubes
2.4 ExperimentalResults L.
24.1 TheSyntheticData
24.2 TheRealDataandSetting
243 Summary e e e
25 DISCUSSION

3 Online answering ad-hoc aggregate queries on data streams

3.1 Preliminaries
3.1.1 TheFramework
3.2 RelatedWork

viii TABLE OF CONTENTS
3.3 Prefix Aggregate Tree (PAT) 0 i i i 45
3.3.1 DataStructure 46
3.3.2 ComparisonPATvs. Previous Methods 51
3.3.3 PATConstruction 52
3.3.4 Incremental Maintenance L. 54
3.4 Aggregate Query ANSWErNG v v v v v e e e e 58
3.4.1 AnsweringPointQueries o e 58
3.4.2 AnsweringRangeQueries e 61
3.5 ExperimentalResults 62
3.5.1 Building Prefix Aggregate Trees 63
3.5.2 Incremental Maintenance oL 65
3.5.3 TheOrderof Dimensions. 67
3.5.4 Resultsonthe WeatherDataSet 68
355 Query Answering 69
3.5.6 Summary e 70
4 Warehousing pattern-based clusters 73
4.1 Preliminaries 73
4.2 Problem Definition and RelatedWork 76
4.2.1 Pattern-Based Clustering 76
4.2.2 Comparison Between Pattern-Based Clustering and Partition-Based Clus-
tering e e 77
4.2.3 Maximal Pattern-Based Clustering 78
4.2.4 Maximal Pattern-based Clusters As Skyline Pattern-based Clusters . . . 79
4.2.5 p-Clustering A &-pCluster Mining Algorithm 81
426 RelatedWork 83
427 Complexity 85
4.3 AlgorithmsMaPleandMaPlet, 85
4.3.1 AnOverviewoMaPle 85
4.3.2 ComputingandPruningMDSs 88
4.3.3 Progressively Refining, Depth-first Search of Maximal pClusters 91
4.3.4 MaPlet: Further Improvements 96
4.4 Empirical Evaluation 99
441 TheDataSets. e 99
442 ResultsonYeastDataSet 100
4.4.3 Resultson SyntheticDataSets 101

5 Conclusion 105

TABLE OF CONTENTS X

Bibliography 108

List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1
3.2
3.3
3.4

3.5
3.6

of Figures

The auto data warehouse instarschema. 8
A simple case of computing iceberg cube fromtwotables. 9
Data warehoudBW as the runningexample. 11
The universalbasetablgase . - o o . o o o o L 12
Top-down computationin Multiway. 15
Bottom-up computation iBUCand H-Cubing. 15
AlgorithmCTC. 17
The propagated dimensiontables. 18
Computing global iceberg cells containing some romlues in the attributes
infacttable. 22
The H-tree for foreign key attributevalues. 23
Joining local iceberg cells in dimension tables to form globalones. 25
Scalability with respect to number of dimensiontables. 27
Scalability with respect to cardinality in each dimension. 28
Scalability with respect to Zipffactor. 29
Scalability with respect to number of non-foreign key dimensions. 29
Scalability with respect to iceberg condition threshold. 30
Scalability with respect to number of tuples in the facttable. 30
Scalability with respect to size of datasets. 32
Scalability with respect to size of datasets. 32
Scalability with respect to number of dimensiontables. 33
Snowflake schema: anexample., 34
The framework of warehousing data streams. 41
The tuples at instanfsand2 in streamS(T,A,B,C,D,M). 46
Archiving a data stream in a prefixtree. 46
Prefix aggregate tree (the aggregate tables for infix links are omitted to make
thegrapheasytoread). 49
ThePAT construction algorithm by scanning tuplesone byone. 55
ThePATincremental maintenance algorithm. 56

Xi

Xii

LIST OF FIGURES

3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18

Thetuplesatinsta®t 56
Prefix aggregate tree atinst&nt. 57

The algorithm answering pointqueries. 59
Results on constructi®AT. 63
Results on incremental maintenanc®At. 66

The effect of orders of dimensions. 67
Results on real data setWeather. 68
Results on query answeringusing PATS. 70
A set of objects as a motivatingexample. 74
ThepScoreof two objectsry andry on attributesa, anday. 76

A comparison between partition-based clustering and pattern-based clustering.. 78
Finding MDS fortwo objects. L. 81

A prefix tree of object-pair MDSs.o 83
The attribute-first-object-latersearch. 86
AlgorithmMaPle e 87
The database and attribute-pair MDSs in our running example. 89
PruningusingLemma6. 90
The algorithm of pruningMDSs. 91
The algorithm of projection-based search. 91
The attribute-pair MDSs in Example 4.6. 97
Number of pClusters on Yeastraw dataset. 100
Runtime vsd on the Yeast data sahing =6 andmin=60. 101
Runtime vs. minimum number of objects in pClusters. 102
Runtime vsd. 103
Scalability with respect to the number of objects in the datasets. 103
Scalability with respect to the number of attributes in the data sets. 104

Chapter 1

Introduction

Data warehousing and online analytic processing are essential facilities for data analysis tasks
supporting a user’s decision in a business. This dissertation reports the novel techniques for data
warehousing and online analytical processing in emerging applications. It especially focuses on
the challenges in data warehouse and online analytical processing and presents new techniques
to tackle those challenges. In this chapter, we begin with a general overview of data warehouse
and online analytical processing concepts, and then motivations and contributions are presented.
Section 1.1 gives the overview of data warehouse and OLAP concepts and applications.
Section 1.2 shows what motivates our researches on data warehouse and OLAP. Our contribu-
tions responding to the motivations are described in the Section 1.3. Section 1.4 outlines the

rest of the dissertation.

1.1 Data warehouse and OLAP

Data warehousing is an architecture to help business executives to understand and organize data
and make a business decision. A data warehouseubject oriented, integrated, time variant,

non volatilecollection of data in support of decision making processes(lnmon, 2002). Data
warehousing approach is to integrate information and heterogeneous sources in advance, store

the historical information in a warehouse and support complex multidimensional queries. On-

1

2 Chapter 1. Introduction

Line Analytical Processing(OLAP) manages data warehouses for data analysis and provides
calculations such as summarization and aggregation in advance, and manages information at
different levels of granularity. OLAP has become very popular techniques to help users analyze
data by providing multiple views of the data.

Data warehouses and OLAP tools are based on a multidimensional data model. A data cube
is a model for multi-dimensional database and is defined by dimensions and facts(or measures).
Dimensions are entities of records which a company want to keep, and facts are numerical mea-
sures or quantities. Given a base table consisting of dimensions and measures and an aggregate
function, a data cube consists of the complete set of group-bys on any subsets of dimensions
and their aggregates using the aggregate function. The number of group-bys(cuboids) is ex-
ponential to the number of dimensions. A data cube in practice is often huge due to the very
large number of possible dimension value combinations. Even many detailed aggregate cells
whose aggregate values are too small may be trivial in data analysis. To overcome the curse of
dimensionality, an iceberg cube has been proposed.

An iceberg cube consists of only the set of group-bys whose aggregates are no less than
a user-specified aggregate threshold, and does not compute a complete cube. Mining iceberg
cubes is an important research problem in both online analytic processing (OLAP) and data
mining. It can be to answer group-by queries, mine multidimensional association rules, and
identify interesting subsets of the cube for precomputation(Beyer & Ramakrishnan, 1999).

Based on the concept of data warehouses and OLAP methods, we like to present what

motivated our researches.

1.2 Motivations

As we mentioned in the previous section, data warehouses and OLAP techniques have devel-
oped for users to understand data and make a decision. However, the techniques in a data
warehouse have still challenges in situations where a data warehouse may have complicated

schemas instead of materialized single base table, and manage a data streams. Among many

1.2. Motivations 3

of those challenges on data warehouse and data cube, we propose several interesting ones we

would like to address.

e Mining Iceberg Cubes. A data warehouse is often organized in a schema of multi-
ple tables, such as star schema or snowflake schema, in practice. Several efficient algo-
rithms, such a8UC (Beyer & Ramakrishnan, 1999), MultiwWay (Y. Zhao et al., 1997),
H-Cubing (Han et al., 2001), Star-Cubing (Xin et al., 2003), and Range Cube (Feng et al.,
2004), have been proposed to compute iceberg cubes efficiently fsamglabase table,
with simple or complex measures. Although mining iceberg cube from a single table be-
comes more efficient, such algorithms cannot be applied directly to real data warehouses
in many applications. Also the cost to materialize single base table from a data ware-
house is high in space and time due to the redundancy and multiple scans of dimensional
tables. This observations become a motivating quest@an“we compute iceberg cubes

efficiently from multiple tables without materializing a universal base table?

e Aggregate Queries on a Data StreamRecently, several important applications see the
strong demands of online answeriad hoc aggregate querias/er fast data streams. In
those applications, it is required toaintain the recent data in a sliding windownd
provide online answers to ad hoc aggregate queries over the current sliding window
Unfortunately, a traditional data warehouse often updates in batch periodically and such
updates are often conducted offline. Therefore, online aggregate queries about the most
recent data cannot be answered by the traditional data warehouses due to the delay of the
incremental updates. Moveover, as a data cube, the complete set of aggregate cells on a
multidimensional base table over a data stream can be huge. Herein we have a motivating
guestion to address:Can we materialize and incrementally maintain a small subset of
aggregates by scanning the data stream only once, and still retain the high performance

of online answering ad hoc aggregate queries?

e Warehouse Pattern-based ClustersClustering data is a challenging data mining task

with many important applications. Clustering methods need similarity measures defined

4 Chapter 1. Introduction

globally on set of attributes/dimensions. However, in some applications, it is hard or even
infeasible to define a good similarity measure on a global subset of attributes to serve
the clustering. As indicated by some recent studies (Jiang et al., 2003,0; Liu & Wang,
2003; L. Zhao & Zaki, 2005; H. Wang et al., 2002), pattern-based clustering is introduced
and useful in many applications. In general, given a set of data objects, a subset of
objects forms a pattern-based clusters if these objects follow a similar pattern in a subset
of dimensions. Comparing to the conventional clustering, pattern-based clustering has
two distinct features. First, pattern-based clustering does not require a globally defined
similarity measure. Instead, it specifies quality constrains on clusters. Different clusters
can follow different patterns on different subsets of dimensions. Second, the clusters are
not necessarily exclusive. In other words, an object can appear in more than one cluster.
Due to the non-exclusiveness of clusters, a lot of redundancy exist in the complete set
of pattern-based clusters. Pattern-based clustering problem is proposed and a mining
algorithm is developed by H. Wang et al. (2002). Our motivating questiowisdt is the
effective representation of non-redundant pattern-based clusters? Moreover, how can we

construct a data warehouse of non-redundant pattern-based clusters efficiently?

1.3 Contributions
Responding to the challenges in the previous section, our contributions are as follows:

e We develop a novel metho@TC which directly computes iceberg cubes from a star
schema in a data warehouse without materializing the universal base table. It removes
high cost taken by materialization of the universal base table as an input to the previous
methods for computation of iceberg cubes. It computes local iceberg cells in each dimen-
sional table, and then derives the global ones using key relations between a fact table and
dimensional tables. Due to the usage of local iceberg cells from dimensional tables, it
avoids redundancy of data caused by the materialization of the universal base table. The

experimental results &€ TCclearly indicate tha€TCis efficient and scalable in comput-

1.4. Dissertation Outline 5

ing iceberg cubes for large data warehouses in a star schema. Also, the @& cén

be generalized and extended to handle more complicated schemas.

¢ Inresponse to strong demands of online answering ad hoc aggregate queries over fast data
streams, a novdPAT data structure is proposed to construct an online data warehouse.
Efficient algorithms are also developed to construct and incrementally maint2iT a
over a data stream, and answer various ad hoc aggregate queries. The key points of this

work are as follows:

1. A PAT maintains a small subset of aggregates from a recent data over a sliding

window, not the complete set of aggregate cells.
2. It scans the data stream only once.

3. Itanswers various ad hoc aggregate queries over a recent data over a sliding window

exactly instead of approximately.

This work certainly opens a way to apply mining iceberg cubes to a online data ware-

housing over a data stream.

e For an effective representation of non-redundant pattern-based clusters, we pnepoese
mal pattern-based clusters, which are non-redundant clusters. We also dehattgand
MaPlet, two efficient and scalable algorithms, for mining maximal pattern-based clus-
ters in large databases. By removing the redundancy, it reduces the cost to find redundant

clusters so that the effectiveness of the mining can be improved substantially.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows.
Chapter 2 describes the problem of computing iceberg cubes from data warehouses. An al-
gorithm CTCavoids materializing the universal base table, instead it facilitates the local iceberg

cubes of the dimension tables. We also show by experimentCih@is more efficient than

6 Chapter 1. Introduction

any other methods. Some ideas to handle more complicated schemas such as snowflake schema
and constellation schema are discussed.

Chapter 3 proposes a noveAT data structure to construct an online data warehouse. It
maintains the data stream within a sliding window in main memory. We present efficient al-
gorithms to maintain #AT and answer essential aggregate queries, including point and range
gueries.

Chapter 4 studies the pattern-based clustering and proposes the mining of maximal pattern-
based clusters which are non-redundant pattern-based clusters. It also presents two efficient
algorithms calledMaPleandMaPlet.

Chapter 5 concludes the works on data warehouse and data cubing in the dissertation. Inter-

esting future research topics are also discussed.

Chapter 2

Computing data cube and iceberg cube

from data warehouses

2.1 Preliminaries

Mining iceberg cubes from a data warehouse is a very useful technology since it serves only
data cells satisfying specified aggregate threshold. This chapter describes inherent challenges

of previous mining iceberg cubes algorithms and our novel method to solve the challenge.

Example 2.1 (Motivating example).The data warehouse in Figure 2.1 records the information
about sales of automobiles, and is organized in a star schema. Sabkes the fact table and
tablesCustomey Brand Model are dimension tables. Attributgrofit in the fact table is the
measure.

A sales manager may want to compute an iceberg cube with conditigiprofit) >
$3,000, i.e., finding the groups of sales that bring in a profiBo®00dollars or more on aver-
age. Such group-bys, such asles to customers of 30s buying 6-cylinder cars with sun-roof
have average profit &3,500° may be interesting to her, since she can use the information to

promote the 6-cylinder cars with sun-roof to the target customer group. O

Example 2.1 shows how mining iceberg cubes can be used in a business and also a data

warehouse in practice has multiple tables in a simple schema such as star schema, snowflake

7

8 Chapter 2. Computing data cube and iceberg cube from data warehouses

Customer Brand

cust—id brand

name \\\ country

address Sales (fact table)

income cust—id Model
brand model #

= model # _/_ engine type
car—loan transimission
ext—warrantee sun roof
profit convertible

Figure 2.1: The auto data warehouse in star schema.

schema, not a huge universal base table. However, previous efficient algorithms (Beyer &
Ramakrishnan, 1999; Y. Zhao et al., 1997; Han et al., 2001; Xin et al., 2003; Feng et al., 2004)
have assumed a single universal base table as an input. Let us come up a rudimentary approach
to compute iceberg cubes from multiple tables.

Given a data warehouse with multiple tables, one rudimentary approach may have two
steps to mining iceberg cubes. First, a universal base table is formed by joining the related
tables. Take the auto data warehouse in Figure 2.1 as an example, we can compute a base table
Salegase= Sales} Customerx BrandX Model Once the base table is formed, we can apply
an existing iceberg cube computation method to derive the iceberg cube.

Although the rudimentary method is simple, it may not be efficient or may not be even
feasible in a real application. Usually, a large data warehouse may contain tens of dimensions
and millions of tuples. It is often unaffordable in both space and time to join the related tables
and form the universal base table.

Then, the purpose is to compute iceberg cubes efficiently from multiple tables without mate-
rializing a universal base table. Surprisingly, our investigation indicates that computing iceberg
cube from multiple tables directly without materializing a universal base table may be even
more efficient in both space and runtime than computing from the universal base table even
though we assume that the universal base table is already instantiated. While the systematic

study will be presented in Section 2.3, we highlight the intuition in the following example.

2.1. Preliminaries 9

Example 2.2 (Intuition). Consider computing the iceberg cube from talifeandD in Fig-

ure 2.2. Suppose attribuké is the measure.

(KA [[A[M] (A [A [K[B [|[Bn[M]
K |agg |- | agn| M ’ K ‘ B1 ‘ ‘ Bm ‘ ary | - | @ | K | by || bm | My
Klai|--|An|m a1 |- |lan| kK|br|-|bn|m

TableF TableD Universal base tablB=F X D

Figure 2.2: A simple case of computing iceberg cube from two tables.

A rudimentary method may first compute a universal base Bbte= X D, as also shown
in the figure, and then compute the iceberg cube fBorilowever, such a rudimentary method

may suffer from two non-trivial costs.

e Space costAs shown in the figure, the tuple in talilais replicated times in the universal
base tabld3, wherel is the number of tuples in the fact table. Moreover, every attribute
in the tables appears in the universal base table. Thus, the universal base table is wider
than any table in the original database. In real applications, there can be a large number
of tuples in the fact table, and hundreds of attributes in the database. Then, the dimension
information may be replicated many times, and the universal base table may be very wide

— containing hundreds of attributes.

e Time cost.The large base table may have to be scanned many times and many combina-
tions of attributes may have to be checked. As the universal base table can be much wider

and larger than the original tables, the computation time can be dramatic.

Can we compute iceberg cubes directly frenand D without materializing the universal
base tableB? The following two observations help.

First, for any combination of attributes in tatide the aggregate valueis= aggr({my,...,m}).
Therefore, ifm satisfies the iceberg condition, then every combination of attributBsignan
iceberg cell. Please note that we compute these iceberg cells usin@tablg which contains
only 1 tuple. In the rudimentary method, we have to use many tuples in Eabdecompute

these iceberg cells. The saving is significant!

10 Chapter 2. Computing data cube and iceberg cube from data warehouses

Second, for any iceberg cell involving attributes in tablethe aggregate value can be
computed from tabl& only. In order words, if we find an iceberg cell i we can enumerate
a whole bunch of iceberg cells by inserting more attributd3 and the aggregate value retains.
Please note that we only use which has only(n+ 1) attributes, to compute these iceberg
cells. In the rudimentary method, we have to compute these iceberg cells using a much wider

universal base tabB. This is another significant saving. O

In the Section 2.3, we tackle the problem of mining iceberg cubes from data warehouses,
and make the following contributions.

First, we address the problem of mining iceberg cubes from data warehouses of multiple
tables Particularly, we formulate the problem of computing iceberg cubes from star schema
and propose efficient algorithms. Our approach can be easily extended to handle other schemas
in data warehouses, such as snowflake schema.

Secondwe develop an efficient algorithr@,TC (for Cross Table Qubing), to compute ice-
berg cubes from star schem@ur method does not need to materialize the universal base table.
Instead CTCworks in three steps. Firs§TC propagates the information of keys and measure
to each dimension table. Second, the local iceberg cube in each table is computed. Last, the
global iceberg cube is derived from the local ones. We show@h#& can be more efficient in
both space and runtime than computing iceberg cube from a materialized universal base table.

Last, we conduct an extensive performance study on synthetic data sets to examine the effi-
ciency and the scalability of our approach. The experimental results sho@Tias efficient

and scalable for large data warehouses.

2.2 Problem Definition and Related Work

2.2.1 Problem Definition

We first consider only data warehouses in star schema. However, the techniques developed

can be extended to handle data warehouses in more complicated schemas, such as snowflake

2.2. Problem Definition and Related Work 11

a b]_
az b4
(a) The star schema (b) Fact tabizct

&

o
LPIPP(P M
N AN w R Z

B[C[D] (EJF[G[H]
by |c1|ds e | fi|o|ht
by | c1|d | f1|g|h
bs | c1 | d3 & | fi|o|h
bs | Co | dy e | folo1|h

(c) Dimension tabl®; (d) Dimension tabld»

Figure 2.3: Data warehou®V as the running example.

schema. We will discuss the extensions in Section 2.5.

Definition 2.1 (Star schema).A star schemais a set of table§, D, ...,Dn, where

e F=(Ky,...,Ky,M) is called thefact table. Ky, ...,K, are thedimensionsandM is the

measure K; (1 <i < n) is the foreign key referencing to dimension tableand
e Dj,...,Dy are called thedimension tables K; is the primary key iD; (1 <i <n).
TableB=F X D1 X --- X Dy, is called theuniversal base table

In Figure 2.1, tableSalesis the fact table, and tableSustomey Brand and Model are
the dimension tables. Dimensionar-loan and ext-warranteedo not have further attributes.
In other words, the dimension tables for those two dimensions contain only the dimension
themselves and thus can be trivially omitted.

Attributescust-id brand andmodel#serve as the foreign keys in the fact table and reference
to the primary keys in the dimension tables, respectively.

As another example, consider the data wareh@Wen Figure 2.3. We will use this data
warehouse as the running example in the rest of this chapter.

The star schema is shown in Figure 2.3(a). In data warehDuUgethe fact tableFact

has3 dimensions, namelhpA, B andE. The measure i81. DimensionsB and E reference

12 Chapter 2. Computing data cube and iceberg cube from data warehouses

to dimension table®; andD», respectively. In data warehouB&V, the universal base table

Thase= Fact X Dy X Dy is shown in Figure 2.4.

A|B[C[D|E[F[G[H][M]
ap[byjc|dije | fr|gr|h| 1
a|bp|ci|d|e|fr|g|h| 3
ag|bz|ci|d3|es|fr|gr|h| 2
ap[brjci|di|e|fr|og|h|4
@ |bs|co|di|eg|fa|gr|h| 2

Figure 2.4: The universal base tallgse

Definition 2.2 (Iceberg cube).LetB= (Aq,...,Am, M) be a universal base table, wheig, . .., A
are either dimensions or attributes in dimension tables. Acell(as,...,any) is called anag-
gregate cell wherea; € A; or g = * (1 <i < m). Thecoverof cis the set of tuples iB that
match all nonx &’s, i.e.,covc) = {t € B|Va; # *,t.Ai =& }.

For an aggregate functioaggr() on the domain oM, aggr(c) = aggr(covc)).

For aniceberg conditionC, whereC is defined using some aggregate functions, acl!

called aniceberg cellif c satisfiesC. Aniceberg cubeis the complete set of iceberg cells.

Example 2.3 (iceberg cube)In base tabl&@yase(Figure 2.4), for aggregate cel= (x, by, *, dg, *, f1, %, %),
cov(c) contains2 tuples, the first and the fourth tuplesTguse because they matahin dimen-
sionsB, D andF. We haveCOUNTcov(c)) = 2.

Consider iceberg conditioB = (COUNTc) > 2). Aggregate celt satisfies the condition

and thus is in the iceberg cube.]

Problem definition. The problem of computing iceberg cube from a data warehdsghat,

given a data warehouse in star schema and an iceberg condition, compute the icebergcube.

In general, an iceberg condition can take any form. As indicated by previous studies, a spe-
cific category of iceberg conditions calletbnotonic conditionare often of particular interest.

For aggregate cells= (ay,...,am) andc' = (&},...,ay,), ¢ is called anancestorof ¢’ and
¢ adescendanof cif for any a # x, & = & (1 <i < m), denoted by’ C c. Immediately, we

have the following result.

2.2. Problem Definition and Related Work 13

Lemma 1. For aggregate cellg andc/, if ¢’ C c, thencov(c’) C cov(c). O

An iceberg conditiorC is calledmonotonidf for any aggregate ced, if C holds forc, then
C also holds for every ancestor of Some typical examples of monotonic iceberg conditions
include COUNTc) > v, MAXc) > v, MIN(c) < v, SUMc) > v (if the domain of the measure

consists of only non-negative numbers).

Example 2.4 (Monotonic iceberg condition).Consider iceberg conditio = (COUNTc) >
2). Itis monotonic. For example, as shown in Example 2.3, aggregate-e¢ht, by, *, dy, x, f1, x, %)
satisfies the condition. According to Lemma 1, every ancestgrafch ag; = (x, %, *, dg, *, fq, %, %)
andcy = (x, by, *, %, %, %, %, %), has a cover as a supersetof(c), and thus has @OUNT) value
greater than or equal to that afIn other words, every ancestor ©flso satisfies the condition
and thus is in the iceberg cube.

As another example, the cover of aggregate@e! (ag, , x, x, %, %, %, %) has only one tuple,
the third tuple inTyase(Figure 2.4). It fails the condition and thus is not in the iceberg cube. The
cover of every descendant dfmust have no more tuples than thaicbfind thus cannot honor
the condition, either. Thus, we do not even need to compute and search them in the iceberg

cube mining. N

Monotonic iceberg conditions enable efficient pruning in iceberg cube mining. As shown
by Han et al. (2001) and K. Wang et al. (2003) for many non-monotonic iceberg conditions,
the corresponding iceberg cubes can be computed by adopting some weakened but monotonic
conditions to approximate the original ones and push deep into the computation.

In this chapter, we focus on monotonic iceberg conditions written in a distributive aggre-
gate function, and use conditio€OUNTc) > v as the illustration. The techniques developed
here are general and can be used for any monotonic iceberg conditions. Moreover, the tech-
nigues (see Han et al., 2001; K. Wang et al., 2003) can be adopted and integrated into our

framework, so that non-monotonic conditions can be handled.

LAccording to (Gray et al., 1997), an aggregate functggr() is distributiveif it can be evaluated in a dis-
tributed manner as follows. There exists a functfosuch that, for any set of da, D can be partitioned into an
arbitrary number of exclusive subséls, . . ., Dnandul ;D; =D, we haveaggr(D) = f(aggr(D1),...,aggr(Dn)).
In (Gray et al., 1997), it is shown th@OUNT), MIN(), MAX) andSUI) are all distributive. In factf = aggr for
MIN(), MAX) andSUM), andf =SUMor COUNT).

