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Abstract

Handwriting recognition (HR) is a challenging problem thatis made tractable only

by the contextual constraints offered by specific applications. The population of a national

emergency medical service database from the collection of the New York State (NYS) Pre-

hospital Care Report (PCR) calls for handwriting recognition. Such a database can enable

emergency preparedness, response, and homeland security.We address several research

challenges presented by the task of reading hand-filled PCR’s in particular and medical

forms in general. Written text on such forms has poor legibility due to insufficient size

of writing areas (e.g. compressed text or text curved along margin), vehicle motion, writ-

ing with gloves, and the immediacy of the emergency environment. Challenges include:

(i) written matter often spilling beyond the form boundaries, (ii) diverse lexicons in the

medical domain, and (iii) low recognition performance due to poor legibility of text. A

fourth challenge is that modern search engines expect to operate on known text and not on

handwriting. In order to address these issues, we have developed the following: (i) the first

text extraction technique which operates on carbon paper, (ii) a lexicon reduction strategy

which maps partial recognition information to medical topic categories, and (iii) an infor-

mation retrieval system capable of searching forms using handwriting recognition results.

While the emphasis of this research is on medical forms, the ideas extend to any do-

main in which there is at least one sentence of text that can beclassified under high level

topic categories. In the application of medical forms, it isshown that the words written

by health care professionals involved in all aspects of patient assessment can be organized

within the context of anatomical positions. Conceivably, if a patient with a broken leg is
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rescued, then the handwriting will be related to the identification and rescue efforts involv-

ing the anatomical position oflegs.

The primary issue is how the category is determined if the handwritten words are

unknown. Since both the lexicon reduction step, aimed at improving the recognition per-

formance, as well as the search engine require the recognized words, a new paradigm must

be developed to solve the problem. The algorithm described in this research automati-

cally learns the salient relationships between charactersfrom correlated words, and maps

such related characters to categories. The quantity of initially recognized characters is re-

stricted to two per word since the recognition engines cannot successfully extract all the

characters; two is empirically determined as the maximum reasonable quantity of charac-

ters recognized with high confidence. This raises the issue of collisions between words that

have the same uni-gram or bi-gram. To address this situation, two steps are performed: (i)

the distance information between character information isencoded, and (ii) the usage of

uni/bi-gram cohesive phrases, instead of independent words, is mapped under the category.

At this stage, a list of spatially encoded uni/bi-grams under a category exists. However, the

notion of a collision now also extends to the category level.For example, the categoryarms

and legsmay both contain the phraseblood loss. To handle such ambiguities, it is neces-

sary to determine which uni/bi-gram phrases most uniquely defines each category. A series

of steps is used to extract and weight the most relevant uni/bi-gram phrases (a.k.a.terms)

against the categories with which they are associated. Given a new form, the characters are

extracted, the category is automatically determined, the lexicon is reduced, the handwrit-

ing recognition is performed, and query matches are returned. This results in recognition

improvements between 4.50%-7.25% after binarization and post-processing, a handwriting

recognition improvement of 7.42% with a reduction in error rate of 10.88% and an increase

of effective queries by 50%.

The hybridization of handwriting recognition, natural language processing, contex-

tual knowledge representation, and information retrievalis novel. We show that it is pos-

sible to automatically determine a high level category and use it for both recognition and
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retrieval even with several levels of ambiguity and recognition errors. Medical forms were

chosen due to the high level of complexity inherent in a largeheterogeneous corpus of

medical, pharmacological and English texts. Forms were written by multiple writers in

complex emergency environments. The emergencies reportedinvolve such situations as

extreme temperature and weather, fire, vehicle accidents, ambulance movement, and haz-

ardous materials. By addressing these problems in the most extreme circumstances, we

were able to gain information in two areas: (i) algorithm effectiveness in the worst case

scenario, and (ii) insight into human cognitive interpretations.
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Chapter 1

Introduction

Research in recognition of medical forms builds on the knowledge acquired in several

branches of artificial intelligence during the last half century: handwriting recognition, in-

formation tetrieval, image processing, forms processing,natural language processing, and

computational linguistics. Medical forms are used for several reasons: (i) No pattern recog-

nition group has previously attempted the recognition of handwriting on medical forms (to

the best of our knowledge), (ii) the nature of these forms presents complex PR problems,

(iii) medical printed text has a history of successful research involving semantic analysis,

and (iv) there is high demand for epidemiological and healthsurveillance data.

This research analyzes handwriting in the context of medical forms. There are two

goals of this research.Recognitionis the task of using an image containing handwriting as

an input and producing the ASCII conversion as output. Theretrieval component involves

the search of medical forms based on a human query. Each goal can be broken down into

several component sub-goals, each with its own history of algorithmic approaches, capa-

bilities, and limitations.

This research operates under several assumptions: (i) the locations of words on the

medical form have been previously segmented, (ii) at least 50% of the words on a form are
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readable by a person in order to be considered in any trainingor test deck, (iii) layout of

the forms is known and consistent, and (iv) at least a single sentence of handwritten text

exists on the form.

1.1 Motivation

The National Strategy for Homeland Security released by theWhite House in July 2002

lists Emergency Preparedness and Responseas one of the six critical mission areas for

Homeland Security [131]. Despite the publicity surrounding the issue of preparedness

to guard against possible bio-terrorist attacks, there have not been many short to middle-

term practical technological solutions proposed to address the problem. There is a strong

demand in the New York State Department of Health to greatly improve the speed of col-

lecting NYS Pre-Hospital Care Reports (PCR) [135] data to populate a national Emergency

Medical Service (EMS) database, thereby providing emergency medical service providers

and health care administrators with a wealth of data that canbe used in epidemiological

analysis, counter bio-terrorism and Mass Casualty Incidents. These forms, which are a few

years behind in storage and analysis, are also used for legaldocumentation and EMS qual-

ity assurance.

Seven years of health care experience in the capacities of NYS Certified First Respon-

der and NYS Emergency Medical Technician, specialization in the Artificial Intelligence

track of the Computer Science program, and work with the Center of Excellence for Doc-

ument Analysis and Recognition (CEDAR) led the author to initiate and carry out this

research. The intent is to explore algorithms for the recognition and search of handwritten

medical documents, toward the larger goal of a real-time searchable database for improved

knowledge, treatment and rescue efforts in the medical field.

2



1.2 Contributions

This dissertation makes the following contributions:

• The first application of recognition of handwritten medicalforms.

• The first search engine using handwritten forms.

• The first binarization and post-processing strategy on carbon forms.

• The first binarization algorithm using sinusoidal waves.

• A paradigm showing a mapping between character encodings toa topic categorization

used for lexicon reduction. This strategy is reusable for other lexicon driven handwriting

recognizers that are based on character segmentation.

• New metrics for measuring the performance of lexicon reduction systems.

• Construction of the first data set of actual handwritten emergency medical documents for

use in document analysis research.

• Compatibility with standard information protocols used byHealth Level 7 (HL7) [55]

and the Center for Disease Control (CDC) [23].

• A framework for an automated, centralized, and secure health surveillance network.

• An advanced software system with diverse visual interfacesand command-line execution

modes.

3



1.3 PCR Background

In the United States, any pre-hospital emergency medical care provided has to be rigor-

ously documented. Departments of Health of each state prescribe a standard medical form

to be used in documenting all information on the patient’s status and treatment from the

moment the rescue effort begins until he or she is transported to the hospital. State laws

require emergency personnel to completely fill out this formfor each patient prior to ad-

mission into the hospital for care.

Data for this research, in the form of actual research copiesof the PCR forms [135]

(see Figure 1.1), have been obtained under an agreement withthe Western Regional Emer-

gency Medical Services (WREMS) [135] division of the New York State (NYS) Depart-

ment of Health. Each PCR is stored as a 300 DPI (dots/inch) color image. Computations

are only performed on zones containing the relevant medicalinformation; more specifi-

cally, no computations are performed on zones containing patient identifying information

or on PCRs involving patients with behavioral disorders. The PCR is a form used to gather

vital patient information that is used by health care administrators as a resource to identify

trends through macro-analysis. Currently, PCRs are mostlypaper forms, and the process

of keying this data into a database that can be processed and mined for trend information

can take up to several years in many states. A nationwide database of PCR data would be

invaluable for a public health syndromic surveillance system.

There are five major zones on the PCR containing the handwritten information of

interest (ordered from top to bottom): Chief Complaint (Figure 1.2 Location 8), Subject

Assessment (Figure 1.2 Location 9), Past Medical History (Figure 1.2 Location 11), Ob-

jective Physical Assessment (Figure 1.2 Location 13), Comments (Figure 1.2 Location 14).

These handwritten areas contain numbers (e.g. 84), symbols(e.g. ↑ = increase), abbrevi-

ations (see Appendix C for examples), anatomical descriptions (e.g. thoracic), medical

4



Figure 1.1: Pre-Hospital Care Report (PCR) example (identifying information hidden)

5



Figure 1.2: Pre-Hospital Care Report (PCR) labeled (simulated information)
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conditions (e.g. pneumothorax), pharmacological words (e.g. codeine) and common En-

glish. The handwritten zones can contain data from a large heterogeneous lexicon, and the

text often does not fit perfectly within form boundaries. Thetext zones, therefore, present

a highly challenging recognition problem. The rest of the form consists of elements such

as check-boxes, segmented character locations, and segmented digit-only locations. The

recognition of such elements are less challenging than handwriting recognition. However,

elements are not as complete or as verbose as handwriting.

The form available for processing and data mining is a carboncopy. Figure 1.2 is a

top copy which is held by the hospital and is not available forresearch. A top copy is the

most cleanly written since the data loss issues are not present (as with the carbon copies).

However, the carbon copies are still used in the medical system and are still backlogged.

The carbon mesh residue in various locations on the form, andbroken/unnatural handwrit-

ing due to ambulance movement and emergency environments add further complexity to

the document. There is also an extension form that allows health-care providers to continue

writing if there is no room in the Comments PCR region. The useof this form is, however,

rare.

While other work has been performed in the area of unconstrained handwriting, it has

been limited to a large lexicon of only English [130]. There has also been little prior work

on poor handwriting [18], especially in the environment of this carbon paper and in the

emergency environment. Each section of this research will discuss these issues in further

detail.

1.4 Taxonomy

In this section, the most commonly encountered handwritingstyles are listed. Any com-

bination of these styles can be found in the emergency environment. This provides some
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Figure 1.3: Good handwriting pressure

Figure 1.4: Small print

visual insight into the challenges of medical handwriting recognition. The diversity of

characters and pen-to-paper handwriting pressure lead to recognition errors (see Figures

1.3 - 1.14). Note that PCRs containing an additional “continuation form,” which may be

attached in rare occurences, are omitted from this research. PCRs are sometimes accompa-

nied by a printed electrocardiogram sample. The integration of such information is outside

the scope of this research.

1.5 PCR Training and Test Deck Construction

Medical form training and test sets have been created manually. A software data entry

system has been developed that allows humans, known as truthers, to manually segment all

PCR form zones and words, and to provide a human interpretation for the word, denoted

as the truth. The use oftruth indicates that the human classification of text is always the

correct interpretation.

The process of data entry, known as truthing, has two phases:(i) the digital tran-

scription of medical form text, and (ii) the classification of forms into topic categories. The

Figure 1.5: Full line height
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Figure 1.6: Narrow width

Figure 1.7: Mixed print and cursive types

Figure 1.8: No handwriting pressure on carbon copy

Figure 1.9: Reduced/Degraded pressure on carbon copy

Figure 1.10: Mixed pressure censitivity print type

Figure 1.11: Mixed pressure cursive

Figure 1.12: Linear line violation

Figure 1.13: Nonlinear line violation
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Figure 1.14: Reference to another document such as a continuation form

distribution of PCR forms under each category is approximately equal in both the training

and test decks. The task has been supervised and performed bya health care professional

with seven years of field emergency medical services (EMS) experience. This corpus of

handwritten emergency medical forms is the first of its kind.

1.6 Outline of Dissertation

Figure 1.15 graphically illustrates the layout of this dissertation. Chapter 1 introduces the

reader with the problem statement, motivation, and introduces the medical forms that are

used in this research. Chapter 2 then discusses prior work inform recognition, handwriting

recognition, the need for contextual models in handwritinganalysis, information retrieval,

latent semantic analysis and some cognitive insight into the approach of this work. Chapter

3 identifies all related pre-processing steps necessary forthe handwriting recognition tasks.

Visual comparisons between binarization and post-processing algorithms are described.

Note that automatic word segmentation is not addressed in this work. Chapter 4 defines

metrics used in the evaluation of lexicon reduction algorithms. Chapter 5 begins from the

pre-processed image and shows an approach for the automatedrecognition of the hand-

written words on the form. Once an ASCII version of the medical form is available, then it

is open to text processing algorithms. Chapter 6 compares several handwriting recognition

experiments and evaluates the performance of the lexicon reduction algorithm defined in

Chapter 5. Chapter 7 compares the retrieval effectiveness on medical forms before and

after the use of the lexicon reduction algorithm. Chapter 8 describes several practical ap-

plications that can utilize this research. Chapter 9 describes the software built to manage
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truthing and algorithm experiments. Chapter 10 concludes with specifics insights of this

work. The appendices include ethics and security, a competing system, and a parallel pro-

cessing architectural requirement.

The objective is to provide techniques for the handwriting recognition and retrieval

of medical forms. This allows health surveillance and epidemiological software to have an

entirely new resource of medical information. Prior work not only has its own dedicated

chapter, but is included whenever the algorithm in questionrequires more detail to under-

stand.
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Figure 1.15: Dissertation Layout
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Chapter 2

Prior Work

Prior work is found in three locations of this dissertation:(i) this chapter illustrates the

prior work in handwriting recognition, lexicon reduction,forms processing, information re-

trieval systems, human cognition and ontology, (ii) chapter 3 contains prior work relevant

to forms processing techniques, and (iii) chapter 5 discusses prior work relevant to lexicon

reduction techniques.