14 Chapter 2. Computing data cube and iceberg cube from data warehouses

2.2.2 Related Work

The data cube operator (Gray et al., 1997) is one of the most influential operators in OLAP.
Many approaches (Beyer & Ramakrishnan, 1999; Ross & Srivastava, 1997; Ross & Zaman,
2000; Y. Zhao et al., 1997) have been proposed to compute data cubes efficiently from scratch.
In general, they speed up the cube computation by sharing partitions, sorts, or partial sorts for
group-bys with common dimensions.

It is well recognized that the space requirements of data cubes in practice are often huge.
Some studies investigate partial materialization of data cubes (Beyer & Ramakrishnan, 1999;
Han et al., 2001; Harinarayan et al., 1996). Methods to compress data cubes are studied in (Lak-
shmanann et al., 2002; Lakshmanan et al., 2003; Shanmugasundaram et al., 1999; Sismanis et
al., 2002; W. Wang et al., 2002). Moreover, many studies(Barbara & Sullivan, 1997; Barbar &
Wu, 2000; Vitter et al., 1998) investigate various approximation methods for data cubes.

In the rest of this Section, we review the major methods on computing (iceberg) cubes.

Multiway (Y. Zhao et al., 1997) is an array-based top-down approach to computing com-
plete data cube. The basic idea is that a high level aggregate cell can be computed from its
descendants instead of the base table. For example, aggregate loell <) can be derived
from aggregate cell&, b, c1, %), (a,b, c2, %), etc.

To compute a data cube on a base tab(&,B,C,D), MultiWay first scans the base table
once and computes group-bya, B,C,D), (x,B,C,D), (x,%,C,D), (x,*,*,D) and (x,*,*,).

These group-bys can be computed simultaneously without resorting the tuples in the base ta-
ble. Once these group-bys are computed, we do not need to scan the base table any more.
For example, group-by&A, B,C, x), (A,B,*,D) and (A, *,C,D) can be derived from group-by
(A,B,C,D). The computation order is summarized in Figure 2.5.

Multiway may not be efficient in computing iceberg cubes with monotonic iceberg condi-
tions, because the top-down search cannot use the monotonic iceberg condition to prune.

Fang et al. (1998) proposed the concept of iceberg queries and developed some sampling
algorithms to answer such queries. Beyer & Ramakrishnan (1999) introduced the problem of

iceberg cube computation in the spirit of the paper by Fang et al. (1998) and developed algorithm

2.2. Problem Definition and Related Work 15

(A,B,C,D)

(A,B,C,*) (A,B.,*,D) (A,*.C,D) (*,B,C,D)

(Av*v*v*) (*,B,*,*) (*'*YC‘*) (*’* *,D)

(*,*,*,*)

Figure 2.5: Top-down computation in MultiWay.

BUC. BUC conducts bottom-up computation and can use the monotonic iceberg conditions to
prune. To compute a data cube on a base taloke B,C,D), BUC first partitions the table
according to dimensioA, i.e., computing group-by@A, «, x, x). If an aggregate cella, *, *,)

fails the monotonic iceberg condition, any descendant of it, su¢h,&sx*, *), (a, *,c, x) must

also fail the condition and thus does not need to be computed. OtheBliKerecursively
searches the partition 0b\a, , *, *), and computes the further aggregates in depth-first search

manner. The computation order is summarized in Figure 2.6.
(A,B.C,D)
(A,B,C,*) (AB.*,D) (Ax,C,D) (*,B,C,D)
ABT" (A*CT" (AL*D) (“BC% (LB*D) ("2 CD)
AT (.BTH (.~ C% (.r*D)

(*’*’*’*)

Figure 2.6: Bottom-up computation BUC and H-Cubing.

BUC is efficient in computing iceberg cubes with monotonic iceberg conditions. It also
employs counting sort to make partitioning efficient.

H-cubing (Han et al., 2001) uses a hyper-tree data structure called H-tree to compress the
base table. Then, the H-tree can be traversed bottom-up to compute iceberg cubes. It also
can prune unpromising branches of search using monotonic iceberg conditions. Moreover, a
strategy was developed by Han et al. (2001) to use weakened but monotonic conditions to
approximate non-monotonic conditions to compute iceberg cubes.

The strategies of pushing non-monotonic conditions into bottom-up iceberg cube computa-
tion were further improved by K. Wang et al. (2003). A new strategy, divide-and-approximate,
was developed. The general idea is that the weakened but monotonic condition can be made up

for each sub-branch search and thus the approximation and pruning power can be stronger.

16 Chapter 2. Computing data cube and iceberg cube from data warehouses

Xin et al. (2003) developed Star-Cubing by extending H-tree to Star-Tree and integrating
the top-down and bottom-up search strategies. Feng et al. (2004) proposed another interesting
cubing algorithm, Range Cube, which uses a data structure called range trie to compress data
and identify correlation in attribute values.

On the other hand, since iceberg cube computation is often expensive in both time and space,
parallel and distributed iceberg cube computation has been investigated. For example, Ng et al.
(2001) studied how to compute iceberg cubes efficiently using PC clusters.

All of the previous studies on computing iceberg cubes make an implicit assumatimrn:
versal base table is materializetlowever, this assumption may not be always true in practice
— many data warehouses are stored in tens or hundreds of tables. It is often unaffordable to
compute and materialize a universal base table for iceberg cube computation. This observation

motivates the study in this section.

2.3 CTC: A Cross Table Cubing Algorithm

In this section, we develo@TC, a cross table cubing algorithm. We first present the general
ideas and the framework of the algorithm, and then devise the details of the algorithm step by
step.

Algorithm CTCworks in three steps. First, the aggregate information is propagated from the
fact table to each dimension tables. Then, the iceberg cubes in the propagated dimension tables
as well as in the fact table (i.e., tlecal iceberg cubgsare mined independently using the same
iceberg cube condition. Last, the iceberg cells involving attributes in multiple dimension tables
are derived from the local iceberg cubes.

The correctness of the above three-step procedure is supported by the following basic ob-
servation:for an iceberg cellc with respect to a monotonic iceberg condition, its projections
on the fact table and the dimension tables must also be local iceberg Takisobservation is

formulated as follows.

Lemma 2 (Extended a priori property). In a base tableB = (Aq,...,Ay, M) whereM is the

2.3. CTC: A Cross Table Cubing Algorithm 17

Algorithm CTC
Input: a data warehoudaW in star schema, a monotonic iceberg conditiyn
Output: aniceberg cube;
Method:
1: propagate the information about aggregates from the fact table to the dimension tables;
2: compute local iceberg cube for each dimension table;
3: compute the iceberg cells on the fact table and join the local iceberg cells to derive the
global ones

Figure 2.7: AlgorithmCTC.

measure, it = (as,...,an) is an iceberg cell with respect to a monotonic iceberg condion
then, for any subset of attributggy,,... . A, } (1<ii<---<ij <n), (&;,...,&,) is aniceberg

cell in table oAilv_,,A“M(B) with respect taC, whereo is the multi-set (i.e., bag) projection
operator.

Proof. This lemma can be regarded as the a priori property (Agrawal & Srikant, 1994) on
dimensions of iceberg cube. To show the correctness, consider’ ceith thatc’.Aij = &

(1< j<I) and all other attributes of take valuex. Then,c’ is an ancestor of. Sincec

satisfies the monotonic iceberg conditi@nso doeg’. It is easy to see that celly,, ..., a;) on

tabIeGAil,,,,A.I M(B) has the exactly same aggregate valu€ asnd thus also satisfi€s O

Based on Lemma 2, instead of directly computing the iceberg cube from a universal base
table, we can compute local iceberg cubes from the fact table and the dimension tables, respec-
tively. Then, we can try to derive the global iceberg cube from the local ones.

To enable the computation of local iceberg cubes on dimension tables and the derivation of
global iceberg cubes from local ones, before we compute the local iceberg cubes, we have to
propagate the aggregate information from the fact table to the dimension tables.

Based on the above idea, the frameworkG3fC is shown in Figure 2.7. The details in

algorithmCTCare presented step by step in the following subsections.

2.3.1 Propagation Across Tables

Example 2.5 (Propagating aggregate information).To propagate the aggregate information

from the fact tableFact to the dimension table®; and D, we create a new attribut@ount

18 Chapter 2. Computing data cube and iceberg cube from data warehouses

in every dimension table. By scanning the fact table once, the number of occurrences of each
foreign key value in the fact table can be counted. Such information is registered in the column
of Countin the dimension tables, as shown in Figure 2.8. Hereafter, the propagated dimension
tables are denoted &D; andPD,, respectively, to distinguish from the original dimension

tables.

| B|[C|D|Count] [E[F][G]|H|Count]
b1 |c1 | dh 2 e | f1 J1 hy 1
by | ¢ | do 1 e | fig|h 2
€3
€4

bs | cp | ds 1 f1101|he 1
by co|di| 1 foloa | m| 1
(a) Propagate®D; (b) Propagate®D,

Figure 2.8: The propagated dimension tables.

In the rest of the computation, we only use the fact table and the propagated dimension
tablesPD; andPD,. We will show that the iceberg cube computed from these three tables is

the same as the one computed from the universal base table.]

This computation of the aggregates on the keys is implemented as group-by aggregate
gueries on the key attributes in the fact table. Only the fact table is needed to conduct such
qgueries. The aggregate information is appended to the records in the dimension tables after the
aggregates are computed. In general, we extend every dimension table to include a measure

column.

The difference between aggregate propagation and joining the fact table and the dimension
tables to materializing the universal base table is as folldEC never really joins multiple
tables. Instead, it only conducts group-by queries on each key attribute and propagates the
aggregates to the corresponding dimension table. When there are multiple dimension tables,
propagating the aggregates is much cheaper than joining multiple tables and materializing a

universal base table.

2.3. CTC: A Cross Table Cubing Algorithm 19

2.3.2 Computation of Local Iceberg Cubes

Local iceberg cubes on propagated dimension tables can be computed using any algorithms for
iceberg cube computation, as reviewed in Section 2.2.2. For each icebecgwellmaintain

the histogram of primary key values that the tuplesom(c) carry as the signature.

Definition 2.3. (Signature of iceberg cells in propagated dimension tabled)et D be a di-
mension table and& be a primary key attribute such th#t is used in the fact table as the
foreign key referencing tD. For an iceberg celt in D, thesignature of ¢, denoted as.sig, is

the set of primary key values (i.e., valueKipthat appear in the tuples ioov(c) in D.

Example 2.6 (Computing local iceberg cube)Let us compute the iceberg cube on propagated
dimension tabléD, (Figure 2.8(b)) with respect to conditi@=COUNTc) > 2. Here, we use
an adaption of algorithBUC (Beyer & Ramakrishnan, 1999).

First, we sort the tuples iRD> in attributeE using counting sort by at mo&tscans of the
table. The sum of counts of tuples haviegis 1. Thus,(ey, *,*,*) and any of its descendants
cannot satisfy the condition and cannot be an iceberg cell.

Since the sum of counts of tuples haviegis 2, cell (e2,x,x*,%):2 is an iceberg cell.
Moreover, since there is only tupley, f1,92,h2):2 in PD; has valueey, we can enumerate
all descendants g2, x,, %), namely,(ep, f1,*,x*), (€2, f1,02, %), (€2, f1,02,h2), (€2, f1,%,hy),
(e2,%,02,%), (€2,%,02,h2) and (ey, *,*,hp). Their counts must also Heand thus are iceberg
cells.

As can be observed here, one advantage of computing iceberg cubes on propagated dimen-
sion tables is that one tuple in the propagated dimension table may summarize multiple tuples in
the corresponding projection of the universal base table. Thus, we reduce the number of tuples
in the computation.

Similar to the case o, we can find thates, x,*,*) and(ey, x, *,*), as well as their de-
scendants, cannot be iceberg cells.

Then, we move to the next attribute, By sortingPD, in F, we find iceberg cell§x, f1, *, *)

with count4. We also record the set of primary key valyes, 2, e3} that the tuples havind;

20 Chapter 2. Computing data cube and iceberg cube from data warehouses

carry. This s called theignatureof the iceberg cell. It will be used in the future to derive global
iceberg cells. To maintain the signature, we can use a vectorlofs for every iceberg cell,
wherem s the number of distinct values appearing in attridat@éhe primary key attribute) in
tablePDso.

To find iceberg cells among descendant$:0ff1, *,), we sort the tuples inov(x, f1,*, %)
on attributeG. Recursively, we find iceberg cells, f1,91,*):2 with signature{es, es}, (x, 1,02, %):2
and(x, f1,02,h2):2 both with signaturdey}. By sortingcov(x, f1, %, %) on attributeH, we find
iceberg cell(x, f1,*,hy):3 with signature{e,, es}.

The remaining local iceberg cells can be computed similarly. O

Based on Example 2.6, we formulate the notation of signature, which will be used to derive
global iceberg cells from local ones.

Clearly, to maintain the signatures iy we only needn bits, wherem is the number of
distinct values irK that appear in the fact tablenis at most the number of tuples i and no
more than the cardinality df.

The algorithm of computing local iceberg cubes on propagated dimension tables is largely
the same as the existing iceberg cube computation algorithms. The only adaption is that the
signatures of the iceberg cells should be maintained by a bitmap vector attached to every iceberg

cell.

Lemma 3 (Computing local iceberg cubes)In a star schemdF,D;,...,Dp), whereM is the
measure attribute ifr, let B=F X D1 X --- X Dy. For any dimension tabl®; (1 <i < n),
the iceberg cube from the propagated dimension t&ideis identical to the iceberg cube from

oDiU{M}(B>-

Proof. Proof Sketch The propagated dimension t&il can be viewed as a summarization of
the projectionop, ,(uy (B), where the tuples sharing the same key valukiare summarized

by the extended measure attribute valuém,. O

An advantage of computing iceberg cubes from the propagated dimensioR3htethat

it often has (many) fewer tuplélsan the universal base table. In real applications, a fact table

2.3. CTC: A Cross Table Cubing Algorithm 21

may easily have millions of tuples, but the cardinality of a dimension may be in tens.

2.3.3 Computation of Global Iceberg Cubes

The set of global iceberg cells can be divided into two exclusive subsets: the ones having some
non-« values on the dimension attributes in the fact table, and the ones whose projections on the

fact table ard, ..., x). We handle them separately.

Example 2.7 (Iceberg cell in fact table and beyond)Let us compute the iceberg cells from
our running example data warehol3# (Figure 2.3) with respect to conditi@=COUNTc) >
2. In this example, we consider the iceberg cells that contain some rmalues in the dimen-
sion attributes in fact tableact

To find such iceberg cells, we start from applying an iceberg cube computing algorithm,
such aBUC (Beyer & Ramakrishnan, 1999), to the fact table.

For example, we finday, *, %) : 2is an iceberg cell in the fact table. In the coveraf, x, x)
(i.e., the first and the fourth tuples in Figure 2.3(l),appears in attribut®, which refer-
ences to dimension tabl®;. Thus, for any local iceberg cedlin PD; whose signature con-
tains by, such as(by,,*), (x,Cy,*), and (x,c1,d1), the “join"? of (ap,*,*) andc, such as
(a1,by, *,%,%,%,%), (@1,*,C1,*,*,%,%,%) and (ag, *,C1,d1, %, %, %, %), must be a global iceberg
cell of count 2 (yielding to the measure of the iceberg cell in the fact table).

For iceberg celag, x,C1, *, %, %, *,%), € andey appear in attributé&, which reference to
dimension tabl®,. Thus, for any local iceberg cadlin PD, whose signature contaies or e,
such agx, f1,*,*), can be a global iceberg cell, if the overlap of the signatures can lead to an
aggregate value satisfying the iceberg condition. Then, we can further join them to get iceberg
cell (ag, *,C1,*, *, f1,%,%).

It can be verified that, in such a recursive way, we can find all the global iceberg cells that

contain some values in the attributes in fact tafdet OJ

We formulate the operation of joining two aggregate cells.

2We will define the operation precisely soon.

22 Chapter 2. Computing data cube and iceberg cube from data warehouses

1: apply an iceberg cube computation algorithm to compute the iceberg cells in the fact table
2: once an iceberg cell in the fact table is found search icebergcétishe dimension tables
by signatures such that< c’ is a global iceberg cell
3: usec = ¢ X ¢ to conduct recursive search in other dimension tables until no iceberg cells
in the dimension tables can be joined

Figure 2.9: Computing global iceberg cells containing some shgaklues in the attributes in
fact table.

Definition 2.4 (Join of aggregate cells)Letc; andc, be aggregate cells on tabldg and T,
respectively, such that if; and T, have any common attribute thepn and c; have the same
value in every such common attribute. Tom of c; andcy, denoted ag; X ¢, is the tuplec
such that (1) for any attribut@ that c; has a nonx value,c has the same value &g on A; (2)
for any attributeB thatc, has a nonx value,c has the same value as on B; (3) ¢ has valuex

in all other attributes.
It is easy to show that the join operation has the commutative and associative properties.

Lemma 4 (Properties of join). Letcs, ¢, andcs are aggregate cells oifiy, T, and Tz, respec-

tively. Thengcy X ¢ = ¢ X ¢p and(cg X €p) X ez = €1 X (€2 X ¢3). O

In general, once an iceberg celis found from the fact table, we can extracsig, the sig-
nature ofc, and search the iceberg cells in the dimension tables whose signatures have overlap
with c.sig. Suppose iceberg ceflin a dimension table is found amdsignc’.sig= {ki,...,k },

i.e., ki, ..., k are the keys in both signatures. Then, whethirc is a global iceberg cell is
determined by the aggregate on the tuplesamc) having values, ..., ork;. This can be
easily derived from the fact table.

The algorithm of computing global iceberg cells involving attributes in the fact table is sum-
marized in Figure 2.9. As can be seen, we never need to join the fact table with any dimension
tables to generate a global iceberg cell. Instead, we join the local iceberg cells based on the
signatures. Recall that since we maintain the signatures using bitmap vectors, the matching of
signatures is efficient. To facilitate matching, we also index the iceberg cells in the dimension
tables by their signatures.

Another advantage of the algorithm is that, a local iceberg cell is found only once but is

2.3. CTC: A Cross Table Cubing Algorithm 23

used many times to join with other local iceberg cells to form global ones. If we compute the
global iceberg cells from the universal base table, we may have to search the same portion of
the universal base table for the (local) iceberg cell many times for different global iceberg cells.
The cross table algorithm eliminates the redundancy in the computation.

Now, let us consider how to compute the global iceberg cells that have ne walue in

attributes in the fact table.

Example 2.8 (Joining local iceberg cells)We consider how to compute the global iceberg
cells in data warehoudéW (Figure 2.3) that do not contain any nenvalue in attributes in
the fact table. Those global iceberg cells can be divided into two subsets: (1) the descendants
of some local iceberg cells iAD1, and (2) the descendants of some local iceberg ceDin
but not descendant of any local iceberg cell®Dy. In both cases, we only consider the cells
that do not contain any non-value in the key attributes, otherwise, they are taken care by
Example 2.7 and the algorithm in Figure 2.9.
To find the first subset, we consider the local iceberg celRDn one by one. For example,
(x,¢1,%) is a local iceberg cell i?D; with signature{bs, by, bs}. To find the local iceberg cells
in PD, that can be joined witkix, ¢y,) to form a global iceberg cell, we should collect all the
tuples in the fact table that contain eithm®r b, or bz, and find their signature on attribuie
Clearly, to derive the signature on attriblidor a local iceberg cell in tablED; by collect-
ing the tuples in the fact table is inefficient, since we have to scan the fact table once for each
local iceberg cell. To tackle the problem, we build an H-tree (Han et al., 2001) using only the
foreign key attributes in the fact table, as shown in Figure 2.10.
%m\
K bT:l bT:l bT:l
el:l e2l e21 e31l e4l

Figure 2.10: The H-tree for foreign key attribute values.

With the H-tree, for a given signature on attrib> is efficient to retrieve the correspond-

ing signature on attributé. For example, fofx, cy,), its signature (o) is {by, by, bsz}. From

24 Chapter 2. Computing data cube and iceberg cube from data warehouses

the H-tree, we can retrieve its signaturetois {e;, ey, e}, i.e., the union of the nodes at level
E that are descendants lof, b, or bs.

Then, we can search the iceberg cells in dimension ®&blg For example, iceberg cell
(x,%,01%) in dimension tablé>D, has signaturde;,es, e;}. The intersection of the two signa-
tures is{e;,e3}. From the H-tree, we know that the total aggregate of tuples hagfiry e3
andbs, by or bz is 2 (the sum of the first and the fourth leaf nodes in the H-tree). Thus, the two
iceberg cells can be joined af€ «,c1, %, *, *,01,) iS a global iceberg cell.

Moreover, if we have more thahforeign key attributes, once all the global iceberg cells
that are descendants of local iceberg cells in dimension RbDleare computed, the level of
attributeB in the H-tree can be removed and the remaining sub-trees can be collapsed according
to the next attributelz. That will further reduce the tree size and search cost.

The second subset of global iceberg cells, i.e., the ones that are descendants of some local
iceberg cells ifPDo, but not ofPD1, are exactly(x,*,x,) X ¢, wherec is a local iceberg cell in

PD». U]

Please note that, in general, the space complexity of the H-til@&@is O(kn), wherek is
the number of dimension tables ands the number of tuples in the fact table. In many cases,
the H-tree is smaller than the fact table and much smaller than the universal base table. The
signatures of local iceberg cells can be stored on disk and do not have to be maintained in main
memory.

The algorithm is summarized in Figure 2.11. Again, we use the local iceberg cells to gen-
erate the global ones. The matching is based on the signatures and an H-tree. This avoids the

redundant searches on some common parts of the universal base table many times.

2.4 Experimental Results

In this section, we report an extensive performance study on computing iceberg cubes from data
warehouses in star schema, using synthetic data sets. All the experiments are conducted on a

Dell Latitude C640 laptop computer with2a0 GHz Pentium 4 processo20 G hard drive, and

2.4. Experimental Results 25

1:

@

build an H-tree on the foreign key attributes in the fact table;
optimization: only the key attributes; should be considered {k,...,a,...,*) is an ice-
berg cell
letDq, ...,Dp be then dimension tables:
fori=1tondo
for each local iceberg ceflin dimension tabld®; do
recursive search local iceberg celldin, 1, ..., Dy that can be joined to form descen-
dants ofc and are global iceberg cells;
end for
remove the level oD; in the H-tree
end for

Figure 2.11: Joining local iceberg cells in dimension tables to form global ones.

512 MB main memory, running the Microsoft Windows XP operating system.

We compare two algorithmsBUC (Beyer & Ramakrishnan, 1999) a@IrC. Both algo-

rithms are implemented in C++.

2.4.1 The Synthetic Data

Data Generator and Settings

We generate the synthetic data sets following the Zipf distribution. Our data generator takes the

following parameters to generate the data sets.

e To generate the fact table, the data generator needs the number of dimensions, the number

of tuples, and the cardinality in each dimension in the fact table. By default, the fact table

has5 dimensions] million tuples and the cardinality of each dimension is seitQo

e To generate dimension tables, the data generator needs the number of dimension tables
and the number of attributes in each dimension table. Please note that the number of

tuples in a dimension table is equal to the cardinality in the corresponding dimension in

the fact table. By default, we s8tdimension tables, and each dimension table Jas

attributes.

e The Zipf factor. We assume that all the data in the data warehouse follows the same

distribution. By default, the Zipf factor is set fi00.

26 Chapter 2. Computing data cube and iceberg cube from data warehouses

In a data warehouse generated by the above data generator, if thargigensions in the
fact table and dimension tablesn > k), and there arkattributes in each dimension table, then
the universal base table hés k+ (n—k)) dimensions. Thus, by default, the data warehouse
generated by the data generator Bas3+ (5— 3) = 11dimensions.

In all our experiments, we use aggregate functioont (). Therefore, the domain, cardi-
nality and distribution on the measure attribute have no effect on the experimental results. By
default, we set the iceberg condition t6OUNT*) > number of tuples in fact table 5%’

In all our experiments, the runtime &TCis the elapsing time th& TC computes iceberg
cube from multiple tables, including the CPU time and 1/O time. However, the runtime of
BUC s only the time thaBUC computes iceberg cube from the universal base taidéiding
the CPU time and I/O time. That ithe time of deriving the universal table is not counted in
the BUC runtime The rationale is that a universal base table can be computed once and used
multiple times. To achieve thi8UC is always fed with a universal base table. We believe that
such a setting is fair for both algorithms and does not bias tow@fds

To simplify the comparison, we assume that the universal base table can be held into main
memory in our experiments. When the universal base table cannot be held into main memory,
the performance oBUC will be degraded substantiallyfCTC does not need to store all the
tables in main memory. Instead, it loads tables one by one. The local iceberg cells can be
indexed and stored on disk. One major consumption of main mem®@y @is to store the H-
tree for the fact table. As shown before, the H-tree is often smaller than the fact table and much
smaller than the universal base table. When the H-tree is too large to fit into main memory,
the disk management techniques as discussed in (Han et al., 2001) and also the techniques for

disk-basedBUC can be applied.

Scalability w.r.t. Factors of Dimension Tables

The major feature distinguishin@T Cfrom other iceberg cube algorithms is that it can compute
iceberg cubes from multiple tables without joining them. In this subsection, we test the perfor-

mance ofCTC on mining data warehouses in star schema with different number of dimension

2.4. Experimental Results 27

tables and different number of attributes in each dimension table.

To test the scalability with respect to the number of dimension tables, we vary the number
of dimension tables fror8 to 7, set the number of dimensions in the fact table to the number
of dimension tables plus three (i.e., we @utimensions in the fact table that do not have
dimension tables), and adopt the default values for other parameters. We test the runtime and
main memory usage &UC andCTC, which are shown in Figures 2.12(a) and (b), respectively.

Please note that in Figure 2.12(a), the runtiMeakis) is plotted in logarithmic scale.

10000 T T
BUC —*—
CTC —a—
) k s
§ 1000 E -
8 g
>
£ 2
=
= 100 \ £
z 3 S
10 | | |
3 4 5 6 7
of Dimension Tables # of Dimension Tables
(a) Runtime (b) Main memory usage

Figure 2.12: Scalability with respect to number of dimension tables.

When the number of dimension tables goes up f&tm 7, the total number of dimensions
in the universal base table goes up fragto 24. Clearly, CTCis more efficient in both runtime
and memory usage thaBUC. As the number of dimension tables goes up, the number of
dimensions in the universal table goes up, too. The runtinldsE goes up dramatically. The
runtime of CTC also goes up, but in a much more moderate trend. That is because using the
local iceberg cells in dimension tables to derive the global ones is more efficient than computing
from the universal base table, and thus is less sensitive to the increase of the number of total
dimensions.

In terms of main memory usage, both algorithms use more memory as the number of di-
mensions goes up. When there are more dimension tables and dimeSi@hbkas a taller
H-tree and needs more space to store the signatures for the local iceberg cells.

We also test the scalability with respect to the number attributes in each dimension table.

The trends are similar to the cases on the number of dimension tables (Figure 2.12).

28 Chapter 2. Computing data cube and iceberg cube from data warehouses

Scalability w.r.t. Global Factors

There are several global factors that affect the data distribution in a data warehouse and the
performance of iceberg cube computation, including (1) the cardinality of each dimension; (2)
the Zipf factor; (3) the number of non-foreign key dimensions in the fact table; (4) the iceberg
condition threshold; and (5) the number of tuples in the fact table. We test the effects of these

factors on the scalability of bot@TCandBUC.

40 T T T 55
BUC —%—
35 L CTC —— | 50 | CTC —a— |

30 45

25 40 |+

20 35
15

N
. | 30 . 4
10 | 1 25 & g

Run Time (seconds)
Memory Usage (M)

‘k\lt‘—f*—*—l—l_"k,k#“ 1 1 1 1 1 1 1 1
510 20 30 40 50 60 70 80 90 100 20lO 20 30 40 50 60 70 80 90 100
Cardinality Cardinality
(a) Runtime (b) Main memory usage

Figure 2.13: Scalability with respect to cardinality in each dimension.

Figures 2.13(a) and (b) show the runtime and main memory usdgé©andBUC with re-
spect to the cardinality in each dimension, respectively. The other parameters are set to default.
When the cardinality increases, the data set becomes sparser, that is, the number of iceberg
cells decreases. Therefore, the runtim@&bIC decreases. The runtime GTCalso decreases
slightly. In terms of main memory usagBUC is stable since it mainly holds the complete
universal base table in main memo&TC needs more memory to hold a larger H-tree as the
cardinality goes up, since the average fan-out of each node in the tree increases. However, in a
sparse data set, the number of one dimensional iceberg cells (i.e., the iceberg cells having only
one nonx value) also decrease. That slows down the increase of the size of H-tree.

In Figure 2.14, we set the Zipf factor in the range@dd 3.0 and adopt the default values for
other parameters to test the runtime and main memory usage@iand CTC with respect to
Zipf factor. With a larger Zipf factor, the data is more skewed and thus there are more iceberg
cells. In sequel, the runtime of boBUC andCTCincrease in general, b@TCis clearly more

scalable BUC andCTCare stable in main memory usage.

2.4. Experimental Results 29

55 T T

'BUC —— ' "BUC —%—
160 CTC —a— 50 1 CTC —a— |
& i . > > > >
° i S 45+
3 S
3 J g 40f
o}
£ 1 2 3t
=
J £
c
é | g 30
25 ¢ A R . P |
0 ; : . . . 20
0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3
Zipf Factor Zipf Factor
(&) Runtime (b) Main memory usage

Figure 2.14: Scalability with respect to Zipf factor.

100 T T

300 T T

BUC e

BUC e
CTC - CTC —a—
250 - 4 %0 r
B 5 J
§ 200 g >
g g
> 150 - J 2
E z
C 100} 1 £
S s Q
x =
50 £ B
) | | | | | | | |
2 4 6 8 10 12 2 4 6 8 10 12
of Non-Foreign Key Dimensions # of Non-Foreign Key Dimensions
(a) Runtime (b) Main memory usage

Figure 2.15: Scalability with respect to number of non-foreign key dimensions.

In real applications, some dimensions may not have dimension tables. We calhtimem
foreign key dimensionsTo test the effect of the number of non-foreign key dimensions in the
fact table, we set the number of dimensions in the fact table &ooil5 and adopt the default
values for other parameters. In such a setting, the number of non-foreign key dimensions in the
fact table varies fron2 to 12. The experimental results are shown in Figure 2.15. As can be
seen, the runtime UC goes up dramatically as the number of non-foreign key dimensions
goes up, and the runtime &TCis more scalable. The main memory usages of Bl and

CTCare linear to the increase of number of non-foreign key dimensions.

In order to test the scalability dUC and CTC with respect to the iceberg condition, we
set the parameters of data warehouse to default values, and vary the threshtbid iceberg
condition “COUNTx) > v from 100 000 (i.e., 10%) to 500 (i.e., 0.05%). The runtime and

main memory usage @UC andCTCare shown in Figures 2.16(a) and (b), respectively.

30 Chapter 2. Computing data cube and iceberg cube from data warehouses

250 T T T T T T T
BUC —%—

BUC —*—
CTC —a— CTC —a— |
) s
) £
g s
k3 8
>
£ 2
=
< §
z s
0 P T — TE—— 20 | | | | | | | | |
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Iceberg Condition Threshold (%) Iceberg Condition Threshold (%)
(a) Runtime (b) Main memory usage

Figure 2.16: Scalability with respect to iceberg condition threshold.

When the threshold goes down, the number of iceberg cells increases dramatically. The
runtime of bothBUC andCTC increase accordinglyCTC is consistently3 to 5 times faster.
The main memory usage 8UC is stable, since it only keeps the universal base table in main
memory. When the threshold is not very I0@&TC uses much less main memory thBeC.
When the threshold is very low, the main memory usag€®DE goes up. The reason is that,
in our current implementation, we load the local iceberg cells and indexes into main memory
before they are joined. When the threshold is very low, the number of local iceberg cells can be

many times larger than the number of tuples in the universal base table.

1200 T T T T T T
BUC —%—
CTC —— 17

T T T 400 T T T
BUC —*—
CTC —a— X 350 +

1000

800

600

1
Memory Usage (M)

400

Run Time (seconds)

200

3

n L L L L L L L L L L L
1 2 3 4 5 6 7 1 2 3 4 5 6 7

The Number of Tuples in Fact Table (in Millions) The Number of Tuples in Fact Table (in Millions)
(a) Runtime (b) Main memory usage

Figure 2.17: Scalability with respect to number of tuples in the fact table.

Last, we test the scalability @dUC and CTC on the number of tuples in the fact table.
We vary the number of tuples in the fact table framillion to 7.5 million, and set the other
parameters to default. The runtime and the main memory usaB&/Gfand CTC are shown

in Figures 2.17(a) and (b), respectively. Clearly, both algorithms are linearly scalable in both

2.4. Experimental Results 31

runtime and main memory usage, 8DdCis faster and more efficient in main memory usage.

2.4.2 The Real Data and Setting

In this section, we report the experimental results on TPC-H (TPC, 1998). TPC-H is an ad-hoc,
decision support benchmark. The schema of datasets of TPC-H is the constellation schema. In
order to experiment wit€TCon TPC-H, we changed the schema into a star schema by joining
dimension tables with relationships. The initially created tables from TPC-H consist of one fact
table and seven dimension tables in the constellation schema. The dimension tables are joined
and then we have one fact table and four dimension tables in the star schema.

We uselO MB size of total database population in TPC-H as default size of data set. The
number of dimensions of fact table 16 and the sum of the number of dimensions of four di-
mension tables i46. The size of fact table in the database is aro6886of the total database
population by default setting of TPC-H. We set the iceberg condititn10 % of COUNT(x)

by default.

Scalability w.r.t. Size of Data Sets

In this section, we test the performance@fC in the different total size of data sets. We
change the total size of data sets fr@rivB to 20 MB, whose the size of fact table @3 % of
the total size of data sets. The runtime and main memory usa@é©andBUC are shown in
Figure 2.18(a) and (b), respectively. Please note that weQ@iEEsot using Htree and we will
compareCTCusing Htree withCTCnot using Htree soon.

SinceCTCcomputes local iceberg cubes in each dimension tables avoiding duplicate com-
putation in the fact table, the runtime &TC is more efficient tharBUC. We note that the
number of iceberg cells is approximatd@ K at thel MB data set and 1K at tfeMB, 10 MB,
and20 MB data sets. Since the number of iceberg cellsMB data set is extraordinarily huge,
BUC suffers in the runtime at the size dMB of data setCTCis more efficient in the runtime

thanBUC in the situation where the number of iceberg cells are high, wh&&&ssuffers in

32

Chapter 2. Computing data cube and iceberg cube from data warehouses

Run Time (seconds)

Run Time (seconds)

300

250 b

200 r X

150 b

100 - b

50

0

BUb —k—
CTC —a—

//“
$ L L

0 5 10 15 20

1200

1000

o]
o
o

D
o
o

IS
o
s}

N
o
o

o

The size of database

(a) Runtime

Memory Usage (M)

45

40 -
35
30 -
25
20
15
10

BUTC —k—
CTC

.
5

L L
10 15

The size of database

(b) Main memory usage

20

Figure 2.18: Scalability with respect to size of data sets.

CT(E with H—treé —k—
BUC —2—
r CTC without H-tree —a— 1

0 5 10 15 20
The size of database

(a) Runtime

Memory Usage (M)

600

500 -

400

300

200 -

100 -

CTC with H-tree —%— 1

uc —&—

CTC without H-tree —a— |

/*ﬁ/—//fx
.
T

5

10 15
The size of database

(b) Main memory usage

20

Figure 2.19: Scalability with respect to size of data sets.

the memory usage more th&UC sinceCTC needs to store all local iceberg cubes with the

signatures.

CTCuses H-tree to join the global iceberg cells efficiently. However, we find out that to

use H-tree INCTCis not always efficient in all data sets. Figure 2.19 shows the performance

of CTCwith H-tree, CTCwithout H-tree, andBUC in 10 MB data set and default iceberg con-

dition. We can see thaTC with H-tree is slower thailCTC without H-tree and eveBUC.

Since the cardinality of the dimensions referencing to dimension tables in the fact table is much

larger than the synthetic data set whose cardinality is 10 as default in the Section 2.4.1, H-tree

for dimensions referencing to dimension tables in the fact table is bush so that the cost of run

time and memory usage to handle H-tree is more expensive than to deal with the dimensions of

foreign keys in the fact table itself.

2.4. Experimental Results 33

Scalability w.r.t. Number of Dimension Tables

We vary the number of dimension tables from 1 to 4 to show the performance of computing
the local iceberg cells in each dimension table. Each dimension table in the data has different
numbers of dimension which are 9, 12, 21, and 4, respectively. The Figure 2.20(a) and (b) show
the runtime and memory usage®f/CandCTC,

In the both of runtime and memory usa@,Cis more efficient thaBUC. Since the differ-
ence between 2 and 3 on the number of dimensions is the highest one, the runtime and memory
usage go up more sharply than others. The runtimBWE increases faster thaDTC since

BUC suffers more with the increasing number of dimensions.

100

24

'BUC —— % ' "BUC —— }
%0 cTC 1 22 cTC 1
80 g
0 s °r
S 70| S 5l
S eof 5
@ & 16 f
> 50r)
E > 14r
= 40 g
S 30 g 12r
© a0} \ 10 |
10 4 8+
0 . 6 n .
1 2 3 4 1 2 3 4
The number of dimension tables The number of dimension tables
(a) Runtime (b) Main memory usage

Figure 2.20: Scalability with respect to number of dimension tables.

2.4.3 Summary

By the extensive performance study using synthetic and real data sets, we sh@il €hist

consistently more efficient and more scalable tB&C. The performance dBUC in our ex-

periments is consistent in trend with the results reported in (Beyer & Ramakrishnan, 1999).
CTCis a general framework for computing iceberg cube from data warehouses directly,

without joining the tables. It can use any iceberg cube computation algorithm to compute

local iceberg cells on dimension tables and fact table. In our experiments, WBlUSaNe

believe that the observations from the performance study are general for any other iceberg cube

computation methods. In order words, the advantage of computing global iceberg cube by local

34 Chapter 2. Computing data cube and iceberg cube from data warehouses

iceberg cells still retains, no matter which iceberg cube computation approach is adopted.

2.5 Discussion

In the previous sections, we develGp Cthat computes iceberg cube from star schema without
computing the universal base table. The central ide@Ti€ is that it uses the information of
foreign key dimension values in the fact table to join local iceberg cells in various dimension
tables. This idea can be generalized and extended to handle other kinds of schemas for data
warehouses. We use snowflake schema as an example.

The snowflake schema is a variant of the star schema model, where some dimension tables
are further normalized, and thus further splitting the data into additional tables. The major
advantage of the snowflake schema is that the dimension tables of the snowflake model are
stored in normalized form to reduce redundancies. An example is shown in Figure 2.21. As can

be seen, the dimension tables are in more thiavel.

time item supplier
(level—1 dim tab) sales (fact table) (level-1 dim tab) (level-2 dim tab)
time—key time—key

item—key supplier—key
date item—key brand supplier—name
location—key supplier—key

T
profit location city
(level-1 dim tab) (level-2 dim tab)
location—key city—key
street city
city—key country

Figure 2.21: Snowflake schema: an example.

To extendCTCto handle snowflake schema, we can first propagate the measure information
from the fact table to the levdl-dimension tables, and then from the letalimension tables
to the level2 dimension tables, and so on.

As the second step, the local iceberg cells can be computed for each table. To join the
local iceberg cells and derive the global ones, we build an H-tree for the fact table and each
intermediate dimension table (i.e., a levalimension table containing some foreign key at-

tribute referencing to levelk+ 1) dimension table, such as tablégsm andlocation in

2.5. Discussion 35

Figure 2.21). As the last step, the H-trees can be combined as a global H-tree and the local

iceberg cells can be joined.

Similarly, we can also handle some other complicated cases, such as fact constellation

schema.

Chapter 3

Online answering ad-hoc aggregate

gueries on data streams

3.1 Preliminaries

A data warehouse materializes a large set of aggregates from a given base table. Various aggre-
gate queries(OLAP queries) can be answered online by proper indexes in a data warehouse.

In general, the complete set of aggregate cells on a multidimensional base table can be huge.
For example, if a base table ha8dimensions and the cardinality of each dimensiabOghen
the total number of aggregate celldiC~ 6.7 x 10°°. Even if only on average one out b®'°
aggregate cells is non-empty (i.e., covering some tuple(s) in the base table), the total number of
non-empty aggregate cells still can be ugstd x 10t Thus, computing and/or materializing
a complete data cube is often expensive in both time and space, and hard to be online.

Recently, several important applications see the strong demands of online answidning
aggregate queriesver fast data streams. In this chapter, we are particularly interested in the
applications where thaccurate instead of approximate answarthe queries are mandatory.

For example, trading in futures market is often a high-risk and high-return business in many
financial institutions. Transactional data and market data are collected timely. Dealers often

raise various ad hoc aggregate queries about the data in recent periods, sisthlae total

37

38 Chapter 3. Online answering ad-hoc aggregate queries on data streams

transaction amounts and positions in the ldshours, by financial products, counter parties,
time-stamp (rounded to hour), mature date and their combinatioimsthose applications, it

is required tomaintain the recent data in a sliding windoand provide accurate and online
answers to ad hoc aggregate queries over the current sliding windsaanother example, a

large sensor network is often deployed to monitor the hydraulic, hydrologic and water quality
data from a large-scale river network. To dynamically monitor and model the transport of toxic
contaminants or sediment, it is important to online answer various ad hoc aggregate queries
about the data in recent periods, such tassee the effect of the heavy rain last night, list the
density of toxic contaminants in the 1@t hours, by areas, branches, reservoirs, categories of

toxic contaminants, time (rounded to hour) and their possible combind&tions

Many previous studies proposed approximate methods to monitor aggregates over very fast
and high cardinality data streams, such as network traffic data streams where the speed of a data
stream can be of gigabytes per second and the cardinality of the IP addreg¥eslissuch
situations, it is impossible to obtain accurate answers. Approximate answers usually provide
sufficiently good insights. However, the target applications investigated in this chapter, such as
the transactional data streams in business, are substantially different. First, accurate answers
are mandatory in many business applications. This is particularly important for some business
applications such as those in the financial industry. Second, the data streams studied here often
are not extremely fast, and the cardinality of the data is not very huge. Instead, they have a
manageable speed. For example, since the modern computers easily have gigabytes of main
memory and typically the transactions in those applications will be in the scale of millions per
day, it is reasonable to assume that the current sliding window of transactions can be held into
main memory. Thus, it is possible to obtain accurate answers to ad hoc aggregate queries, even

though the task is still challenging.

Given a data stream, what we want to do is that (1) to maintain the current sliding window
of transactions in main memory, (2) to provide accurate answers to OLAP queries. Several

approaches may be proposed to this task.

First,Can traditional data warehousing techniques meet the requirem&tt&ditional data

3.1. Preliminaries 39

warehouse often updates in batch periodically, such as daily maintenance at nights or weekly
maintenance during weekends. Such updates are often conducted offline. Online aggregate
gueries about the most recent data cannot be answered by the traditional data warehouses due

to the delay of the incremental updates.

Second;Then, can we maintain a materialized data cube over the sliding winddmi@r-
tunately, the size of a data cube is likely exponential to the dimensionality and much larger than
the sliding window. Moreover, the cubing runtime is also exponential to the dimensionality and
often requires multiple scans of the tuples in the sliding window or the intermediate results.
However, in a typical data stream, each tuple can be seen only once, and the call-back opera-
tions can be very expensive. Thus, a data cube resulted from a reasonably large sliding window
Is usually too large in space and costly in time to be materialized and incrementally maintained

online.

Unfortunately, the above two approaches have shortcomings to meet the requirements of the
task. In order to meet the requirement of this take,materialize and incrementally maintain
only a small subset of aggregates online by scanning the data stream only once, and still retain
the high performance of online answering ad hoc aggregate quehresther words, we get
a good tradeoff between efficiency of the query answering and the efficiency of indexing and
maintenance (i.e., the size of index and the time of building and maintaining the index). In
online answering aggregate queries, there are three factors needed to be considered, namely the
space to store the aggregates, the time to create and maintain the aggregates, and the query an-
swering time. While the existing static data cubing methods focus on reducing the last of them,
the goal of this chapter is to trade off the query answering time a little bit against the space and
time of incremental maintenancParticularly, due to the inherent requirements of data stream
processing, the data stream can be scanned only once, and the space to store the aggregates is
highly desirable to be linear in the stream. In this chapter, we address the following challenges.
Challenge 1: Can we avoid computing the complete cube but still retain the capability of an-
swering various aggregate queries efficiently?

Our contribution: We propose a solution that the transient segment (i.e., a sliding window)

40 Chapter 3. Online answering ad-hoc aggregate queries on data streams

of a data stream is maintained in an online data warehouse, which is enabled by the idea of
materializing only theprefix aggregate celland theinfix aggregate cellsWe show that they

form just a small subset of the complete data cube, and the total number of prefix aggregate
cells islinear to the number of tuples in the sliding window and the dimensionality. With such

a small set of aggregates cells, many aggregate queries, including both point queries and range
queries, still can be answered efficiently.

Challenge 2: How can we compute, maintain and index the selected aggregates from a data
stream?

Our contribution: We devise a novel data structuprefix aggregate tre€PAT), to store and

index the prefix aggregate cells and the infix aggregate cells. The si&To$ bounded. Al-
gorithms are developed to construct and incrementally maif&in Our experimental results
indicate thaPPAT s efficient and scalable for fast and large data streams.

Challenge 3:How can we answer various aggregate queries efficiently?

Our contribution: We develop efficient algorithms to answer essential aggregate queries, in-
cluding point queries and range queries. Infix links and the locality property of side-links of
PAT enable various aggregate queries to be answered efficiently. An extensive performance
study shows that the query answering is efficacious over large and fast data streams.

The remainder of this study is organized as follows. In the remainder of this Section 3.1,
we describe the framework and review related work. The prefix aggregate tree structure as
well as its construction and incremental maintenance are presented in Section 3.3. The query
answering algorithms are developed in Section 3.4. The extensive experimental results are

reported in Section 3.5.

3.1.1 The Framework

In this study, we model data streamas an (endlesd)ase tableS(T,D4,...,Dn,M), whereT
Is an attribute otime-stampsD4,...,Dn aren dimensionsn discrete domains, and is the
measure For the sake of simplicity, we use positive integers starting ftaas time-stamps.

In data stream processing, records are often collected in temporal order. Thus, it is reason-

3.1. Preliminaries 41

The data stream

The historical segmenti ‘ The transient segment ‘Dratr;airn the future -

archive sliding window

online update/maintain
Central data warehouse Online data
S
—

Figure 3.1: The framework of warehousing data streams.

able to assume that the tuples having time-stanaprive before the ones having time-stamp
(t+1). Tuples having the same time-stamp may be in arbitrary order.

Traditional data warehouses can answer various aggregate queries efficiently. However,
those data warehouses have to be incrementally maintained periodically and the maintenance
is often offline. It is difficult to answer aggregate queries on the recent data that has not been
loaded into the data warehouse in the last update.

To tackle this problem, it is natural to divide a data stream into two segmentsistioeical
segmentand thetransient segmentas illustrated in Figure 3.1. Conceptually, the historical
segment is the data arrived before the last update of the central data warehouse and thus has been
archived. The transient segment, in turn, is the data that has not been archived in the central
data warehouse, and should be updated and maintained online in an online data warehouse.

Such a framework of historical and transient segments appears in multiple applications and
some prototype implementations of commercial databases. However, to the best of our knowl-
edge, there exists no previous study on how to construct and maintain an online data warehouse
for the transient segment.

Technically, should the online data warehouse store only the data in the transient segment?
Consider the scenario that the central data warehouse is just updated. Then, the online data
warehouse contains very little data and many aggregate queries about the recent data cannot be
answered using the online data warehouse. To avoid this probenonline data warehouse
should maintain the tuples whose time-stamps are in a sliding window absikerew is the
length of the periodicity that the central data warehouse conducts an regular update.

In other words, at instartt (t > w), we assume that all the queries in the online data

warehouse are about multi-dimensional aggregates of tuples falling in the sliding window of

42 Chapter 3. Online answering ad-hoc aggregate queries on data streams

t—w+1,t].
Aggregate functions can be used in the queries, suUSLASMIN, MAX COUNTandAVG

in SQL. We consider the following two kinds of queries in this study.

e Point queries At instantt, a point query is in the form of guery cell(t,dy,...,dn),
wheret —w+1 <1 <tort ==, andd € D;U{x}. For example, consider a data stream
of transaction records in an endless tafpémsaction (Time-stamp, Branch-id, Prod-id,
Counter-party-id, Amountyvhere Branch-id Prod-id and Counter-party-idare the di-
mensions, andmountis the measure. Suppose the sliding window is of g&éours.

A point query may ask forthe total amount of ‘gold’ at 10 atmwhere the query cell is
(10am, *, gold, 3. Here, the symbols«” in dimensionsBranch-idandCounter-party-id

mean every transaction in any branch and with any counter-party counts.

Particularly, whert = %, the aggregate over the whole sliding window is returned. As
another example, query cefi, (Paris, *, *) stands for the total trading amount in Paris in

the current sliding window, including all products and all customers.

e Range queriesA range query specifies ranges instead of a specific value in some dimen-
sions. Thus, a range query may cover multiple query cells. For example, a range query
may ask for the total amount of ‘gold’ and ‘oil’ in Paris and London in the current

sliding window, denoted agx, {Paris, Londo#, {gold, oil}, *).

The answer to a range query is one aggregate over all the tuples falling in the range.
For example, the above range query is answered by one total amount that covers all the

transactions in the two cities and about the two products, in the last two hours.

The above two kinds of OLAP queries are essential, though more complex queries can be
raised. Many complex OLAP queries can be decomposed into a set of queries in the above two

categories.

LAlternatively, a list of the aggregates of the query cells falling in the range can be returned. For example, the
above range query may be answered by a ligt afjgregates corresponding to the combinations of values in the
ranges of dimensioBranch-idandProduct The two forms of answers can be derived by similar techniques.

3.2. Related Work 43

Now, the problem becomdsow to construct and incrementally maintain an online data

warehouse and answer ad hoc aggregate queries.

Problem statement. Given a data strear and a size of sliding window. We want to
construct and maintain an online data structdfé) so that, at any instaritin the sliding
window w, any point queries and range queries can be answered precisely and efficiently based
onW(t).

To be feasible for streaming data processimgt) should satisfy the following two condi-

tions.

1. The size oW(t) is linear to the number of tuples in the current sliding window and the

dimensionality; and

2. W(t) can be constructed and maintained by scanning the tuples in the stream only once,

and unnecessarily holding the sliding window in main memory.

W is called theonline data warehousef streamS. O]

3.2 Related Work

(Chaudhuri & Dayal, 1997; Widom, 1995) are excellent overviews of the major technical pro-
gresses and research problems in data warehousing and OLAP. It has been well recognized that
OLAP is more efficient if a data warehouse is used.

The data cube operator (Gray et al., 1997) is one of the most influential operators in OLAP.
Many approaches have been proposed to compute data cubes efficiently from scratch (Beyer
& Ramakrishnan, 1999; Ross & Srivastava, 1997; Ross & Zaman, 2000; Y. Zhao et al., 1997).
In general, they speed up the cube computation by sharing partitions, sorts, or partial sorts for
group-bys with common dimensions.