2.1 Background

Although handwriting recognition and lexicon reduction [81] have been researched sub-

stantially over the years, many challenges still persist inthe offline domain. Word recogni-

tion applications range from automated check recognition [65], postal recognition [38], his-

torical documents recognition [39] [46], and now emergencymedical documents [85] [86]

[87]. Strategic recognition techniques for handwriting algorithms such as hidden markov

models (HMM) [24] [57] [67] [82] [91], artificial neural networks (ANN) [15] [26] [27]

[40] [96], and support vector machines (SVM) [7] [17] have been developed. Lexicon re-

duction, any process aiming to eliminate irrelevant entries from a lexicon, has been shown
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to be critical to improvement of performance primarily because of the minimization of pos-

sible choices [47]. Systems reporting high recognition even with a large vocabulary corpus

have also been successful [67] [68].

Additionally, other lexicon reduction strategies have used the extraction of character

information for lexicon reduction, such as that by Guillevic, et al. [50], which uses an

HMM. However, that research reduces the lexicon from a single category, namely cities in

Finland. In addition, usage of word length estimates for a smaller lexicon are available, and

the binarization1 appears significantly cleaner [50]. Caesar, et al. [18] alsostates that prior

reduction techniques [97] [116] [120] are unsuitable sincethey can only operate on very

small lexicons due to enormous computational burdens [18].Caesar [18] further indicates

that Suen’s [123] approach of n-gram combinatorics is sensitive to segmentation issues, a

common problem with medical form handwriting [18]. However, Caesar’s method [18] and

those that are dependent on using the character information, or the character information

of only one word to directly reduce the lexicon, suffers if one of the characters is selected

incorrectly [18]. This is observable in the cursive or mixed-cursive handwriting types.

Many existing schemes, such as that of Zimmermann [143], assume that acceptable

characters can be extracted. However, in the medical handwriting domain, there are very

high error rates. Therefore, operating a reduction scheme that can be robust to incorrectly

chosen characters is necessary. As a result, this research has moved in the direction of an

alternate organization, namely, sequences of characters are used to determine a category

that has a lexicon of its own, thereby reducing the issues of using the character information

directly. Similar to the study by Zimmermann et al. [143], here the length encodings of

words are involved with the terms. However, a term in this case is a phrase rather than an

individual word, and the use of wildcards2 is found to increase run-time and degrade per-

formance. In addition, the approach of Zimmermann et al. [143] provided an optimization,

1A process for extracting foreground handwritten stroke pixels from the document background.
2A regular expression pattern using tokens, such as* , to match alpha-numeric text.
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whereas our research also shows recognition improvements.

Kaufmann, et al. [64] present another HMM strategy, which isprimarily a distance-

based method and uses model assumptions that are not applicable in the medical environ-

ment. For example, Kaufmann [64] assumes that “...people generally write more cooper-

atively at the beginning of the word, while the variability increases in the middle of the

word.” In the medical environment, variability is apparentwhen multiple health care pro-

fessionals enter data on the same form. The medical environment also has exaggerated or

extremely compressed word lengths due to erratic movement in a vehicle and limited paper

space. Kaufmann [64] only provides a reduction of 25% of the lexicon size with little to no

improvement in error rate, and the tests are run on a small sample of words.

Relatively little research has been done with the linguistic model for the purposes of

lexicon reduction and information retrieval from degradedhandwritten images. On about

15% of the medical forms, half of the documents were completely indecipherable by hu-

man beings. This illustrates the challenges of automated recognition.

2.2 Handwriting Recognition

Handwriting recognition (HR) is divided into two categories: online and offline. An HR

survey paper by Tappert [125] discusses the processing and recognition of on-line hand-

writing across multiple languages and compares the differences between on-line and off-

line recognition. Online recognition is performed on hardware devices, such as PDAs, and

generally has the advantage of positional and temporal knowledge, and the disadvantage

of having to process information rapidly to avoid user frustrations. The offline recognition

process, such as the recognition of postal mail or historic documents, performs all process-

ing on a document that has been completely handwritten. In many circumstances, there is
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more available run-time (e.g. a user scanning a document on his personal computer), how-

ever offline recognition lacks positional and temporal knowledge. This study addresses

the offline recognition problem in which all text is available to the machine. However, if

there is a substantial amount of handwriting text in an online recognition environment, the

algorithms can still be used. Migration to an online environment needs previous context

(e.g. a sentence) and the first one or two characters of a word being written (since lexicon

reduction occurs during the writing process).

The recognition of postal mail [38] [66] in the United States, for example, is an

off-line procedure in which time constraints have become increasingly critical as society

has become dependent on automation. While postal recognition is a challenging problem,

many algorithms have been used to solve the problem. Some algorithms incorporate postal

databases to reduce the possibilities of words in a corpus. This is an example oflexicon

reduction. This dissertation will introduce an alternative approach. However, not all scenar-

ios have the luxury of an all-encompassing postal database engine. This research addresses

another generation in recognition in which lexicons can notonly be large, but they can

also be on multiple heterogeneous topics. The task of handwriting recognition in forms

involves enormously complex handwriting, lacks a consistent texture, exists at various lo-

cations within forms, involve multiple writers on the same document, suffers exposure to

rescue situations, consists of free-form text, and has no database lookups.

Nevertheless, if people can read the handwriting on a medical form, then it should

be possible to create automated systems as well. This statement is supported by evidence

of high recognition performance by other automated systemswith similar problems, such

as the postal mail recognition problem [38] [66]. Initiallyit is expected that the machine

will not perform as well as humans. This is acceptable for tworeasons: (i) this is the first

attempt at recognition of this kind, and (ii) the proposed system can operate in synchroniza-

tion with humans (i.e. as an assistive process where the machine submits an interpretation
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to the human for verification and/or modification).

It is imperative to note McDermott’s warning with the usage of words in artificial

intelligence [83]. For example, while the wordssemanticor reasoningare used to describe

the process in solving a problem, it can be considered a philosophical illusion. A stochastic

process, for example, may be used to solve a problem in which humans solve byreasoning,

however, the computational technique may or may not be performing an act ofreasoning.

McDermott specifically uses the example that a human may namea computational function

UNDERSTANDwhich computes some output based on the input. However, if the function

were namedG0034, it is difficult to presume that the function isunderstanding. Therefore,

the use ofsyntacticandsemanticare more precisely defined in this research.

Handwriting recognition algorithms have generally started with syntactic3 approaches

and included semantics4 along the way [45] [49]. The syntactic approach can be thought

of as a parser which does not exhibit any knowledge other thangeometric (e.g. concavity,

curvature) information. Guillevic, et al. [49] discusses contextual, syntactic and semantic

details in cursive script using psychological models. Thisclassification of syntactic and

semantic analysis by human readers as aguessing gamewas shown by Goodman [45].

An important issue that syntactic and semantic categories raise is related to two layers of

ambiguity: (i) confusion with characters that are visuallysimilar or identical, and (ii) the

true5 context of words in a sentence or paragraph. To address both situations, this research

has two syntactic recognition steps (i.e. character extraction and handwriting recognition

discussed later) separated by asemanticstep (i.e. lexicon reduction involving the mapping

of terms to categories; discussed later).

In this research,semanticis defined as the mapping of words or word encodings to

3Techniques for interpretting the structure of handwrittenwords.
4Techniques for utilizing the meaning of handwritten words.
5The notion of truth is defined as the human interpretation.
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Figure 2.1: Lexicon Driven Word Recognizer Algorithm [66]

a finite set of topiccategories. This combination of syntactic and semantic approaches

is shown to improve the performance by allowing the lexicon to be reduced using these

categories. Our research will show that is possible to use only those words found on a

particular subject. This is then followed by the second syntactic recognition step on this

reduced lexicon. In other words, by organizing heterogeneous information into homoge-

neous categories, the ambiguity issues are intuitively reduced; thereby, improving recog-

nition performance. While our algorithm combines different classifiers, it differs from the

multiple classifier combination (MCC) problem. In MCC, the task is to make a classifica-

tion using the outputs of several independent classifiers. Asimple solution for this problem

is the majority voting principle [124]. Another probabilistic approach in the context of nu-

meral handwriting recognition can be found by Xu, et al. [137]. Our research uses different

classifiers which are serially dependent and therefore the MCC problem does not apply.

While many word recognition engines exist, the HR algorithms chosen for this re-

search have had widespread trusted use with the United States Postal Service (USPS) (see

Figure 2.1) [66]. In word model based recognition, all lexicon entries are treated as isolated
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words and matched against the input word image containing handwriting to recognize. The

lexicon entry with the best match is the top choice. In character model based recognition,

segments are matched against individual characters without using any contextual informa-

tion implied by the lexicon. Word hypotheses are generated by the character recognition

results. If the best hypothesis is found in the lexicon, thenthe recognition is done; oth-

erwise, the second best hypothesis is generated and tested,and so on. Since the lexicon

driven word recognizer (LDWR)[66] has the highest recognition rates, and it is lexicon de-

pendent, this research focuses on how to get the LDWR the smallest lexicon possible.

While the LDWR has excellent performance in small lexicons (e.g. less than 100

words), it does not perform well on larger lexicons (e.g.≥ 5,000 words) due to the con-

fusion in selecting from many choices. The lexicon reduction approach presented in this

work addresses the inadequacies of this recognizer’s performance by supplying it a smaller

lexicon. However, a challenge in reducing the lexicon is theretention of the actual word

after the reduction. Another inadequacy of LDWR is its high error rate due to the seg-

mentation procedure when applied to medical handwriting. Therefore, a new binarization

and post-processing algorithm is introduced to reduce segmentation failures due to broken

strokes. In order to address the LDWR’s confusion, this research shows that a couple of

characters from a word can provide sufficient semantic information. For example, if “BL”

only matched the word “BLOOD”, then our lexicon should be geared only to those topic

categories involving “BLOOD.” This has the potential of reducing the lexicon while main-

taining correct word retention since the semantic analysisincorporates the characters, by

the same recognizer, as a suggestion. The more suggestions provided, the better the guess

of the semantic category.
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2.3 Lexicon Reduction

Lexicon reduction is any process that takes an unknown inputimage of a word and a

set of possible ASCII words (i.e. the lexicon), and producesa subset of words (i.e. the

reduction). It has been shown that the reduction in lexicon size has strong potential for

improving the recognition performance [47] [66] [81]. The objective of lexicon reduction

is generally to: (i) produce the smallest subset of words possible, and (ii) retain the de-

sired word, which is obviously unknown, within this subset.Clearly, if the desired word is

not in the lexicon during the time of word recognition, the word image will fail recognition.

Several approaches for lexicon analysis and reduction havebeen performed previ-

ously. Holistic approaches, such as Madhvanath’s [80] [81], is motivated by human reading

studies and utilizes word shapes such as length, ascenders and descenders. Holistic algo-

rithms provide a visually intuitive approach to reduction.This becomes compromised in

the emergency setting where health-care professionals arewriting in several environments:

(i) movement in large emergency vehicles which are changingspeeds, (ii) walking with the

patient into the emergency room (ER), (iii) rescuing and writing with medical gloves, and

(iv) the existence of multiple writers. This severely impacts all holistic aspects of a word.

For example, a moving ambulance that changes speed affects word length, un-smooth driv-

ing surfaces affect word height, and different writers affect all directions and structure of

the words. Consider the image in Figure 2.2, in which the central letter is out of alignment

with the rest of the word and has strong potential for being classified as an ascender [80].

Since holistic approaches are not involved in character level segmentation, this approach is

intuitively problematic in such situations.
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Figure 2.2: Problematic example for holistic approaches (word displayed is“sternal” )

2.4 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a theory and procedure forcomputing the relation-

ships between the context of words and terms to a semantic category.

. . . LSA represents the meaning of a word as a kind of average of themean-

ing of all passages in which it appears, and the meaning of a passage as a kind

of average of the meaning of all words it contains. [70]

Landauer, et al. states here that while the human approach atsemantic comprehension

is unknown, LSA mimics human sorting of words into categories and simulates “passage

coherence” [70]. The termlatent semanticis coined due to the semantic inferences it at-

tempts to achieve [70]; latent is used in the connotation of aconcealedmeaning. In this

research, we are concerned with modeling the semantic relationships between partially rec-

ognized handwritten characters and a category6. More specifically, this research shows that

this character information, from words describing patienttreatment, is sufficient for mod-

eling and later querying for a medical category. This facilitates both improved handwriting

recognition performance and improved search engine results.

LSA represents these term-category associations in multiple orthogonal dimensions

simultaneously. This allows a reduction performed on LSA tominimize those parameters

necessary to produce a deeper semantic meaning [34] [70]. LSA, which is a statistical ap-

proach for constructing these relationships, does not takeany input other than the words

6This bares resemblance to contextual vocabulary acquisition by Rapaport [103]
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and categories. It is still able to compute such relationships (i.e. no external knowledge

bases are necessary). LSA performs these computations by applying the Singular Value

Decomposition (SVD) [121] to a matrix. The SVD equationX = U •S •V T computes the

eigenvalues and eigenvectors [5] from a rectangular matrixX [70] [34]. This matrix con-

sists of weighted and normalized frequencies indicating the relationships of terms (rows) to

categories (columns) computed beforehand.U contains the row eigenvectors of terms,V
T

contains the column eigenvectors of categories, andS contains the now decomposed singu-

lar values (note:singular valuesare equal to the square-root of the eigenvalues), computed

from the matrices, in descending order along the diagonal. The values along this diagonal

represent the degree of variance such that the first element in the diagonal has the most

variance and the last element has the least variance. The reduction can be performed by

deleting the smallest values in this diagonal matrix [34] [70]. Once decomposed into or-

thogonal vectors (i.e. all vectors are perpendicular to each other in multiple dimensions),

the classification of an unknown vector of terms against the appropriate vectors in the de-

composed matrices can be performed by computing the cosine of the vectors. This allows

the unknown vector of terms to be matched against a category.This can be thought of as a

query into the multiple dimensional semantic category space [21] [22] [34]. The theorem

and proof by induction that all matrices have an SVD can be found in [127].

SVD has also been used to model data in diverse areas such as gene expression [4],

protein molecular dynamics [41] [106], weather forecasting [43], call-routing [21] [22],

image compression [104], face recognition [52], cryptanalysis [89], and information re-

trieval [11] [12] [34] [140]. The most stable utility found to compute the SVD in the Java

programming language [60] is provided by NIST’s JAMA package [59]. This package

utilizes QR-Decomposition (a.k.a. QR-Factorization) [5]instead of approaches such as

Gram-Shcmidt [5], which suffers from rounding errors during computation [1]. The SVD

numbers computed in this research were verified against the appendix by Deerwester et al.

[34].
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2.5 Forms Processing

In this section, some examples of form recognition types areillustrated from more to less

constrained. The purpose is to illustrate the increasing complexity in form recognition.

• Figure 2.3: Bank checks are forms in which there is a small lexicon of numbers and

their string counterparts (e.g. 1,000 and One Thousand) [2][65]. This figure depicts the

steps in performing bank check recognition: pre-processing, segmentation, word recogni-

tion, generation of numerical cost candidates, and finally alist of recognition results with

confidence scores. The use of word recognition to restrict the lexicon of cost candidates is

an example of lexicon reduction.

• Figure 2.4: Census forms are restricted to a small quantity of dictionary words relating

to information such as occupation, employment, location, etc. (e.g. School) [79].

• Figure 2.5: Postal mail-piece recognition contains handwriting related to street addresses,

cities, states, countries, barcode markings, various stamps, and codes. Address block infor-

mation (noting both the return address and the destination address), which contain either

the hand or machine print address, need to be recognized in such an application [38] [66].

Historical documents (although not strictly a form) contain unconstrained handwrit-

ing, may use an archaic vocabulary, and are written on a complex surface [39] [46] [126].

They represent the challenge of handwriting recognition (see Figure 2.6) when no form

structure applies.

In order for work on Figures 2.3 - 2.6 to be performed, it is necessary to have form

extraction algorithms available [8] [94]. Such algorithmsalready exist. We assume that
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Figure 2.3: Bank Check Recognition Example [65]

existing algorithms are sufficient for the extraction of thehandwriting regions of the PCR,

and that the five major handwriting components of the PCR are already extracted. These

regions are static and hence easily located on the form.

2.6 Information Retrieval

Information retrieval generally involves the indexing of information followed by a query

to a search engine. Surveys of these technologies can be found in [25] [48] [53] [58] [71]

[72] [102]. This research is concerned with the retrieval ofinformation using semantic-

based indexing in the medical domain using a vector space model [21] [22] [34] [71]

[72][140].
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Figure 2.4: Census Forms [79]

Figure 2.5: Postal Letter [66]
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Figure 2.6: Historic Document [46]

Yang et al. [140] learned the association between words and indexing terms of docu-

ments using a Linear Least Squares Fit (LLSF) approach with the MEDLINE [84] database

and Mayo patient records [140]. In order to manage the problems of unrestricted vocabular-

ies, the work draws associations based on those assigned by human subjects. In addition, it

introduces the phrase“surface-based matching”which denotes any search technology ap-

proach that determines a match only when the document contains the words from a query.

It finds that other suchsurface-based matchingapproaches have poor performance when

unrestricted vocabularies are used, and concludes that a better approach is to solve the

problem using concept-based categorization and retrieval. This approach involves the cat-

egorization of document words in relation to a category using vector space [140]. Yang et

al. [140] differs from Salton [110] and Deerwester [34] by mapping between two vector

spaces; a source space of words (x-axis) to texts (y-axis) and a target space of document

category sets (y-axis) to categories (x-axis). Yang et al. [140] uses it to map the text
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“AIDS and Guillain Barre Syndrome”to the two categories (i.e. category set)“Acquired

Immunodeficiency Syndrome”and“Polyradiculoneuritis”. It computes the Singular Value

Decomposition (SVD) [74] [44] on a co-occurrence matrix which solves the mapping func-

tion needed for LLSF. At this point, the text is essentially biased towards certain target cat-

egories. Given a source text, the category can be queried by computing the cosine in vector

space and using the highest score to represent the highest candidate [140]. Evaluation was

conducted with respect to Categorization and Retrieval, multiple weighting schemes, and

differing morphological processing. It was executed on three data sets: (i)A Data Set of

Clinical Categorization (SURCL)containing reports in natural language by physicians, (ii)

A Data Set of MEDLINE Retrieval (MEDIR)containing title and abstract from a MED-

LINE citation, and (iii)A Data Set of MEDLINE Document Indexing (MEDCL)containing

word and category information.

Chu-Caroll et al. [21] [22], (to be discussed in greater detail in the following sections)

focuses on a similar approach using a single SVD. While Yang et al. [140] performed the

analysis on text, Chu-Caroll [21] [22] took voice recognition data as an input and produced

a caller destination to solve the call-routing problem. This research is closer to Chu-Caroll

[21] [22] in using recognition information as an input. In addition, their work illustrates

robustness to noisy data, reduction in error rates, and a high call-routing success rate. Our

research concentrates on the handwriting domain.

The Yang et al. [140] and Chu-Carroll [21] [22] techniques have similarities with the

lexicon reduction problem addressed here. Similarities are found in medical and recogni-

tion approaches. Yang’s et al. [140] approach involves a mapping between vector spaces

of information in the medical domain; however, the data is ina known text format. Chu-

Caroll’s [21] [22] approach involves mapping of voice recognized words to a caller desti-

nation. However, those terms are constructed using the voice recognition information as

the input. In this approach, the question is whether low confidence recognition characters
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from a pair of unknown words have a cohesion which can be mapped to a category in the

medical domain. Using this information, the recognition engine itself can be bootstrapped

to improve the recognizer and then use all of the informationto index medical forms con-

taining only handwriting.

2.7 Human Cognition and Ontology

The question of human perception is still an open problem under study in many dis-

ciplines, such as Artificial Intelligence (AI), Cognitive Science, Philosophy, and Neuro-

science. Ontology is a branch of cognitive science and philosophy using such things as

topologies, axioms, and logic to describe reality. Since AIis not a solved problem, a

gap exists between how a human mind computes a solution and how a computational sys-

tem solves the same problem. Therefore, creating a standardontological framework in

bio-informatics has not yet been achieved. A biomedical ontology is conerned with the

relationships among classes or categories [25]. This research exhibits traits of biomedical

ontologies in which a human classifies human injury and ailments to a higher level anatom-

ical category. These relationships are similar to several biomedical ontologies. The Foun-

dational Model of Anatomy (FMA), developed by the University of Washington, models

information and categories of the human body [25]. Rosse [107] breaks down a biomed-

ical entity into several sub-categories, one of which denoted material anatomical entity.

Several other references and examples of anatomical ontologies can also be found in [25].

In the framework of ontology, our research maps partially known and inaccurately

recognized handwritten medical text to anatomical categories that can be used to loop back

into the handwriting recognition and information retrieval algorithms. Description logic

used with electronic patient health records for defining such free-form medical text rela-

tionships to escape the more primitive “isa” type relationships, can be found in Smith

[117]. The application of the ontology, namely the mapping of terms to categories, can be

approached from a statistical perspective rather than employing description logic. This is
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a requirement since it is not known how human beings interpret handwritten information.

This paper promotes the theory of terminology mappings in health records in accordance

with Smith [117] in two ontologies: (i) the recognition of information, and (ii) the inter-

pretation of information. While this approach creates an alternate ontology in phase (i),

further medical inferences can be used by Smith’s [117] during phase (ii). It should be

further noted that Smith [117] also incorporates temporal knowledge like logic into the set

theory. This is used in the medical domain to determine a cause-effect relationship (e.g.

“mechanism of injury” due to a car accident).

The motivation for using anatomical categories in the modelis twofold: (i) intuition

that treatment is related to a patient’s condition in the emergency medical environment,

and (ii) philosophical theories in Smith’sAnatomical Information Science[118]. This

framework uses a FMA, a computational system consisting of acollection of 1.5 million

statements involving 70,000 kinds of anatomical relationships [118]. Since the relation-

ship mappings involve known text which is unavailable during the recognition process, this

system is much larger than what would be required in this medical environment, which typ-

ically employs fewer than 30 concepts in a specific domain. While it is possible that global

deployment of this research in multiple fields may one day take advantage of such systems,

it is not currently feasible to use a general knowledge base for specific forms. The theory

defined in Smith’s work focuses on actual anatomical connections, locations and contain-

ment of anatomy within the body, the theory maps terms to anatomical categories. This

dissertation contributes to the newly establishedAnatomical Information Science[118] by

introducing an alternative type of term mapping involving character recognition informa-

tion.
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2.8 Summary

The section introduces prior work in the areas of handwriting recognition and infor-

mation retrieval. This research assumes that the medical form can be segmented into its

regions using the afforementioned form processing strategies. The greatest challenge is the

improvement of the handwriting recognition algorithm to facilitate medical form search-

ing. The Lexicon Driven Word Recognizer (LDWR) [66] is the state-of-the-art handwriting

recognition engine that will be improved on by the use of a newlexicon reduction strat-

egy. This reduction technique uses latent semantic analysis to relate partial handwriting

character information to anatomical categories. The selection of the anatomical categories

has its roots toanatomical information science, which argues that the human information

can be categorically mapped as an anatomical ontology. In addition, the patient treatment

is related to those anatomical positions that are treated. Therefore, the hypothesis of the

lexicon reduction algorithm is that some recognized characters can be used to represent

anatomical categories.
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Chapter 3

Binarization of Carbon Copy Images

This research evaluates several algorithms that extract handwriting from medical form

images (see Figure 3.1) to eventually provide the best handwriting recognition perfor-

mance. This extraction of handwritten stroke pixels from the image is known as bina-

rization. The research copy of the NYS PCR [135] is a carbon mesh document where both

the foreground handwriting and the background carbon paperuse approximately the same

intensity values. While the handwriting on the top form has direct contact between ink

and paper, the carbon does not transfer to the paper if there is insufficient pressure. This

loss of complete character information in the carbon copy causes character strokes to break

after binarization, which leads to recognition failures (the phrasepressure sensitivity issues

will refer to this situation). Prior binarization algorithms have been reported to better man-

age noisy and complicated surfaces [42] [75] [136] [141]. However, the broken/unnatural

handwriting due to ambulance movement and emergency environments, as well as carbon

smearing from unintentional pressure to the form, add further complexity to the binariza-

tion task. A lexicon-driven word recognizer (LDWR) [66] is used for evaluation of the

binarization methods. Analysis of the LDWR, as well as a fullview of an actual NYS PCR

image, can be found in [86].
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Figure 3.1: NYS PCR Objective Physical Assessment

Figure 3.2: Grayscale 256 Carbon Mesh Handwriting Example (400% Zoom)

3.1 Carbon Paper

The inconsistent carbon paper, which shows varying grayscale intensities (see Figures

3.1 and 3.2), is referred to as carbon mesh. Figure 3.1 shows an example of the “Objective

Assessment” region of the NYS PCR form. It provides an overview of the complex nature

of the handwriting on the carbon paper. Figure 3.2 shows a 400% zoom of one word from

Figure 1. It shows the carbon paper mesh integrated with the carbon handwriting stroke.

The displayed wordabd, in Figure 3.2, is a common abbreviation for abdomen. Since the

carbon paper causes the paper, the stroke, and any artifactsto have the same intensities, the

binarization problem becomes complex. Details of the application of existing algorithms

will be discussed in the following sections. This paper describes an algorithm for binariz-

ing the handwriting on carbon paper while preserving the handwriting stroke connectivity

better than prior algorithms.

Pressure sensitivity issues, as a result of light strokes inpenmanship, affect the extent
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of character connectivity after binarization. In order forthe carbon copy to receive a rea-

sonable representation of the top copy original, the healthcare professional needs to press

down firmly with the writing instrument. Since the emergencyenvironment is not con-

ducive to good penmanship, the binarization and cleanup algorithms need to compensate.

The carbon paper forms also contain guidelines, which ofteninterfere with the char-

acter strokes. These lines can be detected by those pixels with a grayscale value less then

a pre-determined threshold; this is consistent across all forms in our data set. To reduce

stroke fragmentation, it is sufficient to retain the pixels near the line, thus keeping most

character ascenders and descenders reasonably connected.This form drop-out step is per-

formed before binarization.

3.2 Prior Work

In this section, methods described in previous works are compared with our algorithm

presented in this research. First we consider the processing of the image in Figure 3.3a,

using various filters. The histogram of this image, shown in Figure 3.4, shows that the

foreground (handwriting stroke) and background (carbon paper) use the same intensities

in the supplied range. A split at any position in the histogram results in loss of both fore-

ground and background information. The x-axis of the histogram represents the grayscale

values 0-255 such that the left most position 0 represents black and the right most posi-

tion 255 represents white. The y-axis of this histogram is the quantity of pixels for its

corresponding grayscale intensity. The mean, median and standard deviation are compu-

tations on the grayscale intensities. The standard deviation shows the statistical dispersion

of grayscale intensities with respect to the mean. The smaller standard deviation value in-

dicates the grayscale values are clustered around the mean intensity value. The evaluation

of pre-processing filters followed by the application of existing binarization algorithms on

image 3.3a is discussed throughout this research.
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Figure 3.3: Smoothing Operations (a) Original image + Form drop out (b) Mean filter (c)
Median filter (d) Gaussian filter (e) Weiner filter

Gaussian, median, mean and Weiner filtering/smoothing havebeen studied in previ-

ous works, as a base step, or an integrated step, for noise removal and image enhancement

[42] [51] [119] [128] [142]. Mean filter (Figure 3.3b) shows the least damage to strokes in

our experiments. Median filter (Figure 3.3c) illustrates severe character damage. Gaussian

filter (Figure 3.3d) demonstrates characters being washed into the background. Weiner fil-

ter (Figure 3.3e) produces an image very similar to the mean filter, except the background

surface is slightly lighter and stroke edges are sharper. Gatos, et al. [42] uses the Weiner

filter as a pre-processing step to filter image noise.