It is well recognized that the space requirements of data cubes in practice are often huge.
Some studies investigate partial materialization of data cubes (Beyer & Ramakrishnan, 1999;

Han et al., 2001; Harinarayan et al., 1996). Methods to compress data cubes are studied

44 Chapter 3. Online answering ad-hoc aggregate queries on data streams

in (Shanmugasundaram et al., 1999; Sismanis et al., 2002; W. Wang et al., 2002; Lakshmanann
et al., 2002; Lakshmanan et al., 2003). Moreover, many studies (Barbara & Sullivan, 1997,
Barbar & Wu, 2000; Vitter et al., 1998) investigate various approximation methods for data

cubes.

How to implement and index data cubes efficiently is a critical problem. Cubetree (Rous-
sopoulos et al., 1997) and Dwarf (Sismanis et al., 2002) are proposed by exploring the prefix
and suffix sharing among dimension values of aggregate cells. Quotient cube (Lakshmanann
et al., 2002) is a non-redundant compression of data cube by exploring the semantics of ag-
gregate cells, and QC-tree (Lakshmanan et al., 2003) is an effective data structure to store and
index quotient cube. As compressions of a data cube, they can be used to answer queries di-
rectly, and quotient cube can further support some advanced semantic OLAP operations, such

as roll-up/drill-down browsing.

Many studies have been conducted on how to answer various queries effectively and effi-
ciently using fully or partially materialized data cubes (Cohen et al., 1999; Johnson & Shasha,
1997; Levy et al., 1995; Mendelzon & Vaisman, 2000; Srivastava et al., 1996). To facilitate the
guery answering, various indexes have been proposed. Sarawagi (1997) provides an excellent
survey on related methods. A data warehouse may need to be updated timely to reflect the
changes of data. In 1990’s, the maintenance of views in data warehouses was actively stud-

ied (Gupta et al., 1993; Mumick et al., 1994; Quass et al., 1996; Quass & Widom, 1997).

Recently, intensive research efforts have been invested in data stream processing, such as
monitoring statistics over streams and query answering (Babu & Widom, 2001; Dobra et al.,
2002; Datar et al., 2002; Gehrke et al., 2001) and multi-dimensional analysis (Chen et al., 2002).
Please see (Babcock et al., 2002) for a comprehensive overview. While many of them focus on
answeringcontinuous queriesew of them consider answeriragl hoc querie®y warehousing
data streams. Probably the work most related to this paper is done by Chen et al. (2002), where
a linear-regression based approach is proposed to accumulate the multi-dimensional aggregates
from a data stream, and a variation of the H-tree structure (Han et al., 2001) is used to mate-

rialize some selected roll-up/drill-down paths for OLAP. However, their method assumes that

3.3. Prefix Aggregate Tree (PAT) 45

the streaming data can be summarized effectively by linear regression and can only provide ap-
proximate answers to aggregate queries, and no efficient method is presented to answer various
ad hoc aggregate queries in general. Moreover, the selected roll-up/drill-down paths are hard
to determine. It is unclear how the H-tree structure can be stored and incrementally maintained
effectively for data streams.

Particularly, this work is related to the research on mining frequent itemsets from data
streams (Arasu & Manku, 2004; Chang & Lee, 2003; Cormode et al., 2003; Cormode & Muthukr-
ishnan, 2003; Giannella et al., 2004; Karp et al., 2003; Teng et al., 2003; Yu et al., 2004). Ba-
sically, for a given stream of transactions, where a transaction is a set of items, the frequent
itemset mining problem for data streams is to maintain the set of itemsets that appear at least
A-ntimes in the transactions seen so far, whrs a minimum support threshold, ands the
number of transactions seen so far. Some methods put weights to transactions, and the more
recent transactions have heavier weights. Frequency can be viewed as a type of aggregates.
However, all of the previous methods are approximate approaches. They cannot provide the
exact answers, though some methods can provide different types of quality guarantees.

To the best of our knowledge, this is the first study on warehousing and indexing data in a
sliding window over data stream and answering ad hoc aggregate queries accurately.

On the other hand, tree and prefix-tree structures have been frequently used in data mining
and data warehousing indices, including cube forest (Johnson & Shasha, 1997), FP-tree (Han et
al., 2004), H-tree (Han et al., 2001), Dwarf structure (Sismanis et al., 2002) and QC-tree (Lak-
shmanan et al., 2003PAT is also a prefix tree data structure. We will further compare our
approaches to several important previous studies in Section 3.3.2, after the major technical

ideas ofPAT are brought up.

3.3 Prefix Aggregate Tree (PAT)

In this section, we devise the prefix aggregate tR&I) data structure. We also develop algo-

rithms to construct and incrementally maintain prefix aggregate tree. Hereafter, all aggregate

46 Chapter 3. Online answering ad-hoc aggregate queries on data streams

queries are ad hoc ones.

3.3.1 Data Structure

Consider a data strea8{T,D1,...,Dy,M). Let the size of sliding window be. In order to
answer any aggregate query about the data in the sliding window, we have to store the tuples
in the sliding window. An intuitive way to store the tuples compactly is to use a prefix tree, as

shown in the following example.

Example 3.1. Let the data stream as our running exampleSpe A, B,C,D,M) whereT and
M are the attributes of time-stamps and the measure, respectively. The tuples at hataohts
2 are shown in Figure 3.2. Suppose aggregate func@dMis used, and the size of sliding

window w = 2.

T|A[B|C|D[M]|
1| b2 C1 dl 6
1| b1 C1 d1 2
2 | a b1 Co d2 3
2| a bl Co dl 4

Figure 3.2: The tuples at instarteand?2 in streamS(T,A,B,C,D,M).

If we ignore the time-stamps and measures, the tuples in the sliding window can be orga-

nized into a prefix tree, as shown in Figure 3.3(a).

18]
root root
2[3]al 72
AL F P
1 jz 71 bl 21[6] h1[2l4
cl 2 Tl c2 cl[a[2 «c2[2[3 clifel c2[24]
dl d2 d1 d1 difa[2] d2[2[3 dif1]g] d1[2[4]

(a) Storing tuples into a prefix tree. (b) Prefix tree with aggregate table at each node.

Figure 3.3: Archiving a data stream in a prefix tree.

3.3. Prefix Aggregate Tree (PAT) 47

In order to store the information about the time-stamps and measures, we can register the
information at the tree nodes, as shown in Figure 3.3(b). Each tree node &ggragate table
such that the time-stamps and the aggregates by instants are registered.

Clearly, the leaf nodes in the prefix tree record the tuples in the sliding window. Each
internal node in the tree registers the aggregate of the tuples whose paths go through this node.
For example, the nod® in the tree registers the aggregates of tuples hasdrand stores them

by instants. O]

In a prefix tree, one node can be represented by the path from the root of the tree to the node.
Hereafter, we will write a node as a string of dimension values, sueh, @gb; anda;b;co.
In the prefix tree shown in Figure 3.3(b), an internal node registers the aggregates of tuples

sharing the “prefix” from the root to the node. They are called prefix aggregate cells.

Definition 3.1 (Prefix aggregate cell).Consider a data strear§(T,Dj,...,Dn,M), whereT

and M are attributes of time-stamps and measure, respectively. For any tuple, we always list
the dimension values in the orderDfi, .. .,Dy. LetS be the set of tuples in the current sliding
window|(t — w+1),t] of S An aggregate celt = (1,ds,...,d,) is aprefix aggregate ceif (1)

there exists & such thatl <k <n, dy,...,dx are notx anddy. 1, ...,d, are all x; and (2) there

exists at least one tupl# = (di, ...,dy) in § such thatd; = d/ for (1 <i <k).

Theorem 3.1. By storing only the prefix aggregate cells, any ad hoc aggregate queries about

the current sliding window can be answered.

Proof. Clearly, the answer to any ad hoc aggregate query about the current sliding window can
be derived from the complete set of tuples in the window. Let us consider tuples in the current
window. If a tuplet is unique in the current sliding window,is (trivially) a prefix aggregate

cell. If t is not unique, then there exists a prefix aggregate cell which has the same Vature as
every dimension. In other words, the set of prefix aggregate cells covers all tuples in the current

sliding window. O

48 Chapter 3. Online answering ad-hoc aggregate queries on data streams

Theorem 3.2 (Numbers of aggregate cells/prefix aggregate cellskiven a base table af
dimensions andk tuples, letnaggr and np be the number of aggregate cells and that of prefix

aggregate cells, respectively. Théf,< naggr < (k- (2"—1)+1) and(n+1) < np < (k-n+1).

Proof. When tuples share some values in some dimensions, they share the corresponding ag-
gregate cells. When all tuples in the base table have the same value on every dimeggion,
is minimized. When th& tuples do not share any common value in any dimension, each tuple
leads to(2" — 1) unique aggregate cells, and all tuples share aggregate-cell, *). Thus,nnp
is maximized tak- (2"—1) +1).

When tuples share some prefixes, they share the corresponding prefix aggregate cells. When
all tuples in the base table have the same value on every dimengismminimized. When the
k tuples do not share any prefix, each tuple leadspefix aggregate cells, and all tuples share

aggregate cellx, ..., *). Thus,naggr is maximized tak-n+1). O

Theorem 3.2 indicates that the number of prefix aggregate cells is, in the worst cases, linear
to the number of tuples in the sliding window and the dimensionality, and thus is substantially
smaller than that of all aggregate cells. It suggests that the set of prefix aggregate cells is a
promising candidate of an online data warehouse for a data stream.

Given a prefix tree of the prefix aggregate cells, aggregate queries can be answered by
browsing the tree and extracting the related tuples in the current sliding window. However, if
the current sliding window is large and thus the prefix tree is also large, browsing a large tree
may not be efficient. We should build some light-weight index in the tree to facilitate the search.

Let us consider how to derive the aggregate (faiby,, *) from the prefix tree in Fig-
ure 3.3(b). To answer this query, we need to access all the tuples havingyalnelimension
B. To facilitate the search, it is natural to introduce $lake linksthat link all nodes carrying the
same label together.

Can we add side links arbitrarily2et us consider how to compute aggreggde *,C1,)
from the tree in Figure 3.3(b). To answer this query, we want to access the nodes carrying label

c1 in the subtree rooted at node. That is, we want #ocal linked list of nodes having label

3.3. Prefix Aggregate Tree (PAT)

in the subtree rooted at node.

49

Clearly, maintaining multiple linked lists is not a good idea. Instead, we should construct

a linked list that has théocality property: in any subtree, the nodes carrying the same label
should be linked consecutively.

Moreover, if we can register the aggregate of all tuples hawing thea;-subtree, the query

can be answered even faster. This information can be registered as the head of the sub-linked
list of ¢; in thea;-subtree.
To accommodate the above ideas, we can construct a linked list of all nodes bawirige
a;-subtree, and set up a pointer to the head of the sub-linked list atmodé&e corresponding
aggregate(ay, *,C1,*) should also be stored and associated with the head of the linked list.

The above ideas can be generalized. For example, side links can be built in the prefix tree

in Figure 3.3(b), resulting in prefix aggregate trestructure, as shown in Figure 3.4.
— treeedge

18]
root
- = infix link B N
> sidelink

71N

1
,

AR S
amz? eps’ -

/
\ oy

d1[1le” - dia”

Figure 3.4: Prefix aggregate tree (the aggregate tables for infix links are omitted to make the
graph easy to read).

Definition 3.2 (Prefix aggregate tree).In general, given the current sliding window of a data
stream, agprefix aggregate tree(PAT for short) is a prefix tree of the prefix aggregate cells in
the window with the following two kinds of links.

e Side links. All nodes having the same dimension value as the label are linked together

such that the locality property is hold: For any subtree, all the nodes carrying the same
label in the subtree are linked consecutively.

50 Chapter 3. Online answering ad-hoc aggregate queries on data streams

e Infix links . At nodev=dj---d¢ (1 <k< (n-2)), for every dimension valug ; on di-
mensiorD; ((k+2) <i < n) that appears in the subtree rootedwatll the nodes carrying
label d; j in the subtree rooted at are linked consecutively by side-links. Aufix link
is built fromv to the head of the sublist, and an aggregate table is stored and associated
with the infix link recording the aggregates ©f= (dy,...,dg,*,...,*,d;j,*,...,*). CiS

called aninfix aggregate cell

Theorem 3.3. Consider base table af dimensions and the cardinality of each dimensioh is

In the worst case, the number of infix aggregate cells (and thus the infix links in a PAT) is
Siepl(n—i—1).

Proof. From the definition ofPAT, the number of infix aggregate cells and that of infix links

are identical. The worst case happens when every possible combination of dimension values

appears in the base table, where the base tablé"hasique tuples. Each internal node in

the PAT hasl children. Thus we have the upper bound. In such a situation, theré-ar®"

aggregate cells.]

Theorem 3.2 and 3.3 shows that, in the worst case, the set of prefix aggregate cells and
infix aggregate cells is still a small subset of all the aggregate cells. Practical data is usually
skewed. As verified by our experimental results, BAS is much smaller than the size of all
the aggregate cells.

The size of a node in BAT is regular. For a prefix aggregate céadh, ..., dy, *,...,*), the
corresponding node in the tree is at théh level (the root node is at levé), and stores the
following pieces of information: (1) The aggregate table, whichyeslumns, the time-stamp
and the aggregate, and at mastecords; (2) Pointers to up tQ, 1 children, wherdy_ ; is the
cardinality of dimensiorDy1; (3) At mosty !, ,l; infix aggregate links and corresponding
aggregate tables, whekas the cardinality of dimensioD;; and (4) A side link to the next node
at the same level carrying the same label.

The total size of such a tree nodedéw+ I 1+ w- 31, Hli+1) =O(w- 311, 4li). Com-

paring to the number of tuples in a base table, which can be easily in millions, the number of

3.3. Prefix Aggregate Tree (PAT) 51

dimensions and the cardinality in each dimension are often pretty small. All nodes at the same
level of the tree have the same sizePAT can be easily stored and managed in main memory
or on disk.

We assume that an order of dimensions is used to constrBafTaln fact, the order of
dimensions affects the size of the resultiPgT. Heuristically, if we order the dimensions in
cardinality ascending order, then the tuples may have good chances to share prefixes and thus
the resultingPAT may have a small number of nodes. The tradeoff is that the tree nodes may
be large due to the large number of infix links. On the other hand, if we sort dimensions in the
cardinality descending order, then the number of nodes may be large but the nodes themselves
may be small. Theoretically, finding the best order to achieve a min#A#lis an NP-hard
problem. This problem is similar to the problem of computing a minimal FP-tree by ordering
the frequent items properly. In Section 3.5, we will study the effect of ordering on the size of

PAT by experiments.

3.3.2 Comparison:PAT vs. Previous Methods

Prefix tree (trie) structures have been extensively used in the previous studies on data mining
and data warehousingPAT is another prefix tree structure. At first gland&\T may look

similar to some of the previous structures, including Cube forest (Johnson & Shasha, 1997),
FP-tree (Han et al., 2004), H-tree (Han et al., 2001), Dwarf structure (Sismanis et al., 2002) and
QC-tree (Lakshmanan et al., 2003).

An FP-tree (Han et al., 2004), a data structure for frequent itemset mining, records transac-
tions in a prefix tree structure such that transactions sharing common prefixes also collapses to
the same prefix in the tree. There are three critical differences between an FP-treBAInd a
First, FP-tree is for transaction data aPAT is for relation data. While transactions may have
different lengths, all tuples stored inRAT have the same length. Infix links do not appear in
an FP-tree. Second, FP-tree does not bear the locality property. Instead, the side links in an
FP-tree are built as transactions arrive. As shown later, the locality property in a PAT facilitates

the aggregate query answering substantially. Last, an FP-tree is for frequent itemset mining.

52 Chapter 3. Online answering ad-hoc aggregate queries on data streams

During the mining, an FP-tree is scanned multiple times, and the mining results are output. A
PATis for aggregate query answering. It is built and maintained by one scan of the data stream.
A query answering algorithm searches B#T to answer aggregate queries.

Cube forest (Johnson & Shasha, 1997), H-tree (Han et al., 2001), Dwarf structure (Sismanis
etal., 2002) and QC-tree (Lakshmanan et al., 2003) are for data warehousing. PAT distinguishes
itself from those designs in the following two aspects.

First, PAT stores only prefix and infix aggregates, while most of the previous structures,
except forH-tree potentially store all aggregatesin sequel, the number of nodes RAT
is linear to the number of tuples in the sliding window and the dimensionality, while those
structures are exponential to the dimensionality. Moreover, the size of tree noBag is
regular, as analyzed before. The advantages on size and regularity of tree nodd@ATake
feasible for streaming data.

An H-treeis a prefix tree of the tuples in base table. Thus, it is also linear to the dimension-
ality. However,H-treedoes not have infix link and thus the query answerinddetnee directly
can be very costly. Furthermond;treeis designed as an internal data structure for computing
iceberg cells, and is not for data streams.

SecondPAT is indexed by infix links and side-links, and the side-links have the locality prop-
erty. As will be shown soon, the locality property and the infix links facilitate query answering
substantially. In most of the previous structures, the search is based on values dimension by
dimension.

In terms of size, @AT s larger than aid-tree the difference is infix aggregates and infix
links. The size of the infix aggregates and the infix links is quantified in 3.3. The infix links have
to meet the locality requirement. Theorem 3.4 will discuss the procedure. As will be shown, it

takes the extra cost in time linear in the dimensionality to maintain the locality.

3.3.3 PAT Construction

We consider constructing RAT by reading tuples into main memory one by one (or batch by

batch), and each tuple can be read into main memory only once. The algorithm is presented in

3.3. Prefix Aggregate Tree (PAT) 53

Figure 3.5 and elaborated in this subsection.

Example 3.2. Let us construct AT by reading the tuples in Figure 3.2 one by one.

A PATis initialized as a tree with only one node, the root. Then, The first tdpleg, by, c1,ds, 6),
is read and inserted into the tree. For each node in the path, @ r6ys registered in the aggre-
gate table. The infix links fromoot to a;by, a;boc; andajbocids, infix links from a; to ajbocy
andazbycids, and infix links fromaz by to a;bocyd; are created. The corresponding infix aggre-
gate cells arésx, by, x, %), (x,%,Cq1,%), (*,%,%,d1), (az,*,C1,*), (a1,*,+*,d1) and(ag, by, *,d1),
respectively. Once the information is recorded in the tree, we do not need the tuple any more.

Then, we read the second tugle as, bi,c1,d1,2) and insert it into the tree. The aggregate
values at nodesot anda; should be both updated td,8), since they are on the path of the
inserted tuple. The infix links fromoot to a;b; and fromaib; to aibicid; are created and
associated with the infix aggregate célish;, *,) and(as, b1, *,d1), respectively.

The remaining tuples can be inserted similarly. It can be verified that the resBAing

exactly the one shown in Figure 3.4.]

The construction of AT by scanning tuples one by one has two major components: build-
ing the prefix tree, which is straightforward, and creating/maintaining the correct infix links
and side-links, which should follow the procedure justified in the following theorem so that the

locality property is respected.

Theorem 3.4.Let T be a PAT that satisfies the locality property. When a new noofdabel
d; is created, the following procedure adjusts the side-links and infix-links so that the resulting
PAT preserves the locality property:\fis a child of the root node, no infix link and side-link

are needed; else, the side-links and infix links with respeestwould be adjusted as follows:

1. The closest ancestof of v should be allocated such thdthas an infix link of;;

2. If vV does not exist, then an infix link should be built from every ancestoirothe tree

to v, except for the parent node of

54 Chapter 3. Online answering ad-hoc aggregate queries on data streams

3. Otherwise, let be the node pointed by thig-infix link of V. LetV be the set of ancestor

nodes of/ whosed;-infix links also point tau.

(a) If uis not the first node of global side link with(in other words, the root node
does not exist iV), v should be inserted into the front of the sublist pointed by the

di-infix link of V' and thed;-infix link of V' should point tov.

(b) If uis the first node of side link witt globally in the tree(in other words, the root
noder exists inV), v should be inserted into the front of the sublist pointed by the

di-infix link of v and thed;-infix link of vV and nodes itV should point tov.

Proof. The correctness of Step 2 is clear since in such a wasehe first node carrying label
di. The corresponding infix links should be created.

SupposéP’ATT already has some nodes carrying lathelTo preserve the locality property,
v should be inserted to the head of the non-empty consecutive sublist of its closest ancestor. If
v is the first node of side links with;, the infix links of ancestor nodes @fshould point tov.
Once the locality property holds for the smallest subtree containing the new node, the locality
property holds for any larger subtrees containing the smallest subtree, siriR&Tthefore the

insertion has the locality property. O

The complexity of the procedure described in Theorem 3.4 is linear in the dimensionality.
At each node, a table of aggregates is maintained. Each table has two columns: time-stamp and
aggregate, and at mostrows. The aggregate at instarghould be stored at th¢ mod w)-th

row. Therefore, the cost of maintaining and searching the table is constant.

3.3.4 Incremental Maintenance

Suppose that we haveRAT at instant. At instant(t + 1), the new data tuples should be read
in and inserted into the tree, and the data at ingtantw+ 1) should be removed, so that the
sliding window is moved forward tfi — w+ 2,t + 1]. The algorithm is shown in Figure 3.6. We

explain the critical details as follows.

3.3. Prefix Aggregate Tree (PAT) 55

Algorithm Tree construction
Input: the current sliding windovi
Output: a PAT

Method:

1: initialize a tree with only the root node;

2: read the tuples into main memory one by one, one at each time;
3: for each tupledo

4 insert the tuple into the tree;

5. for each node on the path of the inserted tujie

6: update the aggregate at the node;

7 if it is a new nodehen

8 adjust infix links and side-links according to Theorem 3.4
9 end if

10: end for

11: end for

Figure 3.5: ThdPAT construction algorithm by scanning tuples one by one.

To be efficient, should insertions of tuples at instént 1) go first or deletions of tuples
at instant(t — w—+ 1) first? Consider a tree node whose aggregate table contains only an
aggregate at instaft— w+ 1). Suppose that some tuples from the stream at ingtant) will
contribute a new row iv's aggregate table. If deletions go first, the node would be removed
since its aggregate table is empty after the deletion. Then, the insertion of the tuples at instant
(t+ 1) will have to recreate the node. To avoid such an unnecessary deletion-and-re-creation,
we should let the insertions of tuples at instént 1) go first before the deletions of tuples at
instant(t — w+1).

Insertion of tuples at instar{t + 1) can be done in the way similar to Algorithm in Fig-
ure 3.5, the tree construction by scanning the tuples one by one. That is, we take the existing
PATat instant, and insert the tuples at instaitt 1) into the tree.

Please note that, during the insertion, we do not need to scan any tuples in the previous
instants. The only tuples scanned are those at inétant).

Now, let us considehow to delete the tuples whose time-stamps(arew+ 1). A naive
method is as follows. We search tRAT. For each node that contains an aggregate at indtant
w+1) in its aggregate table, the corresponding row in the aggregate table should be removed.
If the aggregate table becomes empty, then the node should be deleted.

The above nize method is costly. There can be many nodes in the tree containing aggregates

56 Chapter 3. Online answering ad-hoc aggregate queries on data streams

Algorithm Incremental maintenance

Input: the PATT at instant,and the tuples at instafit+ 1)
Output: thePATat instant(t + 1)

Method:

1: insert tuples at instarft + 1) into T,
2: for each node on the pathtdo

3: if V's aggregate table contains a row of instént w+ 1) then
4; remove the row from the aggregate table;

5 if vis a leaf nodeghen

6: putvinto the LUT list of LUT =t + 1;

7 end if

8: endif

9: end for

10: for each node in the LUT list of LUT =t — w+1do

11: searchv's ancestors upward until a node having aggregates after irtstant- 1 is encountered;
12: removev and those ancestors gfand the infix links, adjust the related side-links,too

13: end for

Figure 3.6: ThéPATincremental maintenance algorithm.

T[A[B[C|D|M]
3|la|by|c|dy| 5
3la|blcld|1l

Figure 3.7: The tuples at instaBit

at instant(t — w-+ 1). Aggressively updating a large number of nodes may degrade the online
performance. Moreover, how to locate the nodes containing aggregates at jhstant 1) is
another problem. Browsing the whole tree can be very expensive.

Here, we proposelazy approachthe nodes whose aggregate table has only rows of instants
(t—w+ 1) or earlier have to be removed at insté@int- 1), in order to release the space. Other
than that, the deletions of the old aggregates of ingtanto+ 1) from the nodes are deferred
and conducted as a byproduct of future insertions. The idea is elaborated in the following

example.

Example 3.3. Suppose the tuples at instéhaire as shown in Figure 3.7. Since the size of the

sliding windoww = 2, the tuples at instai®should be inserted and the tuples of instashould

be removed. Let us consider how tRAT in Figure 3.4 should be incrementally maintained.
We first insert the tuples at instaBinto the PAT. Tuple(3,a1,by, c2,d2,5) is inserted from

the root node as a patlaj-by-cp-dy”. A record (3,5) will be stored at the first row of the ag-

3.3. Prefix Aggregate Tree (PAT) 57

— tree edge
- = infix link

--> ddelink

(NN AN \‘
WY

b2\‘ \\\
Va
\

IURUEEEETEEES EEESNN \ N
R AR \ S A \

\

e

BRY = ! \ “

\ 1 \ \‘»-,\ Vhf‘*#\“{ "

Lol o= Es L epd!) aEm

\ ! \\ ry \\ h

\ L‘ /r /1 | l/ , \ I :

\ / ,/ ‘\ " \\ Iy

N s Rt 2R R
d2p@ > 4235 aze’ dEy

Figure 3.8: Prefix aggregate tree at instant

gregate table, sinc@mod2 = 1. It overwrites record1, 8) automatically. Similarly, we update
the aggregate tables at nodgsanda; by, and the aggregate tables for the related infix links,
respectively. Please note that the removal of data at in&t&oim these nodes are conducted
as abyproductof the insertions, i.e., we do not actively search for the nodes whose aggregate
tables having rows of instafit To complete the insertion, two new nodagy,c, anda;b,codo,
are created. Following Theorem 3.4, the aggregate tables at these nodes as well as the appropri-
ate side-links and infix links are adjusted. The second typl@y, b, c1,d2, 1) can be inserted
similarly.