Global thresholding algorithms determine a single threshold and apply it to the entire

image. In the PCR application, the high pressure sensitive areas are binarized well, whereas

medium to low pressure areas run the risk of being classified as background.

Other works use algorithms that address some weaknesses of the Otsu [76] [99]

method, such as with degraded documents. Any algorithm thatcomputes a global threshold
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Figure 3.4: Histogram for Image in Figure 3.3a

splits the histogram into foreground and background pixelsusing that threshold. However,

since both foreground and background pixels can have the same intensities at different po-

sitions on the image, splitting the histogram globally willincorrectly classify foreground

pixels and backgrounds. The Wu/Manmatha [136] method expects at least two histogram

intensity peaks and globally splits the histogram. This causes large portions of the hand-

writing to be lost to the background. To compensate, a histogram split is allowed to occur

directly before the largest intensity peak in the image (note the highest histogram peak in

Figure 3.4). This improves the performance of the algorithm, but, still suffers from stroke

and background pixels trapped in the largest histogram peak(see Figure 3.4).

The Niblack binarization [93] algorithm is an adaptive technique that has been com-

pared to other methods in applications such as image and video text detection and extraction

[134], low quality camera images [114], low quality grayscale utility maps (such as cable

and hydro maps with various intensity and noise issues [128]), and low quality historical

documents [42]. This algorithm results in severe noise, jagged edges and broken char-

acter segments. While post-processing improves the algorithm performance, the broken

character strokes result in lower performance. This is due to mean-variance computations

occurring at lighter stroke regions.
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Sauvola binarization [111] modifies the Niblack algorithm [93] and attempts to sup-

press noisy areas. In the cases of stronger handwriting pressure, Sauvola [111] has positive

results. However, Sauvola [111] has fewer positive resultsthan Niblack [93] in our ex-

periments. Sauvola’s [111] noise suppression affects the lighter strokes thereby causing

incorrect recognizer segmentation.

Gatos, et al. [42] introduced an algorithm that incorporates Sauvola [111], but this

implies that the performance of Gatos, et al. [42] will drop along with that of Sauvola

[111]. While Gatos, et al. [42] does illustrate a performance improvement over Sauvola

[111], this combination still under-performs Niblack [93]after post-processing. This is

because Gatos often loses holistic features due to incorrect background estimation of the

paper.

Logical binarization uses heuristics for evaluating whether a pixel belongs to the

foreground or background. Other adaptive binarization strategies are integrated with such

heuristics. The Kamel/Zhao algorithm [63] finds stroke locations and then later removes

the noise in the non-stroke areas using an interpolation andthresholding step. Various

stroke width combinations from 1-10 pixels were tried. However, the stroke is not ade-

quately traced using this algorithm.

The Yang/Yan [141] algorithm is a variant of the method developed by Kamel/Zhao

[63]. The modifications are meant to handle low quality images affected by varying in-

tensity, illumination, and artifacts such as smearing. However, the run analysis step in this

algorithm is computed using only black pixels. Neither the foreground (handwritten stroke)

or background (carbon paper) of the carbon copy medical forms have black pixels; nor are

the foreground pixels the same intensity throughout. Therefore, the stroke-width computa-

tion, which is dependent on the run-length computation, cannot be trivially determined in

the carbon paper forms.
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In addition to the binarization algorithms, various post-processing strategies are com-

monly used. The despeckle algorithm is a simple noise removal technique using a 3x3

mask to remove a foreground pixel that has no D8 neighbors [119]. The blob removal al-

gorithm is a 9x9 mask that removes small pixel regions that have no neighbors [119]. The

amorphous artifact filter removes any connected component whose pixel area is less than a

threshold (60 pixels in this research) [119]. The Niblack [93] + Yanowitz and Bruckstein

method [142] was found to be the best combination strategy byTrier and Taxt [128]. The

Shi and Govindaraju method is an image enhancement strategythat has been used on postal

mail-pieces [115].

3.3 Proposed Algorithm

Prior algorithms have relied on techniques such as histogram analysis, edge detection,

and local measurements. However, these techniques are lesseffective on medical forms.

Our algorithm uses a larger central NxN mask, which determines the intensity of one re-

gion, and compares it with the intensities of multiple dynamically-moving smaller PxP

masks (see Figures 3.5, 3.6 and 3.7).

One hypothesis in managing the varying intensities of the carbon mesh and its sim-

ilarities with the stroke is to use a wave trajectory (see Figures 3.6 and 3.7) for the D8

positioned masks (see Figure 3.5), as opposed to a linear trajectory (see Figure 3.8). A

wave/trajectory is a path, in a Cartesian system, that undulates across an axis in 2D space

with an amplitude and frequency that can be adjusted (see Figure 3.6). The experiments il-

lustrate that the use of a wave trajectory is beneficial for the following reasons: (i) There is

a better chance of the trajectory of the mask to evade a stroke. (ii) The possibility of finding

a background region as close as possible to the central mask is enhanced. Note that as one

goes further out from the center mask, the more likely it is tofind that the carbon mesh of
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Figure 3.5: Initial Mask Placement Example (N=5 and P=3)

Figure 3.6: Sine Wave Trajectory
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Figure 3.7: Sine Wave Coverage

Figure 3.8: Linear Trajectory
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Figure 3.9: Random Trajectory

the background can change. (iii) The best background regionto compare to a handwriting

stroke may or may not be the edge of the stroke. (iv) Areas surrounding a stroke in the

same trajectory can be observed. (v) Eight points of comparison, one for each trajectory,

are performed (as opposed to one point used on other algorithms). With the inclusion of a

stopping condition operating independently on each trajectory, this approach, as opposed

to other global and adaptive approaches, does not get confined to square mask windows

which are relative to a central position. In this context, the wave trajectory for scanning

can be thought of as searching for lighter pockets in the intensity fluctuation of the carbon

mesh (see Figures 3.6 and 3.7).

A sine wave trajectory offers the benefit of beginning at the origin and allowing a

continuous trajectory regardless of distance (i.e. the wave will continue until the stopping

condition is met as opposed to being confined to an arbitrary box). It allows the control

of frequency and amplitude that is necessary to adjust for stroke width. Sinusoidal waves

have been used in other contexts for the modeling of human motor function for on-line
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handwriting recognition, feature extraction and segmentation [9], shape normalization of

Chinese characters [77], and signal canceling of pathological tremors while writing [56].

Based on these studies, and the knowledge of the English character set, it was possible to

scan out from a character stroke at a certain frequency. Thisallows a handwriting stroke

to be maneuvered, as opposed to traced, in the search for background regions. The sine

trajectory can be thought of as a path which has the potentialto cross handwritten strokes.

This allows the background paper on both sides of the stroke,in all directions, and with a

dynamic distance, to be evaluated. Intuitively, more spacecan be searched and both sides

of the stroke can be evaluated in the same computational stepat variable distances. It is

also presumed that in a moving ambulance, carbon smearing ismore likely since the writer

will press harder on the document to maintain balance in the vehicle. While strokes in the

English language contain both curves and straight lines, atthe pixel level they can be con-

sidered piecewise linear movements such that a linear scan will trace the stroke and reduce

the likelihood of finding the background. Furthermore, holistic features (such as the area

in the letter “D”) are typically small. Missing the carbon paper inside such character holes

may result in missed background analysis. This motivated the use of a higher sine wave

frequency so that the trajectory would pass through the center of holistic features as fre-

quently as possible. Additionally, since the thickness of characters fluctuates, it is difficult

to precisely calculate the true stroke width.

An input grayscale image 0 (black) to 255 (white) is the input, and a binarized image

is the output. At a given position on the image, there are 9 masks. A single mask is denoted

asΞ. The mean intensity of all pixels within a single mask is denoted by M(Ξ). The central

mask which slides across the image is denoted by (υ) and has a size NxN, such that N≥

3 and consists of numerically odd dimensions (e.g. 3x3, 5x5,and 7x7). The size of (υ)

is based on the estimated stroke width constant denoted byφ. The value ofφ has been

estimated to be 5 pixels, therefore (υ) is of size 5x5. At each (υ) position over the image, 8

masks are initially stationed in each D8 position (Figure 3.5) and are denoted by (ωi) where
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1 ≤ i ≤ 8. The mask size of (ωi) is PxP such that 3≤ P ≤ ⌈N/2⌉. Note that P≤ ⌈N/2⌉

allows a small mask the opportunity of preserving small holistic features when moving on

the sine curve, and also making sure that the mask will not overlap (υ). Each (ωi) is ini-

tially stationed as close to (υ) as possible so as to avoid the mask overlapping between (ωi)

and (υ). Each (ωi) moves in its respective D8 direction, either linearly (seeFigure 3.8),

randomly (see Figure 3.9) or via a sinusoidal wave (see Figure 3.6). The M(ωi)is computed

at each position along the trajectory and stops at a positionafter one cycle and when the

current mask average intensity is lighter than the previousone on the sine trajectory. A

list of mean values for each position on that trajectory is denoted byM(ωi)q whereq is a

coordinate on the sine curve. The lowest intensity mask on a single sine wave trajectory is

represented by the equationM(ωi)min = min(M(ωi)∀q)). Next, a comparison of all the

D8 M(ωi)min positions are made against M(υ). If there are 3-4 (empirically determined)

of the 8M(ωi)min values which satisfy the equationM(ωi)min − M(υ) ≥ κ, such thatκ

is a small constant (usingκ = 10), then the center pixel of (υ) is classified as a foreground

pixel. The valueκ defines a tolerance with respect to the localized intensity fluctuation of

the carbon paper and denotes the carbon intensity similarity rule. Given that a new image

has been initialized to white background pixels, it is only necessary to mark the foreground

pixels when they are found. A dynamic programming step is used to store eachM(ωi),

corresponding to the appropriate region on the image beforehand, to improve the run-time

performance.

The sinusoidal trajectory is defined by Equation 3.3.1.

y = 2φsin(
1

2
x) (3.3.1)

The coordinate (x, y), on a sinusoidal trajectory is relative to its starting location (ori-

gin). A nearest neighbor approach is sufficient for conversion of real coordinates to pixel

coordinates. Eachωi is computed on the sine curve trajectory (see Figures 3.6 and3.7).

Note that usingφ as the amplitude in Equation 3.3.1, without the coefficient,will result
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Figure 3.10: Sliding Square WindowFigure 3.11: Sliding Circular Window

Figure 3.12: Window Binarization Examples: (a) Sliding Square Window (b) Sliding Cir-
cular Window

in a distance of2φ between the highest and lowest y-axis points (usingφ as the stroke

width). In addition, using2φ as the amplitude yields a distance of 4 times the stroke width,

to account for the possibility of 2 touching strokes (i.e. two touching letters). In this way,

the curve efficiently exits a stroke while searching for the background. The constant1
2

is

used in Equation 3.3.1 so that the sine frequency does not trace the handwritten stroke. The

constant chosen is handwriting style specific. The objective is to evade the stroke, but since

the stroke pixels are not known, nor easily approximated, a constant is chosen.

One alternative approach to the sinusoidal approach would be to search for the light-

est mean intensity mask within a sliding window that is the same distance as one complete

cycle of the sinusoidal wave. Figures 3.10 and 3.11 illustrate the window structures and

Figure 3.12 shows the output. The procedure for computing these window structures is

to calculate the intensity average of all 3x3 masks within a window. It is then possible to

compare the lightest of these averaged intensity masks withthe average intensity of the

43



central 5x5 mask. However, only a single mask value within the window is compared to

the central mask which requiresκ (as defined above) to be larger (κ = 30 in Figure 3.12)

resulting in a completely black image. This is due to the larger area of coverage which

increases the likelihood that a lighter area will always be found relative to the center mask,

thereby classifying the area as foreground. In addition, there is a degradation of holistic

features, close-proximity characters combining and more broken characters than in the sine

wave approach (see section 5 results). This requiresκ to be based on the image. The sine

wave approach rarely suffers from this situation since at least 3 of the trajectories authen-

ticate a foreground value instead of one value. Therefore, the carbon intensity similarity

rule breaks down, and causes the effectiveness of these sliding window approaches to be as

problematic as a global thresholding technique. In this way, κ becomes the global thresh-

old.

Another possible approach computes the Otsu [99] algorithmin small windows rather

than over the entire image. However, this results in an output image nearly identical to that

obtained by computing Otsu [99] globally. The thresholds chosen are negligibly different

between windows and, therefore, the image is still noisy andmany strokes are still broken.

An alternate strategy to the sine wave is a randomized mask movement (Figure 3.9).

Instead of the outer masks moving on the sine wave trajectory, they move on the y-axis

randomly within the same rectangular area of the sine wave movement. It may be expected

that the randomized version (see Figure 3.9) will perform aswell as the sine wave. How-

ever, since the window involved in the sine wave trajectories is reasonably small, if a stroke

is present within that window, and the randomized approach is used, there is no guarantee

that the stroke will be evaded. Therefore, if a random position is chosen, and that rests on a

stroke as opposed to the background, then the desired background position is missed. The

sine wave approach is more likely to cross the stroke rather than tracing it. Furthermore,

due to the nature of randomized approaches, the recognitionresults may not be consistent.
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Figure 3.13: Image Processing Combinations

3.4 Results

All experiments (see Figure 3.13) were performed on a set of 62 PCRs consisting of

∼ 3, 000 word images and various size lexicons (see Figures 3.16 and 3.17). The linear,

random, square and circular strategies (see Figures 3.8-3.12) were outperformed by Otsu

[99]. The sine wave strategy presented here outperformed all prior algorithms, with a 11-

31% improvement. After post-processing there was a 4.5-7.25% improvement (see Figures

3.16 and 3.17).

The handwriting phrase depicted in Figure 3.14 and 3.15, “abd snt, stable pelvis”

means “abdominal soft-not-tender, stable pelvis.” Figures 3.14 and 3.16 show the per-

formance of the aforementioned binarization strategies with no post-processing support.
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Figure 3.14: Comparison of Binarization Algorithms Only: (a) Original image (b)
Original image with form drop out (c) Wu/Manmatha Binarization (d) Kamel/Zhao Bi-
narization (e) Niblack Binarization (f) Sauvola Binarization (g) Otsu Binarization (h)
Gatos/Pratikakis/Perantonis Binarization (i) Sine Wave Binarization
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Figure 3.15: Comparison of Binarization Algorithms with their Best Post-Processing Strat-
egy: (a) Original image (b) Original image with form drop out(c) Wu/Manmatha Bina-
rization + Shi/Govindaraju + Despeckel (d) Kamel/Zhao Binarization + Shi/Govindaraju
+ Despeckel + Amorphous Filter (e) Niblack Binarization + Despeckel + Amorphous Fil-
ter (f) Sauvola Binarization + Yanowitz/Bruckstein + Despeckel (g) Otsu Binarization +
Despeckel + Blob Removal (h) Gatos/Pratikakis/PerantonisBinarization + Despeckel +
Amorphous Filter (i) Sine Wave Binarization + Amorphous Filter
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Figure 3.16: Binarization Only Performance
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Figure 3.17: Binarization + Post-Processing Performance
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Figures 3.15 and 3.17 reflect the performance of the best respective post-processing com-

binations from Figure 3.13.

With respect to Figures 3.16 and 3.17, the y-axis representsthe percentage of cor-

rectly recognized words by the LDWR [66] versus the lexicon size on the x-axis. It is

expected that the performance decreases with an increase inlexicon size since the LDWR

[66] is lexicon driven and, therefore, has more choices fromwhich to select. The defini-

tion of correctly recognized words is in the context of raw recognition performance. The

error rate is consistently high in this application. Furthermore, words in the form region

were manually segmented. The LDWR [66] algorithm uses pre-processing strategies for

its own noise removal and smoothing before executing its recognition algorithm [66] [113]

[16]. Therefore, a noisy image submitted to the LDWR algorithm will be internally pre-

processed by the handwriting recognizer. The first letter ofan author’s name is used to refer

to the algorithms: (G)atos, (K)amel, (N)iblack, (O)tsu, (S)auvola, (W)u. (SW) designates

Sine Wave binarization.

3.5 Conclusions

Several methods address the problem of extracting degradedtext; however, they generally

cause broken gaps and lost holistic features. It appears that algorithms relying on histogram

separation, interpolation and mean-variance perform poorly. In addition, these algorithms

determine a foreground pixel based on a single value from a larger sliding window, some-

times computed after an intensity interpolation. However,our algorithm classifies a pixel

based on 8 masks that observe other pixel regions in a non-linear fashion. The results seem

to improve the readability for humans as well as improve automatic recognition perfor-

mance substantially. This provides insight into the human ability to effectively extract the

stroke. The following chapters use word images, binarized and processed by the sine wave

and amorphous filter, and proceed with the handwriting recognition.
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Chapter 4

Lexicon Reduction Measures

Recall the definition of lexicon reduction from Chapter 2.3 in which a process produces

a smaller lexicon using an unknown word image and a complete lexicon for inputs. The

purpose of the reduction is to improve both performance and run-time of the recognition

algorithm [47] [80] [81]. The following sections discuss the hypothesis, reasoning, and

performance measures involved in the reduction approach.

4.1 Lexicon Category Hypothesis

This research proposes the following hypothesis, which is verified experimentally: A

sequence of confidently recognized characters, extracted from an image of handwritten

medical text, can be used to represent a topic category. These categories are a finite list

determined by a human trainer and stored in a knowledge base.A lexicon can be reduced

by keeping only those words belonging to those categories. The topic categories used in

this research pertain to human anatomy and are found in Table4.1.

The associations between category and form word relationships are performed by a

person skilled in health care. Each category contains a lexicon of words extracted from

only those medical forms assigned with a respective category; overlapping may occur. It
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is the aim of the lexicon reduction algorithm to determine the categories for an unknown

form. Only words assigned to the determined categories are used during the recognition

process. It was originally conceivable that the complete lexicon could be determined from

medical data sets. However, in reviewing the OHSUMED [132],NLM MeSH [92], and

NLM UMLS [129] data sets, the text information appears inconsistent with the text infor-

mation found in the PCR reports. These medical databases areclinical, laboratory, and/or

research-based information in which the semantic scope is too detailed for PCR handwrit-

ing recognition. Since there is no obvious correlation between the phrases or categories

from these medical data sources, they cannot be used. It has been determined by prior

research that the use of such databases may decrease retrieval performance [53].

Another approach to the extraction uses the bubble sheet values (see Figure 1.2 Lo-

cation 10) on the medical PCR forms as categories; typically, these types of form blocks

have high recognition. Most of the PCR forms suffer from the following: (i) Bubbles that

should have been filled in are not, (ii) bubbles are not alwayscorrectly filled in, (iii) some

bubbles still require the entry of a handwritten phrase nextto them, (iv) a high frequency

of transcription of other documents over the carbon copy forms result in incorrect carbon

markings over the entire region, and (v) the requirement of bubble information in the mod-

eling research requires a form with a similar organization (recall the fields in Figure 3).

Therefore, while form information may appear to be useful, it was found to be incomplete

and inaccurate. As a result, an alternative approach for determining categories using the

form handwriting was used.

4.2 Anatomical Categories

All PCRs are manually tagged with up to five categories from Table 4.1. During the test-

ing, the system detected categories automatically. This work is dependent on the semantic

of words and categories in the emergency medical domain. This anatomical topology, used
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as the PCR categories, corresponds to the patient ailment location(s) (see Table 4.1). A

PCR can be tagged with multiple categories. Anatomical categories were chosen to test the

hypothesis that the patient’s treatment (information on the medical form) is related to the

patient’s ailment locations, which are anatomical by nature. In our data set, no form had

more than five category tags.

The subjectivity involved in determining the categories makes the construction of a

hierarchical chart representing all patient scenarios with respective prioritized anatomical

regions a difficult task and exceeds the scope of this research. The following are some

examples for classifying medical form text into categories(see Table 4.1):

Example 1: A patient treated for an emergency related to her pregnancy would be classified

under theReproductive Systemcategory (see Table 4.1).

Example 2: A conscious and breathing patient treated for gunshot wounds to the abdom-

inal region would fall into theCirculatory/Cardiovascular Systemdue to potential loss of

blood, as well as being categorized forAbdominal, Back, and Pelviccategories (see Table

4.1).

4.3 Lexicon Category Methodology

The recognition of a word out of context can be a difficult taskeven for human beings.

Consider the task of reliably identifying the words in Figures 4.1 or 4.2 out of context. The

words may be in the domain of English, medicine and/or pharmacology. The interpretation

of the handwriting in Figures 4.1 and 4.2 require context even for humans.

In reference to Figure 4.3, consider the same words in their actual context on a medi-

cal form. While some doubt still remains with respect to the first two words, it is expected
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10 Body Systems 6 Body Range Locations 4 Extremity Locations 4 General
Circulatory/Cardiovascular Abdomen Arms/Shoulders/ElbowsFluid/Chemical Imbalance
Digestive Back/Thoracic/Lumbar Feet/Ankles/Toes Full Body
Endocrine Chest Hands/Wrists/Fingers Hospital Transfer/Transport
Excretory Head Legs/Knees Senses
Immune Neck/Cervical
Integumentary Pelvic/Sacrum/Coccyx
Musculoskeletal
Nervous
Reproductive
Respiratory

Table 4.1: Categories are denoted by these Anatomical Positions
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Figure 4.1: Unknown Word 1 with no Context [86]

Figure 4.2: Unknown Word 2 with no Context [86]

that one would have a higher confidence in the identity of these words because of con-

textual clues. Furthermore, if told that this phrase is found on the objective assessment

of a medical form, the certainty increases further. The simple phrase is “Several Possible

Wounds” and on the medical form from which this example was extracted, an individual

had fallen from a dangerous height [86].

Although syntactic recognition algorithms are still necessary, research has shown that

recognition performance is lexicon driven [20] [47] [50] [64] [66] [81] [139] [143]. There

is a need to compensate for the degradation in recognition accuracy caused by large lexi-

cons. The modeling of associations between medical form text and categories restricts the

recognizer classification to specific topics [86].

Games such as The Wheel of Fortune1 and crossword puzzles involve the relation-

ships of characters to words and words to phrases. Similarly, some characters in the ex-

ample are easily recognizable while others are not. If it is assumed that some characters

1Game show website can be found here: http://www.wheeloffortune.com

Figure 4.3: Unknown Words in Context (“several possible wounds”) [86]

55



are recognized with high confidence, it is possible: (i) to infer the meaning from the con-

text and use the information to improve word recognition, and (ii) use partially recognized

character information to decipher the context.

4.4 Measuring Lexicon Reduction Performance

The performance measures for lexicon reduction as described by Madhvanath [80] and

Govindaraju, et al. [47] are discussed in this section. A lexicon reduction algorithm takes

an input word imagexi and a lexiconLi and computes a reduced lexiconQi such that

Qi ⊆ Li andi which indicates the position within a list ofn images such that1 ≤ i ≤ n.

The truth of the imagexi is represented asti. The functionE computes the expectation (the

mean is used to estimate the expectation) [14] of a random variable. A random variable

is a function or mapping representing the outcome of an experiment. These performance

measures will be used when gaining insight into the effectiveness of the lexicon reduction

technique. In this research, all words on a PCR receive the same reduced lexicon. In this

situationi is not used to distinguish independent lexicons for each word and can be omitted.

• Accuracy of Reduction:α = E(A) such thatα ∈ [0, 1] [80].

The valueα simply represents the mean existance of a word in the reducedlexicon. A

is a random variable [14] which indicates whether or not the truth of the image exists in

the lexicon. In the context ofA, the variablet represents the truth for an image andQ

represents a reduced lexicon.

A =







1, if t ∈ Q

0, otherwise

• Degree of Reduction:ρ = E(R) such thatρ ∈ [0, 1] [80].

The valueρ simply represents the mean size of the reduced lexicon. The valueR is a

random variable [14] representing the extent of the reduction. In the context ofR, the
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variable L represents a complete lexicon and Q represents a reduced lexicon.

R =
(|L| − |Q|)

|L|

• Reduction Efficacy:η = ∆LDWR × α1−ρ such that∆LDWR, η, α, ρ ∈ [0, 1].

Reduction efficacy was originally defined asη = αk · ρ such thatα, ρ, η ∈ [0, 1] by Mad-

hvanath [80]. The valueη is a single value which incorporates both the accuracy of re-

duction and degree of reduction for determining the effectiveness of the reduction. The

constantk allows a weighting of the accuracy relative to the degree of reduction and is

empirically determined [80].

However, the equationη = αk · ρ appears to be counter-intuitive for the following reasons:

◦ Case 1:Suppose that the recognition rate improves by 50% or drops by50%. Since the

efficacy measure does not take into account the recognition rate, the true effectiveness of

the reduction is not apparent. One assumption that appears to exist in this equation is that

a reduction with the word still remaining in the lexicon means a good reduction. However,

suppose that the word images themselves are so complicated that the recognizer still fails

in the interpretation, regardless of the existence of the word in the lexicon. Since the intent

of the reduction is to improve the recognizer peformance, this dependence must be incor-

porated into the measure. This case is especially of concernin the difficult interpretation

of medical handwriting.

◦ Case 2:Suppose thatα = .9 andρ = .1; when multiplied together, in the case thatk=1,

the result will be same asα = .1 andρ = .9. In other words, the value of a high degree of

reduction with low accuracy is equivalent to a high degree ofaccuracy with low reduction.

These cases are actually not equivalent and therefore should not receive the same value.

Given the same values forα andρ, ask increases, the measure in accuracy is penalized.
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This is not desired since the accuracy of the reduction is most important, considering a lex-

icon driven word recognizer requires the existence of the word in the lexicon. Conversely,

ask decreases, the measure of the output of the equation changesexponentially. Therefore,

selecting a constant in the exponent, especially ifk is fractional, is not intuitive because

of the non-linear nature of the computation. While the existence ofk appears to be for

weighting the degree of accuracy over the degree of reduction, the output is misleading.

◦ Case 3:The purpose of thereduction efficacyis to provide a means of comparison be-

tween different recognizers. However, the application specific constant ofk would therefore

have to be the same for all applications to make an appropriate comparison. In other words,

one cannot penalizeα in the first reduction algorithm, promoteα in the second reduction

algorithm, and then useη as a basis of comparison between the two algorithms.