Then, we should remove all those nodes whose aggregate tables contain only rows of instant
1. To find such nodes, we maintain an integer for each leaf node, callddsthepdate time-
stamp(LUT), which is the latest time-stamp that the node is updated. All leaf nodes having
the same LUT are linked together as a linked list. By browsing the linked list for£WTwe
remove the leaf nodes and their ancestors that have only aggregates atlingthatupward
search stops when the first ancestor having aggregates at instant othkrslesicountered. In
this example, nodes; bicy, ajbicidy, ajbocy, andajbocid; are removed. The resulting tree is
shown in Figure 3.8.

Please note that the aggregate table at rmtie still contains the aggregate at instdnt
However, this information does not affect our query answering. This row will be removed in
the future. Atinstand, if there is a new tuple having b; as a prefix, the row will be overwritten

and the node will be updated. Otherwise, the node will be removed when we clean up nodes

58 Chapter 3. Online answering ad-hoc aggregate queries on data streams

containing only aggregates at inst&mr earlier. O

In summary, at instar{t + 1), the incremental maintenance algorithm only scans the tuples
having time-stamyjt + 1) once, and inserts them into the existipgT. By following the LUT
list of (t — w+ 1), the maintenance algorithm removes those tree nodes and corresponding infix
links whose aggregate tables have only rows of instantw+ 1) or earlier. It never browses

the completd®AT during the incremental maintenance.

Theorem 3.5. The time complexity of constructing and incrementally maintainirRA& is

O(nl), wheren is the number of tuples needed to be inserted intd®®E andl is the cardinal-

ity.

Proof. The complexity follows the algorithms in Figures 3.5 and 3.6. For each tuple, the inser-
tion time and the time to maintain the locality of the infix links are linear in the dimensionality

l.]

Moreover, if the incremental tuples can be held into main memory, then, they can be sorted

and inserted in batch.

3.4 Aggregate Query Answering

We consider how to answer queries of two categories: point queries and range queries.

3.4.1 Answering Point Queries

Point queries can be answered efficiently usirf@Ad. The algorithm is shown in Figure 3.9.

We illustrate the major idea in the following example.

Example 3.4 (Point query answering).Let us use thdAT shown in Figure 3.4 to answer
some illustrative point queries about the sliding winddw2] in the data stream of our running

example.

3.4. Aggregate Query Answering 59

Algorithm Answering point queries

Input: thePATT at instant, and a query cely(t,ds, ..., dn)
Output: the aggregate of the query cell

Method:

6:

1
2
3:
4
5

. if T# % and the root's aggregate table does not have a row aliben

RETURN (null);

end if

. let current-node=root;

: m= searcl{current-node, ¥
RETURN (m);

Function searct{current-node, g-cejl
1: suppose-cell = (1,dy,...,d);
2: if dy # x then

3: if current-nodéhas a childv of labeld; then
4: if T+ % and there is no row of instantin the aggregate table @fthen
5: RETURN (null);
6: else
7 current-node=v; g = (1,dy,...,d|); m= searci{current-nodeq);
8: RETURN (m);
9: end if
10: else
11 RETURN (m);
12: endif
13: else
14: if di=---=d = x*then
15: RETURN the aggregate atirrent-node
16: endif
17: letd; be the first dimension nonvalue ing;
18: if current-nodehas no infix link of labet; then
19: RETURN (m);
20: endif
21: if T # * and the aggregate table of the infix linkayfhas no row oft then
22: RETURN (m);
23: endif
24: m=0;
25: follow the side links, visit every node carrying lalzilin the subtree of,
26: for each node’ in the linked listdo
27: let current-node- V'; d = (di1,...,d); m=aggr(m,searcl{current-noded));
28:. end for
29: RETURN(m)
30: end if

Figure 3.9: The algorithm answering point queries.

60 Chapter 3. Online answering ad-hoc aggregate queries on data streams

First, consider query cells = (1,a1,b1,*,), which itself is a prefix aggregate cell. Its
aggregate?, is registered in the aggregate table of nagle,. Following the path from the root
to the node, we retrieve the answer immediately.

Let us consider query celp = (x,*,b1,*,%). It is not a prefix aggregate cell. Instead, it is
an infix aggregate cell. Thus, by the aggregate table associated with the infix link olb{adiel
noderoot, we can retrieve the aggregate. Please note that the aggregates are stored by instants
in the aggregate table, i.e., two royds 2) and(2,7) are in the aggregate table of the infix link.
We need to get the sum of them since « in this query cell.

As the third example, ledz = (*,*,b1,%,d1). This query cannot be answered by one node
in the tree. Instead, following the infix link of labk{ at noderoot, we can reach the linked list
of all nodes havindp;. Following the side-links, we can access all the nodds ah the tree.

For each node in the linked list, we recursively retrieve the aggregates from the infix link of
labeld; at the node. For example, at noalgh,, by the infix link of d;, we immediately know
the aggregate of«,a;,b1,*,d;1) is 1 even without visiting any node af;. Similarly, at node
apbi, we can retrieve the aggregate(efay, by, *,d;), 4, from the infix link. The sum of the
aggregates from the infix aggregate cedlsanswers the query.

As another example, let us consider query cgll= (x,ap, %, Cp,d2). Following the tree
edgeroot-a, and infix link of ¢, at nodeay, we reach the local linked list @b in the subtree of
a. The locality property of the side-links and the infix link avoids the search of the complete
linked list of c. Sinceazbic; has only one child, which iazbicods, the query returnsull.
Here,null means there is not any tuple matching the aggregate cell.

The aggregate tables can also be used to prune the search. For example, consider query
cellgs = (2,a1,by, *,d;). It follows the patha;b, in the PAT. However, the aggregate table at
nodea; b, does not contain any row of instaat Thus, we can returnull immediately without

searching the subtree any more. O

As can be seen, in answering point queries, infix links and side-links are used to search only
the related tuples. Moreover, the locality property of side-links guarantees that we do not need

to search any unnecessary nodes or branches.

3.4. Aggregate Query Answering 61

3.4.2 Answering Range Queries

In principle, a range query can be rewritten as a set of point queries. Then, Algorithm of
answering point queries in Figure 3.9 can be called repeatedly to answer the queries. However,
calling the algorithm of answering point queries and thus searching the PAT repeatedly may not
be efficient.

Here, we propose duel pruningapproach, as exemplified in the following example.

Example 3.5 (Range query answering)Let us consider how to answer range query
(2,%,{bo,b1},*,{d1,d2}). The query cell can be rewritten as a sed qieries cells(2, x, bg, x,d1),
(2,%,bo, *,d2), (2,%,b1,%,d1) and (2,*,bq,*,d2). Algorithm in Figure 3.9 can be called four
times to answer the point queries, respectively, and the sum, 7, should be returned.

Instead of calling algorithm of answering point queries four times, we can sear&ihe
as follows.

We start from the root node, since the first nodimension value in the query cell should
be eitherbg or b; on dimensiorB, we search the infix links dfig andb; from the root node.
Since there exists no infix link ddp, we prune the range query cell {8, x, by, *,{d;,d2}). At
the same time, we only need to search subtrees rooted at the nodes haviitg,lalbeth are
linked by the side-links. That is, a part of the search space is also pruned.

There are two nodes carrying lal@l in the PAT, a;b; andasb;. We search them one by
one. For nodeybs, since the next nor-dimension value in the query cell should be eitder
or dz, and the time-stamp & only the infix links ofd; andd, are searched, and only the infix
link of d> has a row of time-stamp. Thus, the aggregateis extracted. Similarly, aggregate

value4 is extracted from the subtree ajb,. Thus, the sun? is returned. O

As shown in Example 3.5, the major idea of progressive pruning method for answering
range queries is that, instead of searchiiAd many times, we conduct the search using the
range query from the root of RAT. At each node under the search, the query range is narrowed
using the information of the available infix links and the corresponding aggregate tables, and

the unnecessary nodes are pruned from the search space using the range specification in the

62 Chapter 3. Online answering ad-hoc aggregate queries on data streams

query. By progressive pruning, we search BAd only once for any range query.

3.5 Experimental Results

In this section, we report the experimental results from a systematic performance study. All
the algorithms are implemented in C++ on a laptop PC with8GHz Pentium 4 processor,
60 G hard drive, andb12 MB main memory, running Microsoft Windows XP. In all of our
experiments, the PATs reside in main memory.

We generate the synthetic data sets following the Zipf distribution. To generate the data
sets, our data generator takes the parameters of the Zipf factor, the dimensionality, the number
of tuples, and the cardinality in each dimension. To generate a tuple, we generate the data for
each dimension independently following the Zipf distribution.

Such a data generation method is popularly used in many previous studies (Beyer & Ra-
makrishnan, 1999; Ross & Srivastava, 1997; W. Wang et al., 2002; Sismanis et al., 2002) on
data cube and data warehouse computation. To some extent, it is a benchmark approach to
generating synthetic data sets for data cube computation.

In our test, we also used the weather data set (Hahn, 1994) which is a real data set. The
weather data set is well accepted a benchmark data set for data cube computation (Beyer &
Ramakrishnan, 1999; Ross & Srivastava, 1997; W. Wang et al., 2002; Sismanis et al., 2002).

We tested three methods: tARATmethod developed in this dissertation, BieC method (Beyer
& Ramakrishnan, 1999) and a baseline method. The baseline method just simply stores and
sorts all tuples in the current sliding window. As expected, the baseline method uses the least
main memory to store the data and costs the least runtime to maintain the current sliding win-
dow. The tradeoff is the slowest query answering performance. To answer any query, the
baseline method has to scan the tuples in the current sliding window. A binary search can be
used to locate the tuples matching the time interval of the query. On the other haBd)@he
method computes the whole data cube. It costs the most in computing the whole cube and stor-

ing the aggregates. We measure both the main memory c@&tGfand the size of the data

3.5. Experimental Results 63

cube computed bBUC, which is stored on disk. To answer a quéiJC only needs to conduct

a binary search to allocate the corresponding aggregate tuple. Thus, the query answering time
is fast. PATis in between: to compute and store the aggregates for the current sliding window,

it costs more space and runtime than the baseline method but less tinGheethod; on the

other hand, in query answering, it searches less than the baseline method accordingly.

3.5.1 Building Prefix Aggregate Trees

We tested the size of the data cube computeBUE, the size ofPAT, the number of aggregates
computed, the memory usage (the highest watermark of memory usage during the running of
the programs) and scalability (runtime) of the three methods. Four factors are considered: the
Zipf factor, the dimensionality, the cardinality of the dimensions and the number of tuples in

the current sliding window. The results are consistent. Some results are shown in Figure 3.10.

120 T 3000
BUC —&—
PAT —o—
100 - BaseLine —o— . 2500
@ >3
2 eof $ 2000
g £
S 60f £ 1500 |
E 1 2)
‘é 40 1 S 1000 t
© N
n
20 500
0 : : : : g 0
1.5 2 25 3 3.5 4 0.5 1 1.5 2 2.5
. . Zipf Factor . . . Number of Tuples (M) .
(a) Runtime vs. Zipf factor (dim=10, cardinal-(b) Size of cube/tree vs. #tuples (Zipf=2,
ity=10, #tuples=500K) dim=10, cardinality=10)
60000 T T 450 T T T T T T T
BUC —&— BUC —2— |
= PAT —e— | 400 PAT —e—
< 50000 b BaselLine —6—
» ~ 350 E
[} =
8 40000 | % 300 -
P4 [=)]
) S 250
© 30000 r D
o > 200 -
o o
5 20000 - £ 150 f
2 =
g 10000 100 7
z 4 50 L
0 . . . o
5 10 15 20 25 4 5 6 7 8 9 10 11 12
Cardinality . . . Dimensionality . . .
(c) #aggregates vs. cardinality (Zipf=2(d) Memory usage vs. dimensionality
dim=10, #tuples=500K) (Zipf=2, cardinality=10, #tuples=500K)

Figure 3.10: Results on constructiRgT.

64 Chapter 3. Online answering ad-hoc aggregate queries on data streams

As shown Figure 3.10(a), the baseline method is not sensitive to the Zipf factor at all, since
it simply maintains the tuples in the current sliding window and does not pre-compute any
aggregate. BotfBBUC and PAT are sensitive to the Zipf factor: the smaller the Zipf factor,
the more distinct aggregates exist in the data set. HowB¥dryuns faster thaBUC since it

computes much less aggregate cells tBaiC.

Figure 3.10(b) measures the size of the data culi®Ust, the size of thd®?AT and the size
of the current sliding window in Baseline. The sizeRAT counts both the prefix aggregates,
infix aggregates and links. The number of tuples varies from 500 thousand to 2.5 million so that
the scalability of the methods are tested. All three methods are roughly linear on the number
of tuples, butPAT and the baseline method generate much smaller resultBidéanIn other
words, Baseline does not generate any aggregates but only the base tuples are maintained. PAT
generates the prefix aggregates and the infix aggregates, which form a substantially small subset
of all the aggregates generated®lyC. Even when the whole data cube is 0265 GB, thePAT
including the links occupies less th&A0 MB, which is less than 3 times of the size of all base

tuples and can be easily accommodated in main memory.

Figure 3.10(c) shows that the number of aggregate cells (including prefix aggregates and
infix aggregates) ifPATis linear in the cardinality of the dimensions. The trend is mild. When
the cardinality increases, the data set becomes sparse and thus the total number of aggregates
also increaseBUC computes all aggregates. As shown in the same figure, the increase of all
aggregates is sub-linear in our experiments, but the number of all aggregates is much larger than

the number of prefix aggregates and infix aggregates computed by

Figure 3.10(d) shows the memory usage of the three methods. Please n8td@&tbres
the aggregates on disk. It only maintains the base table in main memory. Thus, it uses the same
amount of main memory as the baseline method. Sinc®&ieresides in main memory, the
memory usage of constructindPAT increases as the dimensionality increases. When there are

many dimensiondPAT has many levels.

In summary, &ATis usually much smaller than the size of a data cube. ConstruciAd a

Is also much faster than computing a data cube uBlugG.

3.5. Experimental Results 65

3.5.2 Incremental Maintenance

When testing the performance of incremental maintenance, we always set the number of tuples
at each instant to a constant. A sliding windowl®finstants was used. We set the number of
tuples in the originaPATto 500 K. We only compare thBAT method and the baseline method.

For BUC, there is not incremental maintenance algorithm. Thus, to incrementally maintain all

the aggregates, we have to compute the data cube on the new data and merge the new aggregates
with the existing ones. It has a similar performance as shown in Section 3.5.1. Some results are
shown in Figure 3.11.

Figure 3.11(a) shows the maintenance runtime versus the Zipf factor. It is consistent with
Figure 3.10(a). With a lower Zipf factor, the data set is sparser andRATI€omputes more
prefix aggregates and infix aggregates. The baseline method is constant since it does not com-
pute any aggregates. However, by comparing Figures 3.11(a) and 3.10(a), we can see that the
incremental maintenance time is much shorter, since many paths in the eRaflngan be
reused in the incremental maintenance.

As shown in Figure 3.11(b), the incremental maintenance timBAGdf increases as the
dimensionality increases, since the tree becomes larger and taller on high dimensional data
sets. The maintenance time of Baseline also increases, but it is linear.

In Figure 3.11(c), we tested the scalability of the incremental maintenar€l@ind Base-
line with respect to the number of new tuples at each instant. The result shows th&2gdoth
and Baseline have an approximately linear scalability. This is consistent with the analysis of the
PATincremental maintenance algorithm.

Figure 3.11(d) examines the size of tRAT with respect to the number of new tuples at
each instant. Interestingly, we observed that, under a given data distribution, the sizEATthe
is stable and insensitive to the number of tuples in the incremental part. In other words, the size
of PAT mainly depends on the number of tuples in the sliding window, and is stable during the
incremental maintenance. This is a nice property for data stream processing: no matter how
large the data stream is, we will have an index structure of a stable size.

Figure 3.11(e) shows the memory usage with respect to the Zipf factor. Again, when the

66 Chapter 3. Online answering ad-hoc aggregate queries on data streams

1.2 T T T T T T T
PAT —e—
Baseline —— %

PAT —e— |
Baseline —e—

o000
o N o ©
T T T 7T

o
(S}
T

Maintenance Run Time (seconds)
Maintenance Run Time (seconds)

2 2I.5 I3 3I.5 4
Zipf Factor (50K tuples) Dimensionality (50K tuples)
(a) Runtime vs. Zipf factor (dim=10, cardinal-(b) Runtime vs. dimensionality (Zipf=2, car-

ity=10, #new tuples=50K) dinality=10, #new tuples=50K)

14 T T T T

T T T 200 T T T T T T T
PAT —eo— PAT —e—
Baseline —c— »

[y
N

195 B

=
o

190 b

185 b

Size of Tree (M)

180 | i

175 B

Maintenance Run Time (seconds)

0 170
550 600 650 700 750 800 850 900 950 1000 550 600 650 700 750 800 850 900 950 1000

Number of Tuples in Maintenance (K) Number of Tuples in Maintenance (K)

(c) Runtime vs. #new tuples (Zipf=2, dim=10(d) Size of tree vs. #new tuples (Zipf=2,
cardinality=10) dim=10, cardinality=10)

450 T T T
PAT —&—
400 ¢ Baseline —o—

350
300
250
200
150
100

50

0 i i |
15 2 25 3 35 4

Zipf Factor (50K tuples)
(e) Memory usage vs. Zipf factor (dim=10,

cardinality=10,#new tuples=50K)

Memory Usage (M)

Figure 3.11: Results on incremental maintenandeAd.

3.5. Experimental Results 67

Zipf factor is small, the data is sparse and thus not many prefixes can be shared. When the Zipf
factor becomes larger, the data becomes more skewed, aRATheecomes smaller due to the
more sharing of the prefixes. The baseline uses constant memory in the maintenance, since it
only needs to load the current sliding window into main memory.

In summary, incremental maintenance d?Al is scalable in both runtime and space usage

with respect to the size of sliding window.

3.5.3 The Order of Dimensions

We also tested the effect of different orders of dimensions on the size d?Afiseand the
runtime of PAT construction. We made up a synthetic data set®éflimensions, Zipf factor
3 and1 million tuples. Thei-th dimension(1 <i < 10) has a cardinality of. We tested the

effects of the followingd orders of dimensions:

e Ry: cardinality ascending order;
e Ry: cardinality descending order;
e Rs: D5-Dg-Ds-D7-D3-Dg-Dp-Dg-D1-D1g; and

o R4: D1-D19-D2-Dg-D3-Dg-D4-D7-D5-Deg.

| Order | Runtime| #nodes| Tree size (bytes)

R 16.37 | 6,433 1,521,640
R 16.67 | 16,441 2,548 404
Rs 17.14| 8,694 2,180,736
Ry 16.74| 8,575 1,812 868

Figure 3.12: The effect of orders of dimensions.

The results are shown in Figure 3.12. TP&T construction time is insensitive to the order
of dimensions, since the number of tree node accesses is basically the same no matter which
order is used.

Both the number of nodes in tiRATand the size of the tree are sensitive to the orders. With

order Ry, putting dimensions of low cardinality ahead strongly facilitates the prefix sharing,

68 Chapter 3. Online answering ad-hoc aggregate queries on data streams

300

BUC —=— ¢} 7 7 BUC —=—
4500 PAT —e— PAT —e—
4000 Baseline —o—/ | 250 Baseline —o—/ 1

200

150 -

100

Size of Cube/Tree (M)
Run time (seconds)

50

N
w®

4 5 6 7 8 9 2 3 4 5 6 7 8 9
. Dimensionality Dimensionz_:llity .
(a) Size of the tree. (b) Construction time.

Figure 3.13: Results on real data set Weather.

and leads to the smallest number of nodes. As discussed at the end of Section 3.3.1j,at level
the size of the tree nodes is proportional to the sum of cardinalities in dimeri3jons$o Dy,
Therefore, the average size of tree nodes using dides the largest. However, the advantage
of reduction on number of nodes well overcomes the disadvantage of large tree node size. Thus,
orderR; achieves the smallest tree. Order suffers from deficiency in sharing the prefixes.
Although its average tree node size is the smallest, the tree size turns out to be the largest.
OrdersR3 andR4 stay in between.

Based on this experiment, we recommend ordering the dimensions in cardinality ascending
order to explore possible sharing of prefixes. However, there is no theoretical guarantee that the

cardinality ascending order always leads to the smallest tree.

3.5.4 Results on the Weather Data Set

We also tested th@AT construction using the well-accepted weather data set (Hahn, 1994),
which containsl, 015 367 tuples and® dimensions. The dimensions with the cardinalities of
each dimension are as follows: station-1d037), longitude(352), solar-altitudg179), latitude

(152), present-weathefl01), day (30), weather-change-codd0), hour (8), and brightness

(2). 8 data sets witl2 to 9 dimensions are generated by projecting the weather data set on the

first k dimensiong1 < k < 9). Figure 3.13 shows the results.

Interestingly, the size of thBAT on the complete data set is or$3 MB, comparable to

3.5. Experimental Results 69

the size of QC-tree2412 Mb reported in (Lakshmanan et al., 2003)), a recently developed data
cube compression method. However, to construct a QC-tree, the base table has to be scanned
and sorted multiple times, and incremental maintenance of a QC-tree is more costBAihan
ThePAT construction is also much faster than computing the whole cube B&i@jput slower
than Baseline(Figure 3.13(b)). As indicated in (Lakshmanann et al., 2002), construction of a
guotient cube is slower thaBUC, since extra work is needed to achieve compression.

In summary, the experimental results on the real data set are consistent with the observations

that we obtained from the experiments on the synthetic data sets.

3.5.5 Query Answering

We reported the performance of answering point queries. The results on range queries are
similar. In each test, we randomly seldc@00aggregate cells from the data cube and use them
as the point queries. In other words, all queries are on non-empty aggregates.

Beyer & Ramakrishnan (1999) do not give a query answering algorithB&e. In this
performance study, we store the whole data cimbmain memoryas a table, and all tuples
are sorted according to the dictionary order. Therefore, answering any point query using the
whole cube can be done by a binary search. This is probably the best case of query answering
using a data cube. In real applications, usually a whole data cube cannot be held into main
memory. To this extent, our experiments favor the query answering using the whole cube. In
the Figure 3.14, we measure the query answering time takdnd®p queries. All curves are
plotted in logarithmic scale.

From the figures, we can clearly see that bB&I and BUC have a much better query
answering performance than the baseline method. The baseline method is two orders of magni-
tudes slower. That simply indicates that, in order to answer aggregate queries online, material-
izing some aggregate cells in very effective.

PAT and BUC have comparable performance in terms of query answering. However, re-
member thaPAT computes and materializes much fewer aggregate cellsBb&h In sequel,

the space over head for storindPAT is much smaller than the space for all the aggregate cells

70 Chapter 3. Online answering ad-hoc aggregate queries on data streams
100 T T 100 T T T
& o ——<%—BUC & | 7 BUC
2 PAT —e— E PAT —&—
8 BaselLine —o— 3 10 F BaselLine —o— |
3 10 ¢ 3
Py Py
£ £ 1k]
= [
g ! 2
® 4 5 0.1 4
z %
c 4 j
T % S oot
g g ‘
(o4 3 (o4
0.01 : ; - 0.001 . . "
15 2 25 3 35 5 10 15 20 25
. . Zipf Factor . . . _Cardipality . .
(a) Runtime vs. Zipf factor (dim=10, cardinal-(b) Runtime vs. cardinality (Zipf=2, dim=10,
ity=10, #tuples=500K, #queries=1K) #tuples=500K, #queries=1K)
1000 T T T T T T T 100 T T T T T T
o BUC —&— 0 BUC —&—
2 PAT —e— 9 W
S 100 ;/e/‘Bia’s@Em 8 Baseline —e—
3 g 10t 3
Py Py
E 10 =
= [
2 2 1 2
T 1t e T
z { % |
5 4 E 0.1 ¢ /
> 0.1F E > y
R 0.01 R s S s SR
06 0.8 1 12 14 16 18 2 2 3 4 5 6 7 8 9

Number of Tuples (M) Dimensionality
(c) Runtime vs. #tuples (Zipf=2, dim=10, car{d) The Weather data set
dinality=10, #queries=1K)

Figure 3.14: Results on query answering using PATSs.

computed byBUC, as shown in the previous experiments. MoreoC needs to scan the
base table multiple times to compute a complete data cube. PAliss a nice tradeoff between

space and query answering time.

3.5.6 Summary

Based on the above experimental results, we have the following observations. First, the size of
aPATis substantially smaller than that of a data cube. That makeRAmMéasible in space for

data streams. Second, our algorithms for constructing and incrementally maintai®Aigee
efficient and highly scalable for data streams. The construction and maintenance cost is dramat-
ically smaller than the cost of materializing the whole cube. Third, query answering usAD a

is comparable to the best cases using a full cube. It is much faster than the baseline method.

The PAT approach can be regarded as a good tradeoff between the construction/maintenance

3.5. Experimental Results

71

cost and the query answering performance.

Chapter 4

Warehousing pattern-based clusters

4.1 Preliminaries

Clustering large databases is a challenging data mining task with many important applications.
Most of the previously proposed methods are based on similarity measures defined globally on
a (sub)set of attributes/dimensions. However, in some applications, it is hard or even infeasible

to define a good similarity measure on a global subset of attributes to serve the clustering.