An alternative measure for reduction efficacy can be as follows:

η = ∆LDWR × α1−ρ

The ∆LDWR represents the difference in the recognizers performance run before and af-

ter the reduction. In other words,∆LDWR = LDWRafter − LDWRbefore such that

LDWRafter andLDWRbefore represent the recognition rate after and before the reduc-

tion, respectively. The introduction of∆LDWR addressesCase 1. The accuracy (α) is the

base relative to the reduction (ρ) to weight the importance of the accuracy higher than the

reduction. Therefore, an increase in accuracy and decreasein reduction is better than an

increase in reduction with a decrease in accuracy. This addressesCase 2. This new metric

also allows the comparison of the same reduced lexicon on twodifferent recognizers. The

original equation did not allow this. This has been made possible by removing the need

for the empirically chosen constantk (this satisfiesCase 3) as well as previously satisfying

Cases 1 and 2. Note that a smallη number does not imply a poor reduction effectiveness.
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It is merely a value used to compare the reduction between different recognizers. A nega-

tive η value indicates a drop in recognizer performance due to the lexicon reduction. The

equation balances the effectiveness of both the change in recognition performance and the

accuracy relative to the reduction. The larger the efficacy value is, the better the effective-

ness of the reduction for one recognizer versus another. Note that this does not measure the

effectiveness of the recognizers since only the recognizerimprovement (∆LDWR) relative

to the reduction is considered.

• Lexicon Density:̺ LDWR(L) = (υLDWR(L))(fLDWR(n) + δLDWR) [47].

The value̺ represents the density of the lexicon, with respect to a given recognizer, as

described by Govindaraju et al. [47]. A larger density valueindicates that the words com-

pared aresimilar or closer [47]. The LDWR [66] is the recognizer which operates on a

lexiconL of wordsω1...ωn. The valueδLDWR is a recognizer independent constant in

which ln 2 (i.e. the natural log defined asloge2) is used [47].

υLDWR(L) =
n(n − 1)

∑

i6=j dLDWR(ωi, ωj)

The functionυLDWR(L) is defined as the reciprocal average distance between all

word pair combinations. The standard functiondLDWR(ωi, ωj) is a recognizer dependent

computation used to denote a distance metric between two supplied words essentially mea-

suring the confusion between the words by LDWR [66] [47]. However, even with the dy-

namic programming step, the process is computationally intensive. Although the LDWR

algorithm is a segmentation based algorithm like WR-1 [47],its performance is impacted

by the size of the lexicon and therefore it is more complex then WR-1 [47]. The computa-

tion of theslice distance, which is a comparison between the possible segmentation ofthe

recognizer to lexicon entries is therefore cumbersome. Therefore, we use the string edit

distance, also suggested as a natural alternative by Govindaraju et al. [47], and we also

introduce the notion ofreduction density(discussed shortly). The notion of the distance

metric is similar to the notion of perplexity in the speech recognition community [6] [47].
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The functionfLDWR(n) = ln(n) was shown by Govindaraju, et al. [47] to be the most

effective.

• N-Gram Lexicon Distance Metric:dLDWR(ωi, ωj) = γ(ωi, ωj)/Γ(ωi, ωj).

The n-gram lexicon distance metric, is an alternate distance metric introduced in this re-

search, that is substituted into the Govindaraju et al. [47]lexicon density equation̺. This

formula computes the lexicon confusion due to the lexicon reduction algorithm. In contrast

to making the lexicon density dependent on the recognizer, as done with Govindaraju et

al. [47], the dependence is to the lexicon reduction algorithm. Γ denotes the total number

of combinations (see definition in Section 5.1.1.3) of uni/bi-gram terms generated between

ωi andωj. The valueγ represents the number of uni/bi-gram terms that arenot common

betweenωi andωj. This keeps the equations compatible with the reciprocal. It allows

the density function, using this alternative distance metric, to be computed on both a com-

plete lexicon and a reduced lexicon showing the similarity of uni/bi-gram term occurrences

within the lexicon. Note that since the recognizer takes only a lexicon of words as an input

and computes its own distance information, only the NSI (NSIdenotes “No Spatial Infor-

mation” used as the encoding procedure for the uni/bi-gram terms; see details in Section

5.1.1.3) term encodings are used. Since the lexicon reduction involves the ESI (ESI denotes

“Exact Spatial Information” used as the encoding procedurefor the uni/bi-gram terms; see

details in Section 5.1.1.3) term encodings, the application of thisn-gram lexicon distance

metricmetric only provides an approximation. The computation ofγ involves two steps:

(i) generating the NSI encodings forωi and determining their occurence inωj and, (ii) the

same step applied by reversing theω values. These two values are averaged and then re-

turned as the value ofγ.

In order to distinguish between thelexicon density distance metricand then-gram

lexicon distance metricequations, the values̺′ and̺′′ will be respectively used. Using the

two equations, the confusion among lexicon words and uni-bi-gram terms can be shown.
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This is important since it is likely that the LDWR [66] will produce the same high char-

acter confidence scores used for anchor points, for a word as originally computed during

the uni/bi-gram term recognition extraction. Although likely, this situation is still not guar-

anteed since the choice of the words in the reduced lexicon isdifferent from the complete

lexicon.

4.5 Discussion

The performance measures in this section provide insight into the effectiveness of the lex-

icon reduction algortihm. The reduction of the lexicon improves recognition performance

only if the unknown word remains in the lexicon afterwards. In addition, if the lexicon is

too dense (i.e. the words are too similar), then it is also possible that the recognizer will

select a word which is geometrically similar (e.g.maximizeandminimizemay be consid-

ered similar). Therefore, an increase lexicon density indicates the recognition can drop as

well. The formulas in this section will be used when discussing the results of any lexicon

reduction.
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Chapter 5

Topic Categorization

5.1 Proposed Algorithm

Topic categorization in this research is the process of assigning categories representing

the topic content of the form. This challenge is similar to the call routing problem. In the

call routing problem, researchers at Lucent Technologies took voice recognition informa-

tion as an input and produced the call destination as an output [21] [22]. Here, we take

characters with the highest recognition as an input and produce higher level anatomical

categories. Both problems receive recognition data as an output and produce a topic as

output.

The road map in Figure 5.1 illustrates the layout of the proposed algorithm. This is

broken up into three areas: (i) training, (ii) recognition,and (iii) retrieval. A knowledge

base is constructed during thetraining phasefrom a set of PCR forms. This contains the

relationships between terms and categories that are used bythe other two areas. Therecog-

nition phasetakes an unknown form, and reduces the lexicon using the knowledge base.

This phase is evaluated using a separate testing deck. Finally, after all content of the PCR

form has been recognized, a search can take place by enteringin a query. This phase is

tested by querying the system with a deck of phrase inputs. The forms are then ranked
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accordingly and returned to the user.

In the training phase, a mechanism for relating uni-grams and bi-grams (henceforth:

uni/bi-grams discussed in the following section) as well ascategories from a PCR training

deck are constructed. The testing phase then evaluates the algorithm’s ability to determine

the category from a test form by using a Lexicon Driven Word Recognizer (LDWR) [66] to

extract the top-choice uni/bi-gram characters from all words. A maximum of two charac-

ters per word is considered, since LDWR [66] successfully extracts a bi-gram with spatial

encoding information 40% of the time. If≥ 3 characters are selected, then the LDWR [66]

will only successfully extract a character≤ 1% of the time. Hence the limit of two was

selected (see examples in Figure 5.4).

5.1.1 Training

The training stage involves a series of steps to construct a matrix that represents relation-

ships between terms and categories. Recall that each form can have up to five categories. In

the first phase, lexicons are constructed using all the wordsfrom all forms under a category.

In the second phase, phrases are extracted from the form using a cohesion equation. These

phrases are then converted to ESI encoding terms (ESI denotes “Exact Spatial Information”

used as the encoding procedure for the uni/bi-gram terms; see details in Section 5.1.1.3).

A matrix is then constructed utilizing the ESI terms for the rows and the categories in the

columns. The matrix is then normalized, weighted, and prepared in Singular Value Decom-

position format.

5.1.1.1 Filtering

Stopwords are those words that are not used for category determination in this applica-

tion. The list of∼400 stopwords provided by PubMed are omitted from the lexicon [95]
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Figure 5.1: Proposed Algorithm Road Map
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[54]. An additional list of∼50 words (e.g. patient, staff, nurse, etc.) found in most PCR’s,

which have little bearing on the category, are omitted from the cohesion analysis (the fre-

quency of two words co-occurring versus occurring independently; see Equation 5.1.1) but

retained in the final lexicon. It is common to apply other filters to reduce the likelihood

of morphological mismatches [54]. However, strategies such as ‘stemming’ [54] cannot

be applied before recognition because the text is not yet ASCII and is therefore unknown.

Consider a handwritten word image representing “rhythms” that needs to be recognized.

The alteration of “rhythms” to “rhythm” in the lexicon will affect recognition performance.

However, at the end of classification, these words are considered equivalent. Therefore,

word stemming is applied after the LDWR [66] has determined the ASCII word translation.

5.1.1.2 Phrase Construction

A phrase is defined as a sequence of adjacent non-stopwords found in [37]. Although

an empirical study in Fagan [37] indicates that important phrases may wrap around stop-

words [37], the inclusion of stopwords degrades performance in the training experiments

here. Furthermore, since longer sequences of words as well as longer sentences have been

shown to be more successful than shorter contingent words [37], phrases are computed

within the text area of a single PCR region utilizing a natural language cohesion technique

used by Fagan [37] [54].

A passage P is the set of all wordsw for a PCR form under a category C treated as

a single string. For each C, every pair of passages, denotedP1 andP2, is compared. Here

we denotewx as a word located at positionx within a passage P. Ifwa ∈ P1, w
′

a ∈ P2, wb ∈

P1, w
′

b ∈ P2 such thatb
′

> a
′

andb > a, then a potential phrase consisting of exactly

two words is constructed. The cohesion of phrases under eachC is then computed. If the

cohesion is above a threshold, then that phrase represents that category C. Thus a category

C is represented by a sequence of high cohesion phrases usingonly those PCR passages
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Figure 5.2: Phrase Candidate (High vs. Low Cohesion)
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manually categorized under C.

cohesion(wa, wb) = z •
f(wa, wb)

√

f(wa)f(wb)
(5.1.1)

The cohesion between any two wordswa andwb is computed by the frequency that

wa andwb occur together versus existing independently. The top 40 cohesive phrases are

retained for each category (see Equation 5.1.1).

Consider the following two unfiltered text phrasesS1 andS2 under the categorylegs:

S1: “right femur fracture”

S2: “broken right tibia and femur”

The candidate phrasesCP1 andCP2 after the filtering step are:

CP1: “right femur” . . . “right fracture” . . . “femur fracture”

CP2: “broken right” . . . “right femur” . . .

The phrase “right femur” is computed fromCP1 andCP2, sincewa andw
′

a = “right”,

wb andw
′

b = “femur”, and the conditionsb > a andb′ > a′ have been met. If the cohesion

for “right femur” is above the threshold across all PCR formsunder thelegscategory, then

this phrase is retained as a representative of the categorylegs.

Tables 5.1 and 5.2 illustrate some top choice cohesive phrases generated. Notice

that digestive system and pelvic region are anatomicallyclose. However, different infor-

mation is reported in these two cases resulting in mostly different cohesive phrases. The

phraseCHEST PAINoccurs in both categories, however, have different cohesion values.

This implies that the term frequencies will also likely be different and therefore commonly

occurring terms need to be weighted appropriately to their category (this will be discussed

in more detail in Section 5.1.1.5). Phrases sometimes may not make sense by themselves;

however, this is the result of using a cohesive phrase formula in which words may not be

adjacent.

67



FREQUENCY COHESION PHRASE
6 0.67 DCAP BTLS
166 0.35 CHEST PAIN
91 0.38 PAIN 0
1860 2.49 PAIN HIP
144 0.34 HIP JVD
112 0.39 PAIN CHANGE
275 0.81 HIP FX
110 0.37 HIP CHANGE
82 0.38 PAIN 10
163 0.40 JVD PAIN
106 0.40 CAOX3 PAIN
202 0.50 PAIN JVD
213 0.55 PAIN LEG
205 0.42 CHEST HIP
3 0.33 PERPENDICULAR DECREASE
121 0.33 FELL HIP
118 0.36 PAIN FX
2251 3.01 HIP PAIN
390 0.83 PAIN CHEST
288 0.59 HIP CHEST

Table 5.1: Top Cohesive Phrases for the Category: Pelvis

68



FREQUENCY COHESION PHRASE
30 0.72 PAIN INCIDENT
5 0.31 PAIN TRANSPORTED
42 0.54 PAIN CHEST
52 0.81 STOMACH PAIN
9 0.25 HOME PAIN
6 0.43 VOMITING ILLNESS
39 0.51 CHEST PAIN
4 0.24 CHEST SOFT
25 0.54 PAIN SBM
31 0.37 PAIN X4
31 0.47 PAIN JVD
11 0.34 PAIN EDEMA
25 0.44 PAIN PMSX4
6 0.21 PAIN SOFT
3 0.21 SBM INCIDENT
11 0.25 PAIN LEFT

Table 5.2: Top Cohesive Phrases for the Category:Digestive System

5.1.1.3 Term Extraction

There are three term encoding formats: NSI, ESI and ASI. Terms of a particular encoding

will later be associated with an anatomical category and used as the essential criterion for

lexicon reduction.

No Spatial Information (NSI) :

An asterisk (*) indicates that zero or more characters are found betweenC1 andC2. NSI

encodings are the most simple form of encoding (see Figure 5.4 examples).

UNI-GRAM ENCODING:∗C∗

BI-GRAM ENCODING:∗C1 ∗ C2∗

BI-GRAM ENCODING EXAMPLE: BLOOD→ *L*D*
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Figure 5.3: Term Extraction from High Cohesive Phrases
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Exact Spatial Information (ESI) :

The integers (x, y, z) represent the precise number of characters betweenC1 andC2. ESI

encodings are an extension of the NSI encodings with the inclusion of precise spatial in-

formation. In other words, the number of characters before,after and between the highest

confidenceC1 andC2 characters are part of the encoding. These encodings are themost

successful since there are fewer term collisions involved.Hence the ESI encodings are

preferred.