To appreciate the problem, let us consider clusteringbtbbjects in Figure 4.1(a). There
are5 dimensions, namelg, b, ¢, d ande. No patterns among tHeobjects are visibly explicit.
However, as elaborated in Figure 4.1(b) and (c), respectively, oble@sand 3 follow the
same pattern in dimensioms ¢ andd, while objectsl, 4 and5 share another similar pattern
in dimensiondb, ¢, d ande. If we use the patterns as features, they form pattern-based
clusters

The flexibility of pattern-based clustering may provide interesting and important insights
in some applications where conventional clustering methods may meet difficulties. For ex-
ample, in DNA micro-array data analysis, the gene expression data are organized as matrices,
where rows represent genes and columns represent samples/conditions. The number in each cell
records the expression level of the particular gene under the particular condition. The matrices

often contain thousands of genes and tens of conditions. It is important to identify subsets of

73

74 Chapter 4. Warehousing pattern-based clusters

80T . ; — Objectl 80 80
70 \“.\ ,"/ \\\ ,// - -~ Object2 70 70 \"'\,‘\ x’/
60 v ,,,,, Objects 60 60
SO0 NS s oo Objectd 0| T 50 /
40 - -~ Objects 40 40
30 30 . 30 S
20 20| -7 20

10 10 /\ 10 \/

0 Dimensions 0 0

a b c d e a c d b ¢ d e
(a) The data set (b) Pattern—based cluster 1 (c) Pattern—based cluster 2

Figure 4.1: A set of objects as a motivating example.

genes whose expression levels change coherently under a subset of conditions. Such informa-
tion is critical in revealing the significant connections in gene regulatory networks. As another
example, in the applications of automatic recommendation and target marketing, it is essential
to identify sets of customers/clients with similar behavior/interest. As a concrete example, sup-
pose that the ranks of movies given by customers are collected. To identify customer groups, it
is essential to find the subsets of customers who rank subsets of movies similarly. In the above
two examples, pattern-based clustering is the major data mining task.

The pattern-based clustering problem is proposed and a mining algorithm is developed by
H. Wang et al. (2002). However, some important problems remain not thoroughly explored. In
particular, we address the following two fundamental issues and make corresponding contribu-

tions in this chapter.

e What is the effective representation of pattern-based clust&ss®an be imagined, there
can exist many pattern-based clusters in a large database. Given a pattern-based cluster
C, any non-empty subset of the objects in the cluster is trivially a pattern-based cluster
on any non-empty subset of the dimensions. Mining and analyzing a huge number of
pattern-based clusters may become the bottleneck of effective an@ygsisve devise a

succinct representation of the pattern-based clusters?

Our contributions. In this chapter, we propose the mining mfximal pattern-based

4.1. Preliminaries 75

clusters The idea is to report only those non-redundant pattern-based clusters, and skip
their trivial sub-clusters. We show that, by mining maximal pattern-based clusters, the
number of clusters can be reduced substantially. Moreover, many unnecessary searches
for sub-clusters can be pruned and thus the mining efficiency can be improved dramati-

cally as well.

e How to mine the maximal pattern-based clusters efficientB® experimental results
indicate that the algorithm-Clustering(H. Wang et al., 2002) may not be satisfactorily
efficient or scalable in large databases. The major bottleneck is that it has to search many

possible combinations of objects and dimensions.

Our contributions. In this chapter, we develop two novel mining algorithigPleand

MaPlet+ (MaPlefor Maximal Pattern-based @kteaing). They conduct a depth-first, pro-
gressively refining search to mine maximal pattern-based clusters. We propose techniques
to guarantee the completeness of the search and also prune unpromising search branches

whenever it is possibleVaPlet also integrates several interesting heuristics further.

An extensive performance study on both synthetic data sets and real data sets is reported.
The results show thaflaPleandMaPlet+ are significantly more efficient and more scal-
able in mining large databases than metpedlustering(H. Wang et al., 2002). In many

casesMaPlet is better tharMaPle

The remainder of the chapter is organized as follows. In Section 4.2, we define the problem
of mining maximal pattern-based clusters, review related work, compare pattern-based clus-
tering and traditional partition-based clustering, and discuss the complexity. Particularly, we
exemplify the idea of methop-Clustering(H. Wang et al., 2002). In Section 4.3, we develop

algorithmsMaPleandMaPlet. An extensive performance study is reported in Section 4.4.

76 Chapter 4. Warehousing pattern-based clusters

4.2 Problem Definition and Related Work

In this section, we propose the problem of maximal pattern-based clustering and review related
work. In particular,p-Clustering a pattern-based clustering method developed by H. Wang et

al. (2002), will be examined in detail.

4.2.1 Pattern-Based Clustering

Given a set of objects, where each object is described by a set of attributes. A pattern-based
cluster(R,D) is a subset of objecR that exhibit a coherent pattern on a subset of attribDtes

To formulate the problem, it is essential to describe, given a subset of oBjeatd a subset

of attributesD, how coherent the objects are on the attributes. The meagSaereserves this

purpose.

Definition 4.1 (pScore (H. Wang et al., 2002))Let DB = {r4,...,r,} be a database with
objects Each object has attributesA = {ay, ...,am}. We assume that each attribute is in the
domain of real numbers. The value on attribatef objectr; is denoted as;.a;. For any objects
. . ' lx.dy Ix.@y
Iy, 'y € DBand any attributesy, a, € A, thepScore is defined gsScore =
ry.ay ry.ay
[(rx-8u —Ty.au) — (rx-a8v —fy.ay)|.
The meaning opScoreis shown in Figure 4.2pScoredescribes the difference of changes

between two objects on two attributes. As illustrated in Figure 4.2, the smallpBit@revalue,

the more similar the two objects on the two dimensions.

Figure 4.2: ThepScoreof two objectsry andry on attributesa, anday,.

Pattern-based clusters can be defined as follows.

4.2. Problem Definition and Related Work 77

Definition 4.2 (Pattern-based cluster (H. Wang et al., 2002))Let R C DB be a subset of
objects in the database arid C A be a subset of attributes(R D) is said ad-pCluster
(pCluster is for pattern-based clustgif for any objectsy, ry € Rand any attributesy, ay € D,
pScore Pefu Tx < &, whered > 0.
ry.ay ry.ay

Given a database of objects, the pattern-based clustering is to find the pattern-based clusters
from the database. In a large database with many attributes, there can be many coincident,
statistically insignificant pattern-based clusters, which consist of very few objects or on very few
attributes. A cluster may be considergdtistically insignificantf it contains a small number
of objects, or a small number of attributes. Thus, in addition to the quality requirement on the
pattern-based clusters using an upper boung®core a user may want to impose constraints
on the minimum number of objects and the minimum number of attributes in a pattern-based
cluster.

In general, given (1) a cluster threshdd(2) anattribute thresholdmin, (i.e., the min-
imum number of attributes), and (3) atject thresholdnin, (i.e., the minimum number of
objects), the task afmining delta-pClustersis to find the complete set &pClusters(R,D)
such that(||R|| > miny) and(||D|| > mina). A &pCluster satisfying the above requirement is

calledsignificant

4.2.2 Comparison Between Pattern-Based Clustering and Partition-Based

Clustering

It is interesting to note that pattern-based clustering and (traditional) partition-based clustering
(e.g.,k-means) are defining clustering from two different angles.

In traditional partition-based clustering, suchkasieans, the task is to partition the objects
into several subsets such that the similarity between objects in the same subset is as high as pos-
sible. This can be regarded as an optimization procedure. The number of clusters is often small.

We usually need a similarity measure defined for any two objects. Moreover, a quality function

78 Chapter 4. Warehousing pattern-based clusters

such as the sum of similarity between objects in the same clusters is used for optimization.

The partition-based clustering problem defined in many forms is NP-Complete. Thus, many
approximation algorithms are proposed.

On the other hand, pattern-based clustering specifies quality requirements on clusters, such
as thepScore the minimum number of objects and the minimum number of attributes in a
cluster. The task is to search for all subsets of objects as clusters and the corresponding subsets
of attributes that satisfy the quality requirement. It can be regarded as an enumeration problem.

As will be shown later, the pattern-based clustering problem is also NP-Complete. That is
partially due to its inherent difficulty of enumerating all combinations that satisfy the quality
requirements. Algorithnp — Clusteringand the two algorithms developed in this chapter are
not approximations methods. Instead, they return the complete set of answers if they can finish.

We summarize the above comparison in Figure 4.3.

| | Partition-based Clustering | Pattern-based Clustering |
Input A similarity measure, a quality A set of requirements on quality of
function each cluster
Task Optimize the quality function Search for all combinations of ob-

jects as clusters and the correspond-
ing subsets of attributes that satisfy
the quality requirements
Difficulty NP-Complete NP-Complete

Typical solutions | Approximation methods Search for complete answers with
heuristics to speed up the search

Figure 4.3: A comparison between partition-based clustering and pattern-based clustering.

4.2.3 Maximal Pattern-Based Clustering

Although the attribute and object thresholds are used to filter out insignificant pClusters, there
still can be somerédundanit significant pClusters. For example, consider the objects in Fig-
ure 4.1. Letd =5, ming = 3 andmin, = 3. Then, we havé significant pClustersC; =
({1,2,3},{a,c,d}),Co=({1,4,5},{b,c,d}),C3 = ({1,4,5},{b,c,e}),Cs = ({1,4,5},{b,d,e}),

Cs = ({1,4,5},{c,d,e}), andCs = ({1,4,5},{b,c,d,e}). Among them(C,, C3, C4 andCs are

4.2. Problem Definition and Related Work 79

subsumed by, i.e., the objects and attributes in the four clust&€s(Cs, are subsets of the
ones inCg.

In general, a pCluste2; = (Ry, D) is called asub-clustenf C, = (Ry, D2) provided(R; C
Ro) A (D1 € D2) A (||Re| > 2) A(||D1]] > 2). Cy is called aproper sub-clusteof C, if either

R; C Ry or D1 C D,. Pattern-based clusters have the following property.

Lemma 5 (Monotonicity). LetC = (R,D) be ad-pCluster. Then, every sub-clust@®’,D’) is
a o-pCluster.

Proof. The Lemma follows the definition @-pCluster immediately. m

Clearly, mining the redundant sub-clusters is tedious and ineffective for analysis. Therefore,
it is natural to mine only the “maximal clusters”, i.e., the pClusters that are not sub-cluster of

any other pClusters.

Definition 4.3 (maximal pCluster). A d-pClusterC is saidmaximal (or called ad-MPC for

short) if there exists no any othéfpClusterC’ such thatC is a proper sub-cluster o’

Problem Statement (mining maximald-pClusters). Given (1) a cluster threshofy (2) an at-
tribute thresholanin,, and (3) an object thresholdin,, the task omining maximab-pClusters

is to find the complete set of maximalpClusters with respect tmin, andmin,. O

4.2.4 Maximal Pattern-based Clusters As Skyline Pattern-based Clusters

Intuitively, maximal pattern-based clusters capture the non-redundant clusters. In pattern-based
clustering analysis, two measures are often of particular interest, namely the set of objects and
the set of attributes covered by a cluster. A cluster is called a skyline if it is not subsumed by
some other cluster in both the set of objects and the set of attributes. Following the definition of

maximal pattern-based clusters, we have the following result immediately.

Theorem 4.1. Every maximal pattern-based cluster is a skyline cluster. That is, there exist no
two maximal pattern-based clustgiR;,D1) and (R, D>) such thatR; C R, andD1 C D, and

at least one equivalence does not hold. O

80 Chapter 4. Warehousing pattern-based clusters

Theorem 4.1 shows that the set of maximal pattern-based clusters is not redundant. On
the other hand, any non-maximal pattern-based clusters are redundant given the quality re-
qguirements ob, the object threshold and the attribute threshold. The fact that a non-maximal
pattern-based clust€ satisfies the quality requirements can be derived from any of the max-
imal pattern-based cluste@ that is a super-cluster @. Please be note that, as discussed in
Section 4.2.2, in pattern-based clustering, the quality requirements are given as input and the
task is to search for all clusters that satisfy the quality requirements. We do not distinguish the
difference in quality between clusters satisfying the quality requirements. Among all pattern-
based clusters, thedrvalues may vary, but all of them are no greater than the threshold given

as input.

Since maximal pattern-based clusters are skylines, they can be used to answer any queries
about clusters with a preference function. For example, let us consider two forms of preference
functions,

f1 = a-# objectst (- # attributes

wherea andp are positive real numbers, and

fo = # objects # attributes

We have the following result.

Corollary 4.1. Any &-pCluster maximizing preference functidp or f» must be a maximal

pattern-based cluster.

Proof. The corollary is straightforward. For any pClustithat is not maximal, le€’ be a
maximal pCluster such th& is a sub-cluster of€’. Then,C’' must have a higher preference

value tharC sinceC’ either has more attributes or has more objects @an O

4.2. Problem Definition and Related Work 81

4.2.5 p-Clustering A d-pCluster Mining Algorithm

A pattern-based clustering method (H. Wang et al., 20p2}lustering, is proposed. Ac-
cording to the extensive performance study reported in the ppff&ysteringoutperforms all
previous methods.

The method works in the following three steps.

Step 1: Finding attribute-pair and object-pair MDSs.

Clearly, a pCluster must have at least two objects and two attributes. Intuitively, we can
use those pClusters containing only two objects or two attributes to construct larger pClusters
having more objects and attributes. An object/attribute-pair MDS_(faximal dmension st)
is a maximal-MPC containing only two objects/attributes.

Given a pair of objects, how to compute the object-pair MDS efficienBg? example,
Figure 4.4(a) shows the attribute values of two objects. The last row shows the differences of

the attribute values.

Object Attributes
aTb[cld] e[T g h| 3-2-16 6 7[8 10
01 13|11 9 | 7] 9 | 13| 2 |15 e g ¢ a d b h f
02 714|101/ 12| 3| 4 |7
loi—0p | 6 [7|-1]6]-3][10[-2] 8|

(a) The attribute values of two objects (b) Finding MDS

Figure 4.4: Finding MDS for two objects.

To compute the object-pair MD9;Clusteringsorts the attributes in the difference ascend-
ing order, as shown in Figure 4.4(b). Supp@se 2. P-Clusteringruns through the sorted list
using a sliding window of variable width. Clearly, the attributes in the sliding window form a
o-pCluster provided the difference between the rightmost element and the leftmost one is no
more thand. For examplep-Clusteringfirstly sets the left edge of the sliding window at the
left end of the sorted list, and moves the right edge of the window until it sees thé.fifste

attributes in betweerg, g, c}, is the set of attributes of an object-pair MDS. The+Clustering

IH. Wang et al. (2002) did not give a specific name to their algorithm. We gaiClusteringsince the main
function in the algorithm igClustef) and we want to distinguish the algorithm from the pclusters.

82 Chapter 4. Warehousing pattern-based clusters

moves the left edge of the sliding window to attribgteand repeats the process until the left
end of the window runs through all elements in the list. In total, three MDSs can be found, i.e.,
({01,02},{e.9,¢}), ({01,02}, {a,d, b,h}) and({oy, 02}, {h, f}).

A similar method can be used to find the attribute-pair MDSs.
Step 2: Pruning Unpromising MDS.

In an object-pair MDS{o01,02},D), if the number of attributes i is less thaming, then
01 and o, cannot appear together in any significant pCluster. Similarly, in an attribute-pair
MDS (R,{a1,a2}), if the number of objects iR is less thamin,, thena; anda, cannot appear
together in any significant pCluster. Such MDSs should be pruned.

After the pruning, each object-pair MDS must have at le@gj attributes, and each attribute-
pair MDS must have at leashin, objects. Trivially, if ming=2 or min,=2, the mining is
done. Foming > 2 andmin, > 2, p-Clusteringconducts the dual pruning between the object-
pair MDSs and the attribute-pair MDSs. For example, suppéeg 02}, {aop,a1,a2}) is an
object-pair MDS, butog does not appear in the attribute-pair MDS {@f, a,}, then MDS
({oo0,02},{a0,a1,a2}) can be pruned, sincéap,ax} and oy cannot appear in the same sig-
nificant pCluster. Such a dual pruning can be repeated until no MDS can be pruned further.
Step 3: Generating significant pClusters.

After the pruning in Step 4)-Clusteringinserts the surviving object-pair MDSs into a prefix
tree. For each object-pair MDS, all attributes are sorted according to a globakmaisd then
inserted into the tree. The two objects are registered in the last node of the path corresponding
to the sorted attribute list. If two object-pair MDSs share the same prefix with resp> to
then they share the corresponding path from the root in the tree. Figure 4.5 exemplifies a prefix
tree.

Clearly, since every object-pair MDS surviving from the pruning must have at theiaigt
attributes, no object will be registered in any node whose depth is lessrtimgn After all
object-pair MDSs are inserted into the trgeClusteringtreats each node in the tree whose
depth is at leagininy as a candidate pCluster, and verifies whether the objects registered at the

node really form a pCluster. Moreover, according to Lemma 5, if all objects at a node in the

4.2. Problem Definition and Related Work 83

Figure 4.5: A prefix tree of object-pair MDSs.

tree form a pCluster, any ancestor of the node in the tree registering the same set of objects also
form a pCluster. Therefore, a post-order traversal of the prefix tree is conducted to examine the
nodes whose depths are no less thn a, and generate the pClusters.

According to the performance study pfClustering(H. Wang et al., 2002) and our exper-
imental results, this step is the bottleneck of the mining. For each me@éysteringhas to
examine the possible combinations of objects on the attributes registered in the path. The worst
case complexity of prefix-tree depth-first clustering is exponential with respect to the number
of attributes. This is the major cause tipaClusteringmay not be efficient or scalable in large

databases with many attributes.

4.2.6 Related Work

The study of pattern-based clustering is related to the previous work on subspace clustering and
frequent itemset mining.

The meaning of clustering in high dimensional data sets is often unreliable (Beyer et al.,
1999). Some recent studies (Agrawal et al., 1998; Aggarwal & Yu, 2000; Aggarwal et al., 1999;
C. Cheng et al., 1999) focus on mining clusters embedded in some subspaces. For example,
CLIQUE (Agrawal et al., 1998) is a density and grid based method. It divides the data into
hyper-rectangular cells and use the dense cells to construct subspace clusters.

Subspace clustering can be used to semantically compress data. An interesting study (Ja-
gadish et al., 1999) employs a randomized algorithm to find fascicles, the subsets of data that
share similar values in some attributes. While their method is effective for compression, it does

not guarantee the completeness of mining the clusters.

84 Chapter 4. Warehousing pattern-based clusters

In some applications, global similarity-based clustering may not be effective. Still, strong
correlations may exist among a set of objects even if they are far away from each other as
measured by distance functions (such as Euclidean) used frequently in traditional clustering al-
gorithms. Many scientific projects collect data in the form of Figure 4.1(a), and it is essential to
identify clusters of objects that manifest coherent patterns. A variety of applications, including
DNA microarray analysis, E-commerce collaborative filtering, will benefit from fast algorithms

that can capture such patterns.

Y. Cheng & Church (2000) propose the biclustering model, which captures the coherence
of genes and conditions in a sub-matrix of a DNA micro-array. J. Yang et al. (2002) develop a

move-based algorithm to find biclusters more efficiently.

Recently, some variations of pattern-based clustering have been proposed. For example, the
notion of OP-clustering (Liu & Wang, 2003) is developed. The idea is that, for an object, the
list of dimensions sorted in the value ascending order can be used as its signature. Then, a set
of objects can be put into a cluster if they share a part of their signature. OP-clustering can be
viewed as a (very) loose pattern-based clustering. That is, every pCluster is an OP-cluster, but

not vice versa.

On the other hand, a transaction database can be modelled as a binary matrix, where columns
and rows stand for items and transactions, respectively. Ajga#l set tol if item j is contained
in transaction. Then, the problem of mining frequent itemsets (Agrawal et al., 1993) is to find
subsets of rows and columns such that the sub-matrix issathnd the number of rows is more
than a given support threshold. If a minimum length constraiim, is imposed to find only
frequent itemsets of no less thamn, items, then it becomes a problem of minidgClusters
on binary data. Moreover, a maximal pattern-based cluster in the transaction binary matrix is
a closed itemset (Pasquier et al., 1999). Interestingly, a maximal pattern-based cluster in this
context can also be viewed as a formal concept, and the sets of objects and attributes are exactly

the extent and intent of the concept, respectively (Ganter & Wille, 1996).

Although there are many efficient methods (Agarwal et al., 2001; Agrawal & Srikant, 1994;

Han et al., 2004; Zaki et al., 1997) for frequent itemset mining, they cannot be extended to

4.3. Algorithms MaPle and MaPle+ 85

handle the general pattern-based clustering problem since they can only handle the binary data.

4.2.7 Complexity

About the complexity of the problem of mining maximal pattern-based clusters, we have the

following result.

Theorem 4.2. The problem of finding the complete set of maximal pattern-based clusters is in

NP-Complete.

Proof. As shown in section refmaple-sec:relatedwork, mining frequent closed itemsets from a
transaction database is a special case of mining O-pClusters on binary data. In suclméngase,
is the minimum support threshold, andn, is set to 1.

G. Yang (2004) showed that mining frequent closed itemsets is in NP-Complete. Thus,

mining the complete set of maximal pattern-based clusters is in NP-Complete.]

4.3 Algorithms MaPle and MaPlet+

In this section, we develop two novel pattern-based clustering algoritiiaile (for Maximal
Pattern-based @bteing) andMaPlet. An early version oMaPle (Pei et al., 2003) is prelim-
inarily proposedMaPlet integrates some interesting heuristics on the todaPle

We first overview the intuitions and the major technical featuréda®le and then present

the details.

4.3.1 An Overview ofMaPle

EssentiallyMaPleenumerates all the maximal pClusters systematically. It guarantees the com-
pleteness of the search, i.e., every maximal pCluster will be found. On the otheMhaRth
also guarantees the non-redundancy of the search, i.e., each combination of attributes and ob-

jects will be tested at most once.

86 Chapter 4. Warehousing pattern-based clusters

The general idea of the search\iaPleis as follows.MaPleenumerates every combination
of attributes systematically according to an order of attributes. For example, suppose that there
are four attributesa;, ap, az andas in the database, and the alphabetical order, agap-
az-as, Is adopted. Let attribute threshofding = 2. For each subset of attributes, we can
list the attributes alphabetically. Then, we can enumerate the subsets of two or more attributes
according to the dictionary order, i.@gap, 818283, ajaxa3ay, a1a284, 8183, a18334, A184, axag,
azagay, azay, agay.

For each subset of attribut& MaPle finds the maximal subsets of objed®ssuch that
(R,D) is ad-pCluster. If(R D) is not a sub-cluster of another pClustg D’) such thaD c D,
then(R,D) is a maximald-pCluster. This &ttribute-first-object-latet search is illustrated in
Figure 4.6.

attributes

1. search a subset of attributes

a possible maximal pCluster

objects
2. find the largest
subset(s) of objects

Figure 4.6: The attribute-first-object-later search.

There can be a huge number of coombinations of attribiMe®le prunes many combina-
tions unpromising fod-pClusters. Following Lemma 5, for subset of attribudesf there exists
no subset of objectR such that R,D) is a significant pCluster, then we do not need to search
any superset dd. On the other hand, when search under a subset of attribytesPle only
checks those subsets of objeRtsuch tha{ R D’) is a pCluster for everd’ C D. Clearly, only
subset&k C Rmay achievé-pCluster(R', D). Such pruning techniques are applied recursively.
Thus,MaPle progressively refines the search step by step.

Moreover,MaPle also prunes searches that are unpromising to find maximal pClusters. It

detects the attributes and objects that can be used to assemble a larger pCluster from the current

4.3. Algorithms MaPle and MaPle+ 87

pCluster. IfMaPlefinds that the current subsets of attributes and objects as well as all possible
attributes and objects together turn out to be a sub-cluster of a pCluster having been found
before, then the recursive searches rooted at the current node are pruned, since it cannot lead to
a maximal pCluster.

Why doeMaPleenumerate attributes first and then objects later, but not in the reverse way?

In real databases, the number of objects is often much larger than the number of attributes.
In other words, the number of combinations of objects is often dramatically larger than the
number of combinations of attributes. In the pruning using maximal pClusters discussed above,
if the attribute-first-object-later approach is adopted, once a set of attributes and its descendants
are pruned, all searches of related subsets of objects are pruned as well. Heuristically, the
attribute-first-object-later search may bring a better chance to prune a more bushy search sub-
tree? Symmetrically, for data sets that the number of objects is far smaller than the number of
attributes, a similar object-first-attribute-later search can be applied.

Essentially, we rely on MDSs to determine whether a subset of objects and a subset of
attributes together form a pCluster. Therefore, as a preparation of the mining, we compute all
non-redundant MDSs and store them as a database before we conduct the progressively refining,
depth-first search.

Based on the above discussion, we have the framewdvlaéfie as shown in Figure 4.7.

Input: databas®B, cluster threshold, attribute thresholdhing, and object thresholdhing;
Output: the complete set of maximatpClusters;

Method:

(1) compute and prune attribute-pair MDSs and object-pair MDSs; // Section 4.3.2
(2) progressively refining, depth-first search for maxid@lClusters; // Section 4.3.3

Figure 4.7: AlgorithmMaPle

Comparing tg-Clustering MaPle has several advantages.

e First, in the third step gb-Clustering for each node in the prefix tree, combinations of the

object registered at the node will be explored to find pClusters. This can be expensive if

2However, there is no theoretical guarantee that the attribute-first-object-later search is optimal. There exist
counter examples that object-first-attribute-later search wins.