UNI-GRAM ENCODING:xCy

BI-GRAM ENCODING:xC1yC2z

BI-GRAM ENCODING EXAMPLE: BLOOD→ 1L2D0

Approximate Spatial Information (ASI) :

The integers(xa, ya, za), denoted as length codes, represent an estimated range of charac-

ters betweenC1 andC2. A ’0’ indicates no characters, a ’1’ indicates between one and

two characters, and a ’2’ represents greater than 2 characters. The ASI encodings are an

approximation of ESI encodings designed to handle the case that the precise number of

characters may not be known with high confidence.

UNI-GRAM ENCODING:xaCya

BI-GRAM ENCODING:xaC1yaC2za

BI-GRAM ENCODING EXAMPLE: BLOOD→ 1L1D0

Combinatorial Analysis

The quantity of all possible NSI, ESI and ASI uni-gram and bi-gram combinations,

for a given word of character length n, such thatn ≥ 1, is represented by the mathematical

series of Equation 5.1.2. Regardless of the encoding, the same quantity of combinations

exists since the distance between characters is known.

C(n) =

((

n−1
∑

i=1

(n − i)

)

+ n

)

=
(((n

2

)

(n − 1)
)

+ n
)

(5.1.2)
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Figure 5.4: NSI Encodings Example (Blue Letters: LDWR[66] successfully extracted)

However, the functionC only considers the combinations of an individual entry. The

combination inflation of a uni/bi-gram phrase is shown by Equation 5.1.3. The equation

parametersa andb represent the string lengths of the words considered in a phrase.

P(a, b) = C(a) · C(b) (5.1.3)

For example:

Let the phrase to evaluate uni/bi-gram combinations bePULMONARY DISEASE.

Let n = length(“PULMONARY”) = 9

Let m = length(“DISEASE”) = 7

C(n) = 45 uni-gram + bi-gram combinations for “PULMONARY”

C(m) = 28 uni-gram + bi-gram combinations for “DISEASE”

P(n,m) = 1,260 uni-gram + bi-gram phrase combinations forPULMONARY DISEASE

Each of these encodings has its advantages and disadvantages. The choice is ulti-

mately based on the quality of a handwriting recognizer’s ability to extract characters. If a
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handwriting recognizer cannot successfully extract positional information, then NSI is the

best approach. If extraction of positional information is reliable, then the ESI is the best

approach. However, NSI and ASI create more possibilities for confusion since distances

are either approximated or omitted. ESI is more restrictiveon the possibilities as the pre-

cise spacing is used, leading to lesser confusion among terms.

Using the ESI protocol, all possible uni/bi-gram terms are synthetically extracted

from each cohesive phrase under each category. For example,BLOOD can be encoded

to the uni-gram 0B4 (zero characters before ’B’ and four characters after ’B’) and the bi-

gram 0B3D0 (zero characters before ’B’, three characters between ’B’ and ’D’ and zero

characters following ’D’). All possible synthetic positional encodings are generated for

each phrase and chained together (a ’$’ is used to denote a chained phrase). For example,

CHEST PAIN encodes to: 0C4$0P0A2 ... 0C4$1A2 ... 0C0H3$0P1I1 ... 0C0H3$0P2N0,

etc. Therefore, each category now has a list of encoded phrases consisting of positional

encoded uni/bi-grams. These terms are the most primitive representative links to the cate-

gory used throughout the training process. In the training phase, the synthetic information

can be extracted since the text is known. However, in the testing phase, a recognizer will

be used to automatically produce an ESI encoding since the test text is not known. To im-

prove readability, the notation (W1, W2) is used to represent an ESI encoding of a two-word

phrase (e.g. Myocardial Infarction: (my, in), (my, if), (my, ia), etc ...).

5.1.1.4 Term-Category Matrix Construction

A matrix A, of size|T | by |C|, is constructed such that the rows of the matrix represent

the set of terms T, and the columns of the matrix represent theset of categories C. The

value at matrix coordinate (t,c) is the frequency that each term is associated with the cate-

gory. The term frequency corresponds to the phrasal frequency from which it was derived.

It is the same value as the numerator in the cohesion formula (refer to Equation 5.1.1):
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Figure 5.5: Term Category Matrix (TCM) Overview

f(wa, wb). For example, if the frequency of CHEST PAIN is 50, then all term encodings

generated from CHEST PAIN, such as (ch, pa), will also receive a frequency of 50 in the

matrix.

Step 1: Compute the normalized matrix B from A using Equation 5.1.4 [21] [22]:

Bt,c =
At,c

√

∑n

e=1 A2
t,e

(5.1.4)

Matrix A is the input matrix containing raw frequencies, Matrix B is the output ma-

trix with normalized frequencies, and (t,c) is a (term, category) coordinate within a matrix.

Step 2: Term Discrimination Ability
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Figure 5.6: TCM Frequency Construction Example
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The Term Frequency times Inverse Document Frequency (TF x IDF) weighting ap-

proach is used to favor those terms which occur frequently with a small number of cate-

gories as opposed to their existence in all categories [78] [109]. While Luhn [78] asserts

that medium frequency terms would best resolve a document, it precludes classification of

more rare medical words. Salton’s [109] theory, stating that terms with the most discrimi-

natory power are associated with fewer documents, allows a rare-medium frequent word to

resolve the document.

STEP 2A Compute the weighted matrix X from B using Equation 5.1.5 [21] [22] [54]:

IDF (t) = log2
n

c(t)
(5.1.5)

IDF computes the inverse-document-frequency on term t, andc(t) is the number of cate-

gories containing term t.

Step 2B Weight the normalized matrix by IDF values using Equation 5.1.6 [21] [22] [61]

[54]:

Xt,c = IDF (t) · Bt,c (5.1.6)

Matrix B is the normalized matrix from Step 1, IDF is the computational step defined in

Step 2, and Matrix X is a normalized and weighted matrix.

5.1.1.5 Reduced Singular Value Decomposition (R-SVD) [34]

The normalized and weighted term-category matrix can now beused as the knowledge

base for subsequent classification. A singular value decomposition variant, which incorpo-

rates a dimensionality reduction step allows a large term-category matrix to represent the

PCR training set (see Equation 5.1.7). This facilitates a category query from an unknown
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Figure 5.7: TCP Normalization
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Figure 5.8: TCM Inverse Document Frequency (IDF)
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PCR using the LDWR [66] determined terms [21] [22] [34].

X = U • S • V T (5.1.7)

Matrix X is decomposed into 3 matrices: U is a (T x k) matrix representing term

vectors, S is a (k x k) matrix, and V is a (k x C) matrix representing the category vectors.

The value k represents the number of dimensions to be finally retained. If k equals

the targeted number of categories to model, then SVD is performed without the reduction

step. Therefore, in order to reduce the dimensionality, theconditionk < |C| is necessary

to reduce noise [34].

5.1.2 Testing

Given an unknown PCR form, the task is to determine the category of the form, and use

the reduced lexicon associated with the determined category to drive the LDWR [66]. In

addition, the category determined can be used to tag the formwhich can be subsequently

used for information retrieval. The query task is divided into the following steps: (i) Term

Extraction, (ii) Pseudo-Category Generation, and (iii) Candidate Category Selection [21]

[22].

5.1.2.1 Term Extraction

Given a new PCR image, all image words are extracted from the form, and the LDWR

[66] is used to produce a list of confidently recognized characters for each word. These are

used to encode the positional uni/bi-grams consistent withthe format during training. All

combinations of uni/bi-phrases in the PCR form are constructed. Each word has exactly

one uni-gram and exactly one bi-gram. A phrase consists of exactly two unknown words.

Therefore it is represented by precisely four uni/bi-phrases (BI-BI, BI-UNI, UNI-BI and
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UNI-UNI).

5.1.2.2 Pseudo-Category Generation

An (m x 1)query vector Q is derived, which is then populated with the term frequencies

for the generated sequences from the Term-Extraction step.If a term was not encountered

in the training set, then it is not considered. Positional bi-grams are generated to yield the

trained terms 37% of the time, and similarly positional uni-grams 57% of the time. The

experiments here illustrate this to be a sufficient number ofterms. A scaled vector repre-

sentation of Q is then produced by multiplyingQT and U.

5.1.2.3 Reduced Singular Value Decomposition (R-SVD)

Once the pseudo-category is derived, R-SVD is applied for the following reasons: (i) It

converts the query into a vector space compatible input, and(ii) the dimensional reduction

can help reduce noise [34]. Since the relationship between terms and categories is scaled

by variance, the reduction allows parametric removal of less significant term-category re-

lationships.

5.1.2.4 Candidate Category Selection

The task is now to compare the pseudo-category vector Q with each vector inVr • Sr

(from the training phase) using a scoring mechanism. The cosine score is used for matching

the query [21] [22]. Bothx andy are dimensional vectors used to compute the cosine in

Equation 5.1.8. Vectorsx andy in the equations represent the comparison of the vectors:

pseudo-category Q to every column vector inVr • Sr.

z = cos(x, y) =
x · yT

√
∑n

i=1 x2
i ·
∑n

i=1 y2
i

(5.1.8)
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Figure 5.9: Pseudo-Category Vector
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Figure 5.10: Pseudo-Category Integration

Figure 5.11: Matrix Decomposition Visual
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Figure 5.12: Simplified Multi-Dimensional Category VectorSpace

Each cosine score is mapped onto a sigmoid function using theleast square fitting

method, thereby producing a more accurate confidence score [21] [22]. The least squares

regression line equations used to satisfy the equation f(x)= ax + b are shown in Equations

5.1.9 and 5.1.10 [73]:

a =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n

i=1 yi

n
∑n

i=1 x2
i − (

∑n

i=1 xi)2
(5.1.9)

b =
1

n
(

n
∑

i=1

yi − a
n
∑

i=1

xi) (5.1.10)

The fitted sigmoid confidence is produced using the cosine score and the regression line,

83



using equation (9):

confidence(a, b, z) =
1

1 + e−(az+b)
(5.1.11)

The confidence scores, one for each category, are then used torank the categories. If

a category is above an empirically chosen threshold, then that category is retained for the

PCR. Multiple categories may be thus retained. All words corresponding to the selected

categories are then used to construct a new lexicon which is finally submitted to the LDWR

recognizer [66]. Given a test PCR form, and the reduced lexicon, the LDWR [66] converts

the handwritten medical words in the form to ASCII.

5.1.2.5 Result

Each word which is recognized is compared with the truth. However, a simple string

comparison is insufficient due to spelling mistakes and rootvariations of word forms which

are semantically identical. This occurs 20% of the time within the test deck words. There-

fore, a Porter stemming [62] [100] [105] and a Levenshtein String Edit Distance [13] of

1 allowable penalty are performed on both the truth and the recognizer result before they

are compared. Levenshtein is only applied to a word that is believed to be≥ 4 characters

in length. For example, PAIN and PAINS are identical. However, this also results in an

improper comparison in∼11% of the corrections (see Table 5.3).

5.1.3 Time Complexity

Given a series of steps involving the lexicon reduction model, this section breaks down

the individual run-times in worst case O-notation. The evaluation of training an entire

knowledge base for the recognition of a single word is tabulated here. These complexities

assume that the handwritten word image has been extracted, binarized and pre-processed.
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FIGHT vs EIGHT vs LIGHT FINE vs FIRE
MEDICAL vs MEDICATION FOOD vs FOOT
1400 vs 2400 LEFT vs LIFT
BAIL vs RAIL MOANING vs MORNING
BALL vs CALL MARK vs MARY
MOLE vs MOVE PUNCH vs LUNCH
CALF vs CALL REACH vs REACT
CARD vs CARE vs CART SCARE vs CARE
COLD vs TOLD SEVER vs FEVER
NECK vs DECK STABLE vs TABLE
FALL vs CALL FEET vs FEED
FOUND vs BOUND vs SOUND vs POUND

Table 5.3: Word Collisions

5.1.3.1 Training Complexity

The training performance is based on the summation of the following complexities:

• Filtering: O(|l|) such thatl represents the complete lexicon.

• Cohesive Phrase Construction:O(Σ∀i|Pi|
2) such thatPi represents a paragraph of text.

• Term Extraction:O(Σ∀(i,j)pi∈Cj
a2

i b
2
i ) such thatai = |ω

′

1| andbi = |ω
′′

2 | whereω
′

i andω
′′

i

represent the first and second words from the cohesive phrasepi under categoryCj .

• Matrix Normalization and Weighting:(2 × O(mn)) such thatm is the quantity of terms

andn is quantity of categories.

Therefore total training run-time is:

O(|l|) + O(Σ∀i|Pi|
2) + O(Σ∀(i,j)pi∈Cj

a2
i b

2
i ) + (2 × O(mn))

5.1.3.2 Recognition Complexity

The recognition performance is based on the summation of thefollowing complexities:
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• Term Extraction:O(Σ∀ig(hi)) such thatg(hi) represents the run-time of the LDWR [66]

on the handwritten imagehi wherei denotes the index of each word image on a single PCR

form.

• Pseudo-Category Generation:O(m) such thatmrepresents the quantity of possible terms

in which the frequencies are tallied.

• Singular Value Decomposition:O(mn2 + m2n) such thatm is the quantity of terms and

n is quantity of categories [44].

• Cosine Score Computation:O(m) × O(mn) such that a single vector of valuesO(m) is

compared against the matrixO(mn) values.

• Regression Computation:O(m) × O(mn) such that a single vector of valuesO(m) is

compared against the matrixO(mn) values.

• Sigmoid Mapping:O(m)×O(mn) such that a single vector of valuesO(m) is compared

against the matrixO(mn) values.