88 Chapter 4. Warehousing pattern-based clusters

there are many objects at a nodeMaPle, the information of pClusters is inherited from
the “parent node” in the depth-first search and the possible combinations of objects can
be reduced substantially. Moreover, once a subset of attributesletermined hopeless

for pClusters, the searches of any supers@& wiill be pruned.

e SecondMaPleprunes non-maximal pClusters. Many unpromising searches can be pruned

in their early stages.

e Last, new pruning techniques are adopted in the computing and pruning of MDSs. That

also speeds up the mining.

In the remainder of the section, we will explain the two stepslaPlein detail.

4.3.2 Computing and Pruning MDSs

Given a databasBB and a cluster thresholdl A &-pClusterC; = ({01,02},D) is called an
object-pair MDSf there exists n@-pClusterC] = ({01,0,},D’) such thaD c D'. On the other
hand, ad-pClusterCy(R, {ai1,ay}) is called arattribute-pair MDSif there exists n®-pCluster
, = (R,{a1,a2}) suchthaRC R.
MaPle computes all attribute-pair MDSs @sClusteringdoes. The method is illustrated
in Figure 4.4(b). Limited by space, we omit the detailed algorithm here and only show the

following example.

Example 4.1 (Running example — finding attribute-pair MDSSs). Let us consider mining
maximal pattern-based clusters in a datai2Bes shown in Figure 4.8(a). The databasethas
objects, namelyy, ...,0, While each object hasattributes, namelgy, ..., as.

Supposeaning = 3, miny, = 3andd = 1. For each pair of attributes, we calculate the attribute

pair MDSs. The attribute-pair MDSs returned are shown in Figure 4.8(b). O

Generally, as shown in Figure 4.4, a pair of objects may have more than one object-pair

MDS. Symmetrically, a pair of attributes may have more than one attribute-pair MDS.

4.3. Algorithms MaPle and MaPle+ 89

| Object|| a1 [a [a3 |as| as | | Objects | Attribute-pair |
01 516|771 {01,02,03,04,06} {a1,a2}
(0),) 4 4 5 6 | 10 {01,02,03,06} {a]_,ag}
03 5/ 5|6 |1]30 {01,02,06} {a1,a4}
04 7 7115| 2 | 60 {01,02,03,06} {82783}
Os 2/ 0| 6| 8|10 {01,02,06} {ag,as}
O 34551 {01,02,06} {az,as}
(a) The database (b) The attribute-pair MDSs

Figure 4.8: The database and attribute-pair MDSs in our running example.

We can also generate all the object-pair MDSs similarly. However, if we utilize the infor-
mation on the number of occurrences of objects and attributes in the attribute-pair MDSs, the

calculation of object-pair MDSs can be speeded up.

Lemma 6 (Pruning MDSSs). Given a databas®B and a cluster threshold, object threshold

min, and attribute thresholdnin,.

1. An attribute a cannot appear in any significardpCluster ifa appears in less than

w object-pair MDSs, or appears in less thémin, — 1) attribute-pair MDSs;

2. Anobjecto cannot appear in any significadtpCluster ifo appears in less thaﬁ‘%

attribute-pair MDSs, or appears in less thamin, — 1) object-pair MDSs.

Proof. We prove the first half of the lemma. The second half can be proved duallyRLBY}
be a significand-pCluster, anc € D be an attribute.

For any objects;, 0; € R, there must be an object-pair MO$o;, 0; }, Djj) such that € Dj;.
There are at Ieaéw such object-pair MDSs. SinggR|| > min,, a appears in at least
w object-pair MDSs. On the other hand, following Lemma 5, for any attribixeD,
(R {a,@}) is also ad>-pCluster. Therefore, there must be some attribute-pair Nl®Ja,a'})
such thaR C R. There ar€||D|| — 1) such attribute-pair MDSs. Sind®|| > min,, a appears

in at least(miny — 1) attribute-pair MDSs. O

Example 4.2 (Pruning using Lemma 6).Let us check the attribute-pair MDSs in Figure 4.8(Db).

Objectos does not appear in any attribute-pair MDS, and obpacppears in onlyl attribute-

90 Chapter 4. Warehousing pattern-based clusters

pair MDS. According to Lemma @&y andos cannot appear in any significapCluster. There-

fore, we do not need to check any object-pairs containigy os.

There areb objects in the database. Without this pruning, we have to cﬁéﬁ:k: 15 pairs
of objects. With this pruning, only four objects;, 02, 03 andog survive. Thus, we only need

to check%’ = 6 pairs of objects. 0% of the original searches is pruned.

Moreover, since attributas does not appear in any attribute-pair MDS, it cannot appear in
any significand-pCluster. The attribute can be pruned. That is, when generating the object-pair

MDS, we do not need to consider attribuate

In summary, after the pruning, only attributes ap, az andag, and object®1, 02, 03 andog
survive. We use these attributes and objects to generate object-pair MDSs. The result is shown
in Figure 4.9(a). In methop-Clustering it uses all attributes and objects to generate object-pair
MDSs. The result is shown in Figure 4.9(b). As can be seen, not only the computation cost in
MaPleis less, the number of object-pair MDSsMuaPleis also one less than that in method

p-Clustering O

| Object-pair] Attributes |
{01,002} | {a1,ap,a3, a4}
{o1,06} | {a1,ap,a3, a4}
{02,03} {a,a, a3}
{01,03} {ag,a, a3}
{02,086} | {a1,ap,83,a4}

| Object-pair| Attributes |
{01,020} {a1, 82,23, a4}
{01,05} {21, @2, a3}
{01,06} | {an,3,83,84}
{02,03} {a1, @, 83}
02,0 ag,ap,as,
e (050 | {an2.20)
: — {03,06} {a, &, a3}
(a) Object-pair MDSs iMaPle (b) Object-pair MDSs in methop-Clustering

Figure 4.9: Pruning using Lemma 6.

Once we get the initial object-pair MDSs and attribute-pair MDSs, we can conduct a mutual
pruning between the object-pair MDSs and the attribute-pair MDSs, as mptidasstering
does. Furthermore, Lemma 6 can be applied in each round to get extra pruning. The pruning

algorithm is shown in Figure 4.10.

4.3. Algorithms MaPle and MaPle+ 91

(1)
(@)
(3)
(4)
()
(6)
(7)
(8)

REPEAT
count the number of occurrences of objects and attributes in the attribute-pair MDSSs;
apply Lemma 6 to prune objects and attributes;
remove object-pair MDSs containing less tmaim, attributes;
count the number of occurrences of objects and attributes in the object-pair MDSs;
apply Lemma 6 to prune objects and attributes;
remove attribute-pair MDSs containing less tinain, objects;

UNTIL no pruning takes place

Figure 4.10: The algorithm of pruning MDSs.

4.3.3 Progressively Refining, Depth-first Search of Maximal pClusters

The algorithm of the progressively refining, depth-first search of maximal pClusters is shown

in Figure 4.11. We will explain the algorithm step by step in this subsection.

(1)
(@)
®3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

letn be the number of attributes; make up an attributeist= a;-- - --ap;

FORi =1TOn—min,+1DO [ITheorem 4.3, item 1
FORj=i4+1TOn—min,+2 DO
find attribute-maximal pCluste(R, {a;,a; }); /ISection 4.3.3

FOR EACHtoal maximal pClustefR, {a;,a;}) DO
callsearchiR, {&;,a;});
END FOR EACH

END FOR
END FOR
FUNCTIONsearch{R,D); /Il (R,D) is a attribute-maximal pClust:
computePD, the set of possible attributes; //Optimization 1 in Section 4.3.3
apply optimizations in Section 4.3.3 to prune, if possible;
FOR EACHttributea € PD DO /I[Theorem 4.3, item 2
find attribute-maximal pCluste(& ,D U {a}); /ISection 4.3.3

FOR EACHttribute-maximal pClustgiR,DU {a}) DO
callsearciR,DU{a});
END FOR EACH
IF (R,DU{a}) is not a subcluster of some maximal pCluster having been found
THENoutput(R,DuU{a});
END FOR EACH
IF (R,D) is not a subcluster of some maximal pCluster having been found
THENoutput(R D);
END FUNCTION

Figure 4.11: The algorithm of projection-based search.

92 Chapter 4. Warehousing pattern-based clusters

Dividing Search Space

By a list of attributes, we can enumerate all combinations of attributes systematically. The idea

Is shown in the following example.

Example 4.3 (Enumeration of combinations of attributes).In our running example, there are
four attributes survived from the pruningi, az, az andas. We list the attributes in any subset
of attributes in the order @;-az-az-a4. Sinceming = 3, every maximab-pCluster should have
at least3 attributes. We divide the complete set of maximal pClusters3ragclusive subsets
according to the first two attributes in the pClusters: (1) the ones having attriputexsiay,
(2) the ones having attributes andag but noay, and (3) the ones having attributesandag

but noay. o

Since a pCluster has at le&sattributes MaPlefirst partitions the complete set of maximal
pClusters into exclusive subsets according to the first two attributes, and searches the subsets
one by one in the depth-first manner. For each suldgaEle further divides the pClusters in
the subset into smaller exclusive sub-subsets according to the third attributes in the pClusters,
and search the sub-subsets. Such a process proceeds recursively until all the maximal pClusters
are found. This is implemented by line (1)-(3) and (14) in Figure 4.11. The correctness of the

search is justified by the following theorem.

Theorem 4.3 (Completeness and non-redundancy MaPle). Given an attribute-lisAL : a;-

----am, Wheremis the number of attributes in the database. ity be the attribute threshold.

1. All attributes in each pCluster are listed in the orderAdf. Then, the complete set of max-

n+(m—mina+2)(m—mina+l)
s 2

imal &-pClusters can be divided i exclusive subsets according to

the first two attributes in the pClusters.

2. The subset of maximal pClusters whose frstitributes area; and aj can be further
divided into(m— min, + 3 — j) subsets: th&!" (1 <k < (m— j —min, — 1)) subset

contains pClusters whose fir3attributes area;, a; anda; .

4.3. Algorithms MaPle and MaPle+ 93

Proof. We prove the first item of the theorem. The second item can be shown similarly.
Trivially, every pCluster must have at ledsattributes. Clearly, according #L, the first

two attributes in every pCluster are determined. Therefore, there exists no a pClissten

thatC is in more than one subset, i.e., the subsets are exclusive. Since a maximal pCluster

must be significantC must have at leashin, attributes. The first attribute & must be from

ap to am-min,+1. Suppose the first attribute Gfis a. The, the second attribute 6f must be

m—ming+1)

from aj 1 t0 am_min,+2. In total, there arém_mir'a+2)2(possible combinations. So we

have the theorem. O

Finding Attribute-maximal pClusters

Now, the problem becomes how to find the maxidadClusters on the subsets of attributes.
For each subset of attribut&s we will find the maximal subsets of objedg&ssuch that R, D)
is a pCluster. Such a pCluster is a maximal pCluster if it is not a sub-cluster of some others.

Given a set of attribute® such that(||D|| > 2). A pCluster(R D) is called aattribute-
maximald-pClusterif there exists no ang-pCluster(R,D) such thaR ¢ R. In other words,

a attribute-maximal pCluster is maximal in the sense that no more objects can be included so
that the objects are still coherent on the same subset of attributes. For example, in the database
shown in Figure 4.8(a),{01,02,03,06},{a1,a2}) is a attribute-maximal pCluster for subset of
attributes{ay, ay}.

Clearly, a maximal pCluster must be a attribute-maximal pCluster, but not vice versa. In
other words, if a pCluster is not a attribute-maximal pCluster, it cannot be a maximal pCluster.

Given a subset of attributd3, how can we find all attribute-maximal pClusters efficiently?

We answer this question in two cases.

If D has only two attributes, then the attribute-maximal pClusters are the attribute-pair
MDSs forD. Since the MDSs are computed and stored before the search, they can be retrieved
immediately.

Now, let us consider the case whet|| > 3). Supposd = {a;,,...,a, } where the at-

tributes inD are listed in the order of attribute-ligt. Intuitively, (R D) is a pCluster ifR is

94 Chapter 4. Warehousing pattern-based clusters

shared by attribute-pair MDSs from any two attributes frbm(R,D) is a attribute-maximal
pCluster ifR is a maximal set of objects.

One subtle point here is that, in general, there can be more than one attribute-pair MDS for
given attributesy, a,. Thus, there can be more than one attribute-maximal pCluster on a subset
of attributesD. Technically,(R,D) is a attribute-maximal pCluster if for each pair of attributes
{ay,a/} C D, there exists an attribute-pair MD$ay, ay},Ryy), such thaiR = N{aya}cD Ruv:

Recall thatMaPlesearches the combinations of attributes in the depth-first manner, all attribute-
maximal pClusters for subset of attributes- {a} is found before we search fa@r, whereais
the last attribute il according to the attribute list. Therefore, we only need to find the subset

of objects in a attribute-maximal pCluster@f- {a} that are shared by attribute-pair MDSs of

a,ay (] <k.

Pruning and Optimizations

Several optimizations can be used to prune the search so that the mining can be more efficient.

We explain them as follows.
Optimization 1: Only possible attributeshould be considered to get larger pClusters.

Suppose thatR D) is a attribute-maximal pClustet-or every attributea such thata is
behind all attributes irD in the attribute-list, can we always find a significant pClugt, D U
{a}) such thatR C R?

If (R,Du{a}) is significant, i.e., has at leastino objects, thera must appear in at least
w object-pair MDSs({0;,0;},Djj) such that{o;,0;} C R. In other words, for an
attributea that appears in less théﬂw object-pair MDSs of objects IR, there exists
no attribute-maximal pCluster with respectaJ {a}.

Based on the above observation, an attritaui® called apossible attributevith respect to
attribute-maximal pClusteR D) if a appears iriw object-pair MDSY{0;,0;},Djj)
such that{o;,05} C R. In line (12) of Figure 4.11, we compute the possible attributes and only

those attributes are used to extend the set of attributes in pClusters.

Optimization 2: Pruning local maxiaml pClusters having insufficient possible attributes.

4.3. Algorithms MaPle and MaPle+ 95

Suppose thatR, D) is a attribute-maximal pCluster. LED be the set of possible attributes
with respect tqR, D). Clearly, if ||D UPD|| < min,, then it is impossible to find any maximal
pCluster of a subset &. Thus, such a attribute-maximal pCluster should be discarded and all

the recursive search can be pruned.
Optimization 3: Extracting common attributes from possible attribute set directly.

Suppose thatR, D) is a attribute-maximal pCluster with respectRoandD’ is the corre-
sponding set of possible attributes. If there exists an attriaweD’ such that for every pair
of objects{o;,0;}, {a} UD appears in an object pair MDS ¢b;,0;}, then we immediately
know that(R,D U {a}) must be a attribute-maximal pCluster with respeddto {a}. Such an

attribute is called @ommon attribut@nd should be extracted directly.

Example 4.4 (Extracting common attributes).In our running exampld{01,0,03,06},{a1,a})
is a attribute-maximal pCluster with respec{t, az}. Interestingly, as shown in Figure 4.9(a),
for every object paifo;,0j} C {01,02,03,06}, the object-pair MDS contains attribudg. There-
fore, we immediately know that{o1,02,03,06},{a1,a2,83}) is a attribute-maximal pClus-

ter. [

Optimization 4: Prune non-maximal pClusters.

Our goal is to find maximal pClusters. If we can find that the recursive search on a attribute-
maximal pCluster cannot lead to a maximal pCluster, the recursive search thus can be pruned.
The earlier we detect the impossibility, the more search efforts can be saved.

We can use thdominant attributeso detect the impossibility. We illustrate the idea in the

following example.

Example 4.5 (Using dominant attributes to detect non-maximal pClusters)Again, let us
consider our running example. Let us try to find the maximal pClusters whose first two at-
tributes arey; andag. Following the above discussion, we identify a attribute-maximal pCluster
({01,02,03,06}, {a1,a3}).

One interesting observation can be made from the object-pair MDSs on objéoisaop, 03,06 }

(Figure 4.9(a)): attributay appears in every object pair. We calleca dominant attribute That

96 Chapter 4. Warehousing pattern-based clusters

means{0s,02,03,06} also coherent on attribute. In other words, we cannot have a maximal
pCluster whose first two attributes amg andag, sincea, must also be in the same maximal
pCluster. Thus, the search of maximal pClusters whose first two attributes anelag can be

pruned. O

The idea in Example 4.5 can be generalized. SupfRd®) is a attribute-maximal pCluster.
If there exists an attributesuch that is before the last attribute D according to the attribute-
list, and{a} UD appears in an object-pair MD$0;,0j },Djj) for every({0;,0;} C R), then the
search from(R,D) can be pruned, since there cannot be a maximal pCluster having attribute set

D but noa. Attributea is called adominant attributewith respect tqR, D).

4.3.4 MaPlet+: Further Improvements

MaPlet is an enhanced version daPle In addition to the techniques discussed above, the

following two ideas are implemented MaPlet.

Block-based Pruning of Attribute-pair MDSs

In Step 2 of algorithmp-Clustering(please see Section 4.2.5) akthPle (please see Sec-
tion 4.3.2), an MDSs can be pruned if it cannot be used to form larger pClusters. The pruning
is based on comparing an MDS with the other MDSs.

Since there can be a large number of MDSs, the pruning may not be efficient. Instead, we
can adopt a block-based pruning as follows.

For an attribute, all attribute-pair MDSs that is an attribute form tha-block We consider
the blocks of attributes in the attribute-list order.

For the first attributey;, thea;-block is formed. Then, for an objeot if o appears in any
significant pCluster that has attribuag, o must appear in at lea§tnin, — 1) different attribute-
pair MDSs in thea;-block. In other words, we can remove an objeftom thea;-block MDSs
if its count in thea; -block is less tharimin, — 1). After removing the objects, the attribute-pair

MDSs in the block that do not have at leéstin, — 1) objects can also be removed safely.

4.3. Algorithms MaPle and MaPle+ 97

Moreover, according to Lemma 6, if there are less thaim, — 1) MDSs in the resulted
ai-block, thena; cannot appear in any significant pCluster, and thus all the MDSs in the block
can be removed.

The blocks can be considered one by one. Such a block-based pruning is more effective. In
Section 4.3.2, we prune an object from attribute-pair MDSs if it appears in Iesgﬂﬁéﬁg@
different attribute-pair MDSs (Lemma 6). In the block-based pruning, we consider pruning
an object with respect to every possible attribute. It can be shown that any object pruned by
Lemma 6 must also be pruned in some block, but not vice versa, as shown in the following

example.

Example 4.6 (Block-based pruning of attribute-pair MDSs). Suppose we have the attribute-
pair MDSs as shown in Figure 4.12, amih, = min, = 3.

| Attribute-pairs| objects |

{a1,a2} {01,02,04}
{aq, a3} {02,03,04}
{aq,a4} {02,04,05}
{ap,a3} {01,02,03}
{an, a4} {01,03,04}
{ap, a5} {02,03,05}

Figure 4.12: The attribute-pair MDSs in Example 4.6.

In the a;-block, which contains the first three attribute-pair MDSs in the table, obgggts
03 andos can be pruned. Moreover, all attribute-pair MDSs in @hélock can be removed.

However, inMaPle, sinceo; appears3 times in all the attribute-pair MDSs, it cannot be
pruned by Lemma 6, and thus attribute-pair MD&y,a,},{01,02,04}) cannot be pruned,

either. O

The block-based pruning is also more efficient. To use Lemma 6 to prukiaitie we
have to check both the attribute-pair MDSs and the object-pair MDSs mutually. However, in

the block-based pruning, we only have to look at the attribute-pair MDSs in the current block.

98 Chapter 4. Warehousing pattern-based clusters

Computing Attribute-pair MDSs Only

In many data sets, the numbers of objects and attributes are different dramatically. For example,
in the microarray data sets, there are often many genes (thousands or even tens of thousands),
but very few samples (up to one hundred). In such cases, a significant part of the runtime in
bothp-ClusteringandMaPleis to compute the object-pair MDSs.

Clearly, computing object-pair MDSs for a large set of objects is very costly. For example,
for a data set 0.0,000 objects, we have to consid&0000x 9999-- 2 = 49,995 000 object
pairs!

Instead of computing those object-pair MDSs, we develop a technique to compute only the
attribute-pair MDSs. The idea is that we can compute the attribute-maximal pClusters on-the-fly

without materializing the object-pair MDSs.

Example 4.7 (Computing attribute-pair MDS’s only). Consider the attribute-pair MDS'’s in
Figure 4.8(b) again. We can compute the attribute-maximal pCluster for attribts set, az}
using the attribute-pair MDS’s only.

We observe that an object paif are in an attribute-maximal pCluster {dy, a2, a3} if and
only if there exist three attribute-pair MDS’s fry, a2}, {a1,as}, and{ap,as}, respectively,
such that{oy, 0y} are in the object sets of all those three attribute-pair MDS’s. Thus, the inter-
section of the three object sets in those three attribute-pair MDS’s is the set of objects in the
attribute-maximal pCluster.

In this example{as,ay}, {a1,a3}, and{az,az} have only one attribute-pair MDS, respec-
tively. The intersection of their object sets d®, 0,03,06}. Therefore, the attribute-maximal

pCluster is({01,02,03,06}, {a1, a2, a3}). =

When the number of objects is large, computing the attribute-maximal pClusters directly
from attribute-pair MDS’s and smaller attribute-maximal pClusters can avoid the costly materi-
alization of object-pair MDS’s. The computation can be conducted level-by-level from smaller
attribute sets to their supersets.

Generally, if a set of attributd3 has multiple attribute-maximal pClusters, then its superset

4.4. Empirical Evaluation 99

D’ may also have multiple attribute-maximal pClusters. For example, sup@asa,} has
attribute-pair MDS'Y Ry, {a1,a2}) and (R, {a1,a2}), and(Rs, {a1,a3}) and (R4, {az,a3}) are
attribute-pair MDS'’s fo{a;,az} and{as,az}, respectively. Then,Ri "Rz N Ry, {a1,ap,as})
and(RoNR3N R4, {a1,a,a3}) should be checked. If the corresponding object set has at least
miny objects, then the pCluster is an attribute-maximal pCluster. We also should check whether
(RiNR3NRy) = (ReNR3NRy). If so, we only need to keep one attribute-maximal pCluster for
{a1,a,a3}.

To compute the intersections efficiently, the sets of objects can be represented as bitmaps.

Thus, the intersection operations can be implemented using the bXMRpperations.

4.4 Empirical Evaluation

We testMaPle, MaPlet andp-Clusteringextensively on both synthetic and real life data sets.
In this section, we report the results.

MaPle andMaPlet+ are implemented using C/C++. We obtained the executable of the im-
proved version op-Clustering(H. Wang et al., 2002) from the authors. Please note that the
authors ofp-Clusteringimproved their algorithm dramatically after their publication in SIG-
MOD’02. The authors op-Clusteringalso revised the program so that only maximal pClusters
are detected and reported. Thus, the output of the two methods are comparable directly. All the
experiments are conducted on a PC with alRAGHz CPU and384 M main memory running

a Microsoft Windows XP operating system.

4.4.1 The Data Sets

The algorithms are tested against both synthetic and real life data sets. Synthetic data sets
are generated by a synthetic data generator (H. Wang et al., 2002). The data generator takes
the following parameters to generate data sets: (1) the number of objects; (2) the number of

attributes; (3) the average number of rows of the embedded pClusters; (4) the average number

of columns; and (5) the number of pClusters embedded in the data sets. The synthetic data

100 Chapter 4. Warehousing pattern-based clusters

generator can generate only perfect pClusters,d-e.0.
We also report the results on a real data set, the Yeast microarray data set (Tavazoie et al.,
2000). This data set contains the expression levels 84 genes undel 7 conditions. The

data set is preprocessed as described in the paper by H. Wang et al. (2002).

4.4.2 Results on Yeast Data Set

The first issue we want to examine is whether there exist significant pClusters in real data sets.
We test on the Yeast data set. The results are shown in Figure 4.13. From the results, we can

obtain the following interesting observations.

| 3| ming | miny | # of max-pClusters # of pClusters|
0| 9 30 5 5520
0 7 50 11 N/A
0| 5 30 9370 N/A

Figure 4.13: Number of pClusters on Yeast raw data set.

e There are significant pClusters existing in real data. For example, we can find pure pClus-
ter (i.e.,d = 0) containing more thaB0 genes and® attributes in Yeast data set. That

shows the effectiveness and utilization of mining maximal pClusters in the real data sets.

¢ While the number of maximal pClusters is often small, the number of all pClusters can
be huge, since there are many different combinations of objects and attributes as sub-
clusters to the maximal pClusters. This shows the effectiveness of the notation of maximal

pClusters.

e Among the three cases shown in Figure 4.p3lusteringcan only finish in the first
case. In the other two cases, it cannot finish and outputs a huge number of pClusters that
overflow the hard disk. In contradtjaPle and MaPlet+ can finish and output a small

number of pClusters, which cover all the pClusters foung{sjlustering

4.4. Empirical Evaluation 101

To test the efficiency of mining the Yeast data set with respect to the tolerance of noise, we
fix the thresholds ofminy = 6 andmin, = 60, and vary the from 0 to 4. The results are shown
in Figure 4.14.

1000
900 |
800
700
600
500
400
300
200
100

Runtime (seconds)

p-Clustering ------ r
MaPle —e— i
1 '\/‘I"aple*'. 1 1 1

0O 05 1 15 2 25 3 35 4
Delta

Figure 4.14: Runtime v on the Yeast data setjin, = 6 andmin, = 60.

As shown, bottp-ClusteringandMaPlet+ are scalable on the real data set with respect to
0. Whend is small,MaPleis fast. However, it scales poorly with respectdio The reason
Is that, as the value dj increases, a subset of attribute has more and more attribute-maximal
pClusters on average. Similarly, there are more and more object-pair MDS’s. Managing a
large number of MDS’s and conducting iteratively pruning still can be costly. The block-based
pruning technique and the technique of computing attribute-maximal pClusters from attribute-
pair MDS’s, as described in Section 4.3.4, hdlifsPlet to reduce the cost effectively. Thus,

MaPlet is substantially faster thgmClusteringandMaPle

4.4.3 Results on Synthetic Data Sets

We test the scalability of the algorithms on the three parameters, the minimum number of objects
miny, the minimum number of attributesin, in pClusters, an@®. In Figure 4.15, the runtime
of the algorithms versusin, is shown. The data set h&800objects an®80 attributes.

As can be seen, all the three algorithms are in general insensitive to paranm@febut
MaPlet is much faster thap-ClusteringandMaPle The major reason that the algorithms are

insensitive is that the number of pClusters in the synthetic data set does not changes dramatically

102 Chapter 4. Warehousing pattern-based clusters

120 T T T T T

' p-C'Iuste'ring L
MaPle —&—
wop Koo . _MaPle+ —v— 7
g N N N
c 80 4
(o]
(8]
()
< 60t _
()
£
€ 40 i
i
@
20 | i

o I
20 25 30 35 40 45 50 55 60 65 70
Minimum number of objects (min_o0)

Figure 4.15: Runtime vs. minimum number of objects in pClusters.

asmin, decreases and thus the overhead of the search does not increase substantially. Please
note that we do observe the slight increases of runtime in all the three algorithmis,ages
down.

One interesting observation here is that, whan, > 60, the runtime ofMaPle decreases
significantly. The runtime oMaPlet also decreases fro@4 seconds td second. That is
because there is no pCluster in such a settimgPlet andMaPle can detect this in an early
stage and thus can stop early.

We observe the similar trends on the runtime versus paramétgr That is, both algorithms
are insensitive to the minimum number of attributes in pClustersMaRle is faster thamp-
Clustering The reasoning similar to that enin, holds here.

We also test the scalability of the algorithms @nThe result is shown in Figure 4.16. As
shown, bothMaPlet+ andpClusteringare scalable with respect to the valuedpfvhile MaPle
is efficient when the is small. When theéd value becomes large, the performanceMaPle
becomes poor. The reason is as analyzed before: when the vauecnéases, some attribute
pairs may have multiple MDS’s and some object pairs may have multiple MIMV&Rlehas to
check many combinationd/aPlet uses the block-based pruning technique to reduce the cost
substantially. Among the three algorithnhaPlet is clearly the best.

We test the scalability of the three algorithms on the number of objects in the data sets. The

result is shown in Figure 4.17. The data set contd@attributes, where there aB® embedded

4.4. Empirical Evaluation 103

250 . — : .
p-Clustering --->---
MaPle —e—
200 |+ MaPle+ —v— i
m
e]
c
8 150 1
(0]
9,
) i}) y ol
£ 100 * ¥ O/ A R
<
)
04
50 i
0 h4 Y Y y—Y

Delta

Figure 4.16: Runtime vs.

clusters. We fixming = 5 and semin, = ngpj - 1%, wherengyj is the number of objects in the

data setd = 1.
I I p-C'Iustering e *
250 MaPle —e—
MaPle+ —v—
2 200 | P
c S/
3 Ed
& 150 i
) 4
£
= 100
o)
x
50 - o
0 —%—= * * *
0 2000 4000 6000 8000 10000

Number of objects

Figure 4.17: Scalability with respect to the number of objects in the data sets.

The result in Figure 4.17 clearly shows thdaPle performs substantially better tham
Clusteringin mining large data setdVlaPlet is up to two orders of magnitudes faster than
ClusteringandMaPle The reason is that bogh+ClusteringandMaPle use object-pair MDS’s
in the mining. When there ars00000bjects in the database, there 4P8939999 — 419995000
object-pairs. Managing a large database of object-pair MDS's is costhPlet only uses
attribute-pair MDS’s in the mining. In this example, there are 03%19 = 435attribute pairs.
Thus,MaPlet does not suffer from the problem.

To further understand the difference, Figure 4.17 shows the numbers of local maximal

104 Chapter 4. Warehousing pattern-based clusters

pClusters searched aPleandMaPlet. As can be seemMaPlet+ searches substantially less
thanMaPle That partially explains the difference of performance of the two algorithms.

We also test the scalability of three algorithms on the number of attributes. The result is
shown in Figure 4.18. In this test, the number of objects is fixed, @0 and there ar&0
embedded pClusters. We sain, = 30 andming = ngr - 20%, wherengy, is the number of

attributes in the data set.

140 T T

' p-CIusiering S

L MaPle —e— ¥
120 MaPle+ —v—

100 | K
80 |

60

Runtime (seconds)

40

20

0 20 40 60 80 100 120
Number of attributes

Figure 4.18: Scalability with respect to the number of attributes in the data sets.

The curves show that all the three algorithms are approximately linearly scalable with re-
spect to number of attributes, aMhPlet+ performs consistently better th@rClusteringand
MaPle

In summary, from the tests on synthetic data sets, we can sebl#Rle outperformsp-

Clusteringclearly. MaPleis efficient and scalable in mining large data sets.

Chapter 5

Conclusion

In this dissertation we described emerging challenges and our approaches to tackle them in data
warehousing and OLAP. As seen so far, a data warehousing and OLAP are useful facilities for

a decision making of users. A data warehouse stores summarized and compressed information
and data cubes and iceberg cubes are tools for access to a data warehouse efficiently. We delve
into challenges which each area of data warehouse technology faces. This chapter summarizes

the contributions of this dissertation and discusses potential future research topics.

Mining iceberg cubes is to compute aggregates to find aggregate values satisfying specified
threshold. Since a data warehouse has large amount of data in general, the computation of ice-
berg cubes should use little memory and fewer scans over data. In order to compute iceberg
cubes efficiently, we focus on an assumption of previous methods to compute iceberg cubes
from a data warehouse, which is the computation of iceberg cubes based on a universal base
table. Materializing the universal base table costs high in time and space due to the redundancy
of dimensional data in the universal base table and multiple scans of dimensional table. A new
method is required to compute iceberg cube without materializing universal base table. It con-
tributes to the computation of iceberg cubes technology since it reduces the cost of computation

of iceberg cubes.

An algorithm CTC(Coss Table Quibing) is developed. Unlike all of the previous methods,

CTCavoids materializing the universal base table. Instead, it computes local iceberg cells and

105

106 Chapter 5. Conclusion

derives the global iceberg cells from local ones. It removes redundancy and multiple scans of
dimensional data. It does not access dimensional tables after computation of local iceberg cells.
The investigation and the experimental results clearly indicatedh@lis efficient and scalable

in computing iceberg cubes for large data warehouses. It is consistently more efficient and more
scalable thaBUC. We also show how the techniquesdi Ccan be generalized to handle more

complicated schemas, such as snowflake schema.

Online warehousing data streams and answering ad hoc aggregate queries are interesting
and challenging research problems with broad applications. Since a data stream has high rate
of data input and it is often infeasible to maintain all data in memory, online data warehousing
is required to maintain the recent data in a sliding window, and provide online answers to ad
hoc aggregate queries over the current sliding window. We propose aRP®dvdata structure,
which is a prefix tree and has links facilitating online ad hoc query answers efficiently. It stores
a subset of aggregate cellsefix aggregates cellandinfix aggregate cellsfrom the recent
data in a slinding window. Efficient algorithms are developed to construct and incrementally
maintain aPAT over a data stream, and answer various ad hoc aggregate queriesRroim/a
systematic performance study to examine the effectiveness and efficiency of our design shows
that the size of &AT is small enough to be feasible in space for data streams and the cost of
construction and maintenance foPAT is smaller than the cost of materialization of the whole
cube. This work extends data warehousing technology to applications with the properties of a

data stream.

Pattern-based clustering is a practical data mining task with many applications. However,
mining pattern-based clusters efficiently and effectively is still challenging. Since a pattern-
based cluster consists of a subset of attributes/dimensions, the number of output pattern-based
clusters may too huge to be understood well and there may exist redundancy between clusters.
We propose the mining of maximal pattern-based clusters, which are non-redundant pattern-
based clusters and develop two efficient and scalable algoritiaiRle andMaPlet, for min-
ing maximal pattern-based clusters in large databases. Test results on both real life data sets

and synthetic data sets show tiM&Plet clearly outperforms the best method previously pro-

107

posed. Recently, there are several interesting variations of pattern-based clustering, such as
OP-clustering (Liu & Wang, 2003). As future work, it is interesting to use ideddaPRle to
develop efficient algorithms for mining such clusters.

As a future research, there are a few interesting topics as the extended researches of this
thesis in data warehousing and data cube. One of the topics is the combination of data cub-
ing techniques and classification for finding interesting decision factors from multidimensional
data. As an motivating example, suppose we have a multidimensional data of real estate. A
realtor wants to analyze her customers according to their attributes such as income level, age,
ethnic groups, education, family size. She may have two types of queries: (1) comparison of
the decision making factors from two groups of data, i.e., What is the difference of decision
factors between a group of customers with annual inca20@ k100 K and the whole group
of customers in terms of purchasing a new house?, and (2) specific decision making pattern
analysis, i.e., in which other groups hold a specific purchase pattern same as Asian customer
group does? None of recent studies can be used to efficiently answer these queries and conduct
the analysis. The general idea for thissociative classification cubéesto maintain a classi-
fier for every non-empty group of attribute value combination, i.e., a cell in a data cube, and
store rules by materializing a data cube such that each cell stores only the class distribution, and
present a set of fundamental operations for analysis based on associative classification cubes:
Rule Extraction and Group Comparison.

Warehousing distributed databases and data cubing on other types of non-relational data
are interesting extended researches of warehousing central and static databases. In practice,
databases are often distributed in multiple data sources of the network environments and the
formats of data are the non-relational types such as time-series data and XML. Since types and
framework of data are different from those of previous warehousing and data cubing techniques,
many sub problems are needed to be addressed, such as the network communication cost, data
integration from multiple sources in the network, definition of aggregate functions on non-
relational data, etc. These potential researches will help to broaden the applications of data

warehouse and data cube.

References

Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). A tree projection algorithm
for generation of frequent item setdournal of Parallel and Distributed Computing1(3),

350-371.

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., & Park, J. S. (1999, June). Fast algorithms
for projected clustering. I&8igmod '99: Proceedings of the 1999 acm sigmod international

conference on management of dgta61-72). Philadelphia, PA.

Aggarwal, C. C., & Yu, P. S. (2000, May). Finding generalized projected clusters in high
dimensional spaces. I8igmod '00: Proceedings of the 2000 acm sigmod international

conference on management of dgpa70-81). Dallas, TX.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering
of high dimensional data for data mining applications.Sigmod '98: Proceedings of the
1998 acm sigmod international conference on management o{plpt&4—-105). New York,

NY, USA: ACM Press.

Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets
of items in large databases. In P. Buneman & S. Jajodia (E8ginod '93: Proceedings
of the 1993 acm sigmod international conference on management of(gat207-216).

Washington, D.C.

Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In

109

110 REFERENCES

Vidb '94: Proceedings of the 1994 vidb international conference on very large data (m@ses

487-499). Santiago, Chile.

Arasu, A., & Manku, G. S. (2004). Approximate counts and quantiles over sliding windows. In
Pods '04: Proceedings of the twenty-third acm sigmod-sigact-sigart symposium on principles

of database systen(gp. 286—296). New York, NY, USA: ACM Press.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in
data stream systems. Rods '02: Proceedings of the twenty-first acm sigmod-sigact-sigart

symposium on principles of database systgmps 1-16). New York, NY, USA: ACM Press.

Babu, S., & Widom, J. (2001). Continuous queries over data stre&@&MOD Record30,
109-120.

Barbar, D., & Wu, X. (2000). Using loglinear models to compress datacub&Vaim '00:
Proceedings of the first international conference on web-age information manag@pent

311-322). London, UK: Springer-Verlag.

Barbara, D., & Sullivan, M. (1997). Quasi-cubes: Exploiting approximation in multidimen-

sional databaseSIGMOD Record26, 12-17.

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999, January). When is “nearest
neighbor” meaningful? In C. Beeri & P. Buneman (Ed&ilt '99: Proceedings of the 4th

international international conference on database thg@ry217-235). Berlin, Germany.

Beyer, K., & Ramakrishnan, R. (1999, June). Bottom-up computation of sparse and iceberg
cubes. InSigmod '99: Proceedings of the 1999 acm sigmod international conference on

management of datg. 359-370).

Chang, J. H., & Lee, W. S. (2003, August). Finding recent frequent itemsets adaptively over on-
line data streams. IKdd '03: Proceedings of the ninth acm sigkdd international conference

on knowledge discovery and data minifpg 487-492). Washinton D.C.

REFERENCES 111

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and olap technology.

SIGMOD Recorgd26(1), 65-74.

Chen, Y., Dong, G., Han, J., Wah, B. W., & Wang, J. (2002, August). Multi-dimensional
regression analysis of time-series data streamd/ldb '02: Proceedings of the 2002 vidb

international conference on very large data bagas. 323-334). Hongkong, China.

Cheng, C., Fu, A. W., & Zhang, Y. (1999). Entropy-based subspace clustering for mining
numerical data. ItKdd '99: Proceedings of the fifth acm sigkdd international conference on

knowledge discovery and data minifp. 84-93). New York, NY, USA: ACM Press.

Cheng, Y., & Church, G. M. (2000). Biclustering of expression datdsimb '00: Proceedings

of the 8th international conference on intelligent system for molecular biqleg33-103).

Cohen, S., Nutt, W., & Serebrenik, A. (1999). Rewriting aggregate queries using views. In
Pods '99: Proceedings of the eighteenth acm sigmod-sigact-sigart symposium on principles

of database systenfs. 155-166). Philadelphia, Pennsylvania: ACM Press.

Cormode, G., Korn, F., Muthukrishnan, S., & Srivastava, D. (2003, September). Finding hierar-
chical heavy hitters in data streams.Midb '03: Proceedings of the 2003 vldb international

conference on very large data bas@&erline, Germany.

Cormode, G., & Muthukrishnan, S. (2003). What's hot and what’s not: tracking most frequent
items dynamically. IrPods '03: Proceedings of the twenty-second acm sigmod-sigact-sigart

symposium on principles of database systgm296-306). New York, NY.

Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002, January). Maintaining stream statistics
over sliding windows. InSoda '02: Proceedings of 13th annual acm-siam symposium on

discrete algorithmgpp. 635-644).

Dobra, A., Garofalakis, M., Gehrke, J., & Rastogi, R. (2002). Processing complex aggregate
gueries over data streams.3igmod '02: Proceedings of the 2002 acm sigmod international

conference on management of dgpp. 61—-72). New York, NY, USA: ACM Press.

112 REFERENCES

Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., & Ullman, J. D. (1998, 24—
27). Computing iceberg queries efficiently. Yidb '98: Proceedings of the 1998 vidb

international conference on very large data baggs. 299-310).

Feng, Y., Agrawal, D., Abbadi, A. E., & Metwally, A. (2004). Range cube: Efficient cube
computation by exploiting data correlation. letde’04: Proceedings of the 2004 ieee inter-

national conference on data engineerifpy 658-670).

Ganter, B., & Wille, R. (1996)Formal concept analysis — mathematical foundatiddgringer.

Gehrke, J., Korn, F., & Srivastava, D. (2001). On computing correlated aggregates over contin-
ual data streams. I8igmod '01: Proceedings of the 2001 acm sigmod international confer-

ence on management of ddf@. 13-24). New York, NY, USA: ACM Press.

Giannella, C., Han, J., Pei, J., & Yu, P. S. (200M)ining frequent patterns in data streams at

multiple time granularities AAAI/MIT.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., et al. (1997).
Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.

Journal of Data Mining and Knowledge Discovefyl), 29-53.

Gupta, A., Mumick, I. S., & Subrahmanian, V. S. (1993). Maintaining views incrementally. In
Sigmod '93: Proceedings of the 1993 acm sigmod international conference on management

of data(pp. 157-166). New York, NY, USA: ACM Press.

Hahn. (1994). Edited synoptic cloud reports from ships and land stations over the globe,

1892-1991 (http://cdiac.ornl.gov/ftp/ndp026b/)

Han, J., Pei, J., Dong, G., & Wang, K. (2001, May). Efficient computation of iceberg cubes
with complex measures. I8igmod '01: Proceedings of the 2001 acm sigmod international

conference on management of dgpp. 1-12). Santa Barbara, California.

REFERENCES 113

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate gener-
ation: A frequent-pattern tree approaclournal of Data Mining and Knowledge Discovery

8(1), 53-87.

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996, June). Implementing data cubes
efficiently. InSigmod '96: Proceedings of the 1996 acm sigmod international conference on

management of dat@@p. 205-216). Montreal, Canada.
Inmon, W. H. (2002) Building the data warehousdohn Wiley Sons, Inc.

Jagadish, H. V., Madar, J., & Ng, R. (1999, September). Semantic compression and pattern
extraction with fascicles. INldb '99: Proceedings of the 1999 vidb international conference

on very large data basgp. 186-198). Edinburgh, UK.

Jiang, D., Pei, J., Ramanathan, M., Tang, C., & Zhang, A. (2004). Mining coherent gene clusters
from gene-sample-time microarray data. Kdd '04: Proceedings of the tenth acm sigkdd
international conference on knowledge discovery and data mijpipgd30—439). New York,

NY, USA: ACM Press.

Jiang, D., Pei, J., & Zhang, A. (2003). Dhc: A density-based hierarchical clustering method
for time series gene expression dataBlhe '03: Proceedings of the 3rd ieee symposium on

bioinformatics and bioengineerin(@. 393). Washington, DC, USA: IEEE Computer Society.

Johnson, T., & Shasha, D. (1997). Some approaches to index design for cube Budists
of the Technical Committee on Data Engineerig@(1), 27-35.

Karp, R. M., Papadimitrious, C. H., & Shanker, S. (2003, March). A simple algorithm for
finding frequent elements in streams and bag&M Transactions on Database Systems

28(1), 51-55.

Lakshmanan, L. V. S., Pei, J., & Zhao, Y. (2003). Qc-trees: an efficient summary structure for
semantic olap. lisigmod '03: Proceedings of the 2003 acm sigmod international conference

on management of dafgp. 64—75). New York, NY, USA: ACM Press.

114 REFERENCES

Lakshmanann, L. V. S., Pei, J., & Han, J. (2002, August). Quotient cube: How to summarize the
semantics of a data cube. Wdb '02: Proceedings of the 2002 vidb international conference

on very large data basgp. 778-789). Hong Kong, China.

Levy, A. Y., Mendelzon, A. O., Saglv, Y., & Srivastava, D. (1995). Answering queries using
views. InPods '95: Proceedings of the fourteenth acm sigmod-sigact-sigart symposium on

principles of database systerfpp. 95-104). San Jose, California.

Liu, J., & Wang, W. (2003, November). Op-cluster: Clustering by tendency in high dimensional
space. Incdm’03: Proceedings of the 2003 ieee international conference on data mining

(pp- 187-194). Melbourne, Florida.

Mendelzon, A. O., & Vaisman, A. A. (2000). Temporal queries in olap.Vidb '00: Pro-
ceedings of the 26th international conference on very large data lape242-253). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Mumick, I. S., Quass, D., & Mumick, B. S. (1994, May). Maintenance of data cubes and
summary tables in a warehouse.Sigmod '94: Proceedings of the 1994 acm sigmod inter-

national conference on management of dg@p. 100-111). Tucson, Arizona.

Ng, R. T., Wagner, A., & Yin, Y. (2001). Iceberg-cube computation with pc clusterSigmod
'01: Proceedings of the 2001 acm sigmod international conference on management of data

(pp. 25-36). New York, NY, USA: ACM Press.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999, January). Discovering frequent closed
itemsets for association rules. liedt '99: Proceedings of the 4th international international

conference on database thedqpy 398-416). Jerusalem, Israel.

Pei, J., Zhang, X., Cho, M., Wang, H., & Yu, P. S. (2003). Maple: A fast algorithm for maximal
pattern-based clustering. ladm '03: Proceedings of the third ieee international conference

on data miningp. 259). Washington, DC, USA: IEEE Computer Society.

REFERENCES 115

Quass, D., Gupta, A., Mumick, I. S., & Widom, J. (1996, December). Making views self-
maintainable for data warehousing. Fdlis '96:proceedings of the 4th international confer-

ence on parallel and distributed information systgims. 158—-169). Miami Beach, Florida.

Quass, D., & Widom, J. (1997). On-line warehouse view maintenan&gmod '97: Proceed-
ings of the 1997 acm sigmod international conference on management ¢pgag93—-404).

New York, NY, USA: ACM Press.

Ross, K. A., & Srivastava, D. (1997, 25-27). Fast computation of sparse datacubes. In M. Jarke,
M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, & M. A. Jeusfeld (E&48db
'97: Proceedings of the 1997 vidb international conference on very large data ljppes

116-125). Morgan Kaufmann.

Ross, K. A., & Zaman, K. A. (2000). Optimizing selections over datacubessstibm '00:
Proceedings of the 12th international conference on scientific and statistical database man-

agemen(p. 139). Washington, DC, USA: IEEE Computer Society.

Roussopoulos, N., Kotidis, Y., & Roussopoulos, M. (1997, May). Cubetree: Organization of
and bulk updates on the data cube. Sigmod '97: Proceedings of the 1997 acm sigmod

international conference on management of dgga 89-99). Tucso, Arizona.

Sarawagi, S. (1997). Indexing OLAP dafata Engineering Bulletin2((1), 36—43.

Shanmugasundaram, J., Fayyad, U., & Bradley, P. S. (1999). Compressed data cubes for olap
aggregate query approximation on continuous dimension&dth’99: Proceedings of the
fifth acm sigkdd international conference on knowledge discovery and data {pmng23—

232). New York, NY, USA: ACM Press.

Sismanis, Y., Deligiannakis, A., Roussopoulos, N., & Kotidis, Y. (2002). Dwarf: shrinking the
petacube. Irigmod '02: Proceedings of the 2002 acm sigmod international conference on

management of datgp. 464—-475). New York, NY, USA: ACM Press.

116 REFERENCES

Srivastava, D., Dar, S., Jagadish, H. V., & Levy, A. Y. (1996, September). Answering queries
with aggregation using views. Mildb '02: Proceedings of the 2002 vidb international con-

ference on very large data basgsgp. 318—-329). Bombay, India.

Tavazoie, S., Hughes, J., Campbell, M., Cho, R., & Church, G. (200&st micro data set.

(http://arep.med.harvard.edu/biclustering/yeast.matrix)

Teng, W. G., Chen, M. S., & Yu, P. S. (2003, September). A regression-based temporal pattern
mining scheme for data streams. Vitdb '03: Proceedings of the 2003 vidb international

conference on very large data bagep. 93-104). Berlin, Germany.

TPC. (1998).Tpc transaction processing performance coungikip://www.tpc.org/tpch)

Vitter, J., Wang, M., & lyer, B. (1998, November). Data cube approximation and histograms
via wavelets. InCikm '98: Proceedings of the 7th international conference on information

and knowledge managemédpp. 96-104). Washington D.C.

Wang, H., Wang, W.,, Yang, J., & Yu, P. S. (2002). Clustering by pattern similarity in large
data sets. Ii'sigmod '02: Proceedings of the 2002 acm sigmod international conference on

management of dai@p. 394—405). New York, NY, USA: ACM Press.

Wang, K., Jiang, Y., Yu, J. X., Dong, G., & Han, J. (2003). Pushing aggregate constraints by
divide-and-approximate. litde’03: Proceedings of the 2003 ieee international conference

on data engineerin@p. 291- 302).

Wang, W., Lu, H., Feng, J., & Yu, J. X. (2002). Condensed cube: An effective approach to
reducing data cube size. lode’02: Proceedings of the 2002 ieee international conference

on data engineeringp. 155-165).

Widom, J. (1995). Research problems in data warehousin@.ikim '95: Proceedings of the
4th international conference on information and knowledge managefppn25-30). New

York, NY, USA: ACM Press.

REFERENCES 117

Xin, D., Han, J., Li, X., & Wah, B. W. (2003). Star-cubing: Computing iceberg cubes by top-
down and bottom-up integration. Mldb '03: Proceedings of the 2003 vidb international

conference on very large data bases.

Yang, G. (2004). The complexity of mining maximal frequent itemsets and maximal frequent
patterns. IrkKdd '04: Proceedings of the tenth acm sigkdd international conference on knowl-

edge discovery and data minirfgp. 344—353). New York, NY, USA: ACM Press.

Yang, J., Wang, W., Wang, H., & Yu, P. S. (2002, Apri-cluster: Capturing subspace corre-
lation in a large data set. liede’02: Proceedings of the 2002 ieee international conference

on data engineerin@pp. 517-528). San Fransisco, CA.

Yu, J. X., Chong, X., Lu, H., & Zhou, A. (2004, August). False positive or false negative: Min-
ing frequent itemsets from high speed transactional data strean¥ddbriO4: Proceedings
of the 2004 vldb international conference on very large data bgses204—215). Toronto,
ON, Canada.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997, August). New algorithms for fast
discovery of association rules. Kdd '97: Proceedings of the third acm sigkdd international

conference on knowledge discovery and data mi(mn@83-286). Newport Beach, CA.

Zhao, L., & Zaki, M. J. (2005). Tricluster: an effective algorithm for mining coherent clusters
in 3d microarray data. Iisigmod '05: Proceedings of the 2005 acm sigmod international

conference on management of dgda. 694—705). New York, NY, USA: ACM Press.

Zhao, Y., Deshpande, P. M., & Naughton, J. F. (1997). An array-based algorithm for simul-
taneous multidimensional aggregates.Sigmod '97: Proceedings of the 1997 acm sigmod
international conference on management of dgia 159-170). New York, NY, USA: ACM

Press.