Therefore total recognition run-time is:

O(Σ∀ig(hi)) + O(m) + O(mn2 + m2n) + (3 × (O(m) × O(mn)))

5.2 Artificial Neural Network Implementation

Initially, the model used for relating terms to categories was a backpropagation artifi-

cial neural network (ANN) [88]. The training procedure involved the NSI encodings con-

structed from adjacent handwritten word images using the LDWR [66]. This encoding was

then formatted to a bit string compatible input layer and trained against the neural network

by setting the output layer to the target categories (see Figure 5.13). During the recognition

phase the ANN would be queried using the terms for the top choice categories (see Figure

5.14). The lexicon would then be constructed from those top choice categories, in the same

way that it had been done with the SVD approach, and then submitted to the LDWR [66]

for handwriting recognition.
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Unfortunately, the ANN approach ran into scalability issues hindering performance.

The ANN could only be computed on a training deck of 30 PCR’s and a test deck of 10

PCR’s. A lexicon of approximately 800 words was reduced to 92% resulting in≤ 3% im-

provement to recognition with a momentum of 0.1 and learningrate of 0.3. This approach

was chosen for two reasons: (i) the ANN’s ability to compute anon-linear decision surface

which was expected due to the overlapping nature of terms under a category, and (ii) the

ANN’s resistance to noise which can be controlled to some extent by using the momentum

constant to escape local minima in the hypothesis space. While the ANN implementation

may perform well on a larger data set, the actual performanceis unknown due to computa-

tional limitations.

5.3 Summary

The detailed mathematical and algorithmic structure for the lexicon reduction model has

been presented. The latent semantic indexing model is more scaleable than the artificial

neural network model. The training phase involves the extraction of cohesive phrases under

each anatomical cateogory from a training deck. The terms are extracted from the cohesive

phrases and then mapped against the categories. During the testing phase, the LDWR [66]

is used to extract the highest confident character information and query the latent semantic

model for the highest confident categories. The reduced lexicon is then constructed from

these categories and provided to the LDWR [66] for a second interpretation of the input

word image. The next section will compare the effectivenessof the recognition before and

after the reduction.
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Figure 5.13: ANN Training
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Figure 5.14: ANN Recognition

89



Chapter 6

Recognition Experiments and Results

In this chapter, the results of several experiments illustrate the effectiveness of our al-

gorithm. Accept rate, error rate, and raw rates are reportedfor several experiments found

in Table 6.1. Improvements to recognition rates and error rates are reported in Table 6.2.

The effectiveness of the reduced lexicon is found in Table 6.3. A description of the training

and test decks can be found in Table 6.4. The correct ranking of categories by the lexicon

reduction algorithm is shown in Figure 6.1. The breakdown oflexicon sizes by category

can be found in Figure 6.2.

CL CLT AL ALT SL SLT RL RLT
ACC 76.34% 76.92% 63.52% 66.59% 70.51% 71.51% 70.70% 71.06%
ERR 71.93% 69.65% 57.24% 47.12% 62.26% 59.44% 62.04% 59.45%
RAW 23.31% 25.32% 32.31% 41.73% 30.30% 32.73% 30.62% 32.63%
LS 5,628 8,156 1,193 1,246 2,514 2,620 2,401 2,463
!L - - 23.89% 8.02% 16.06% 10.46% 16.61% 12.23%
!HL - - 33.33% 97.98% 48.19% 73.99% 46.59% 62.96%

Table 6.1: Handwriting Recognition Performance
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CLT to RLT CL to RL CLT to ALT CLT to SLT
RAW Match Rate ↑ 7.48% ↑ 7.42% ↑ 17.58% ↑ 7.42%
Error Rate ↓ 10.78% ↓ 10.88% ↓ 24.53% ↓ 10.21%

Table 6.2: Comparison between Handwriting Recognition Experiments

LEXICON ANALYSIS METRIC VALUE
Accuracy of Reduction (α) 0.33
Degree of Reduction (ρ) 0.83
Reduction Efficacy (η) 0.06
Lexicon Density (̺ ’) 1.07→ 0.87
Lexicon Density (̺ ”) 0.50→ 0.78

Table 6.3: Lexicon Reduction Performance between the Complete Lexicon (CL) and the
Reduced Lexicon (RL)

ENVIRONMENT ITEM VALUE
Training Deck PCR Size 750
Testing Deck PCR Size 62
Training Deck Lexicon Size 5,628
Testing Deck Lexicon Size 2,528
Training + Testing Deck Lexicon Size 8,156
Training Deck Words for Modeling 42,226
Testing Deck Words to Recognize 3,089
Modeled Categories / RSVD Dimensions 24
Category Selection Threshold 0.55
Maximum Categories per Form 5
Average Categories per form 1.40
Max Phrases Per Category 50
Apple OS X Memory Usage 520 MB
Apple OS X G4 1GHZ Train Time 15-20 mins/exp
Apple OS X G4 1GHZ Test Time 3 hrs/exp

Table 6.4: Handwriting Recognition System Environment
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Figure 6.1: Category Retainment by Rank
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Figure 6.2: Sorted Lexicon Sizes by Category
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6.1 Performance Measures

ACC (accept recognition rate):number of words the word recognizer accepts above an

empirically decided threshold.

ERR (error recognition rate):number of words incorrectly recognized among the accepted

words.

RAW (raw recognition rate):top choice word recognition rate without use of thresholds.

LS (lexicon size):the lexicon size for the experiment after any reductions.

!L (truther word not present in the lexicon):percentage of words (for a specific experiment)

not in the lexicon as a result of incorrectly chosen categories or due to the absence of that

word in the training deck.

!HL (human being could not completely decipher word):percentage of the !L set in which

even human beings could not reliably decipher all or some of the characters in the word

(given the context).

6.2 Experiments

CL (complete training lexicon):The union of all words in the training set.

CLT (complete training lexicon + test deck lexicon):The union of all the words in the

training and test sets.

AL (assumed training lexicon):This is a reduced lexicon constructed from the training

deck where the categories are determined by an Oracle.

ALT (assumed training lexicon + test deck lexicon):Same as AL except that all words from

the test set are also inserted into the training deck category lexicon. This gives the upper

bound for the effectiveness of the reduced lexicon strategy.

RL (reduced lexicon):The reduced lexicon from the training deck, which is the union of
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words from the top ranked categories returned by the word recognizer. This is a practical

measure of the current performance of the system.

RLT (reduced lexicon + test deck lexicon):Same as RL except that all words from the test

set are inserted into the training deck category lexicon. This shows the effectiveness of

word recognition under the assumption that the category lexicons are complete.

SL (synthetic term generation):This is the reduced lexicon in which the categories are de-

termined by a synthetic generation of the truth word. This isthe theoretical upper bound of

RL in which the handwriting recognition is a 100% accept ratewith a 0% error rate.

SLT (synthetic term generation + test deck lexicon):Same as SL except that all words from

the test set are inserted into the training deck category lexicon. This is the theoretical upper

bound of RLT.

6.3 Discussion

In all experiments it is assumed that the word segmentation and extraction has been per-

formed by a person. Also, forms in which 50% of the content is indecipherable by a human

being are omitted. This occurs 15% of the time.

In reference to Table 6.2 which is computed from the most relevant changes in Table

6.1 : The theoretical RLT (i.e. comparing RLT to CLT) improves the RAW match rate by

7.48% and drops the error rate 10.78% with adegree of reductionρ = 61.59%. The practi-

cal RL (i.e. comparing RL to CL) improves the RAW match rate by7.42% and drops the

error rate by 10.88%, with adegree of reductionρ = 51.30%. The RLT and RL numbers

are close due to the difference in the initial lexicon sizes:CLT/RLT starts with 6,561 words

(i.e. training deck and testing deck lexicons) whereas the CL/RL starts with 5,029 words

(i.e. training deck lexicon only). The RLT lexicon is more complete, but the lexicon is

larger. The RL lexicon is less complete, but the lexicon is smaller. Thus, RLT gives the
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advantage that the recognizer has a greater chance of the word being a possible selection

and RL gives the advantage of the lexicon being smaller. The ALT shows the theoretical

upper bound for the paradigm: (i) the categories are correctly determined 100%, and (ii)

the lexicon is complete. The ALT (i.e. comparing ALT to CLT) improves the RAW match

rate by 17.58% and drops the error rate 24.53% with adegree of reductionρ = 83.01%.

The synthetic experiments (SL and SLT) also do not offer muchimprovement which shows

perfect character extraction does not guarantee recognition improvement. This is due to

two reasons: (i) a form is a representation of many characters and so some incorrectly

recognized characters are tolerated, and (ii) the remaining words on the form to be recog-

nized are difficult to determine even when the lexicon is constructed with only words of

known uni/bi-gram terms. Table 6.3 provides insight into the effectiveness of the lexicon

reduction from the complete lexicon (CL) to the reduced lexicon (RL) experiments. The

lexicon density distance metric̺
′
shows less confusion among lexicon words considering

all the characters are equally important. This implies thatthe reduced lexicon will be less

confusing to the recognizer. Then-gram lexicon distance metricshows an increase in the

quantity of words with common NSI encodings. This implies the recognizer has a greater

chance of selecting a word using the confidently selected characters.

6.4 Summary

Both theoretical and practical recognition experiments have been shown both before and

after the lexicon reduction algorithm was applied. The algorithm has shown approximately

8% improvement to raw recognition rate, a reduction in errorrate by about 11% and a

lexicon reduction of over 50% in practical experiments. In the theoretical situation that

the categories are always correctly determined, a recognition improvement of about 18%,

a reduction in error rate by about 25% and a lexicon reductionof about 83% are shown.
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Chapter 7

Medical Form Search Engine

7.1 Search Method

In this section, various search engine approaches are compared. The inputs to the search

engine are a set of PCR medical forms and a query. The output are those forms which

match the input query.

All known available search engines are based on the assumption that the text is al-

ready in a digital text format. The technologies have focused on parsing and organizing the

content in a variety of formats (e.g. PDF, PS, HTML, XML, and other proprietary docu-

ment formats). There is no widely used search engine technology which can directly search

and analyze the content of digital handwritten documents. This query ability is necessary

for the Health Surveillance (see Appendix) application to access medical forms presented

with a specific type of medically related condition.

In order to have a query deck of sufficient size, we use the leave-1-out strategy which

is explained as follows. Suppose a total of 10 PCRs are available. Take the first PCR as

the test deck and the remaining 9 PCRs as the training deck, and perform the recognition

and tagging on that single PCR. Next, repeat the process, except that now the test deck
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consists only of the 2nd PCR while the training consists of the first PCR and the remaining

8 PCRs. The recognition and tagging on the 2nd PCR is now performed. This exhaustive

processing of recognition and tagging repeats 10 times, thereby providing a training deck

and an unbiased test deck of the same size. Applying this process to 800 PCR forms, the

notion is the same, except the split is Leave-100; i.e. 8 experiments are performed using

groups of 100. Finally, a set of 1,250 phrases, constructed from adjacent non-stopwords,

are extracted from an isolated deck of 200 PCR forms (i.e. these 200 forms are not a subset

of the 800 deck) such that each phrase is found in at least one form in the 800 deck.

A query is performed by scanning the forms in the 800 test deckfor recognized words

that match an input query phrase. Two query experiments are performed and displayed in

Figure 7.1: CL and RL. In the CL (complete lexicon) experiment, the raw LDWR recog-

nized words computed from the full lexicon are compared against the query. In the RL

(reduced lexicon) experiment, the raw LDWR words computed from the reduced lexicon

are compared against the query. A set of ranking rules are applied, relevance determined,

and the recall-precision table generated (see Table 6.1 andFigure 7.1). A relevant PCR is

a document in which a human truther classifies at least one occurrence of each word from

the input phrase.

Ranking rules given an input phrase of exactly two words:

• Both words must match the recognized words or that PCR is not returned.

• A double precision rank is computed by summing the values in these two steps:

◦ Summing the frequencies of the occurring phrase words in thedocument.

◦ Summing the distance between all recognized word occurrences in the document

using Equation 7.1.1. Letd(ai, bj) be a function which computes the distance between

the input phrase of two words,ai andbj such thati and j respectively represent the word

position in the document.
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d(ai, bj) =
1

|ai − bj |
(7.1.1)

Unlike typical text retrieval systems, the words on a PCR maybe incorrectly recog-

nized by the handwritten recognition engine. In addition, general search engines need to

be concerned about external influences such as spamming, which is not a concern in this

application. Therefore, a more trivial ranking measure such as of nearness/proximity in

Equation 7.1.1 is sufficient.

7.2 Results

The comparison of the complete and reduced lexicon queries can be found in Figure 7.1.

The plot illustrates only those queries which returned at least one record. This is because

the precision value (RelevantRetrieved
Retrieved

) is undefined when no documents are returned [54].

Queries in the CL series returned 0 forms 73% of the time, and returned only 1 record on

average. The RL returned 0 forms 23% of the time and returned 7.5 documents on average.

Thus, with RL, about 3 times more queries had at least one response.

NOTE: The two curves for CL and RL in Figure 7.1 are not directly comparable as the CL

curve reflects data from 50% fewer queries corresponding to cases when no forms were

returned.

7.3 Discussion

One question that arises is the validity of the search engineapproach. An alternative

search engine approach involving the expansion of the queryterms into their respective

ESI combinations can be applied directly to the initial LDWRcharacter recognition results.

This would effectively bypass the more elaborate search engine except that this alternative

approach significantly under-performs. While results are returned 99.8% of the time, with
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Figure 7.1: Recall/Precision Chart for Medical Form SearchEngine
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125 records returned on average, the precision of the results is very low. As intuitively

expected, the uni/bi-grams match more terms due to the loss of word information. The

recall/precision chart in Figure 7.2 illustrates a drop in retrieval effectiveness. This demon-

strates the dependence of the searches to operate at the wordlevel, rather then the character

level. The lexicon reduction strategy which improves the handwriting recognition perfor-

mance also improves the search effectiveness as expected.

For example, consider input query phraseCHEST PAIN:

CHESTis decomposed into: CH, CE, CS, CT, HE, HS, HT, ES, ET, C, H, E, S, and T.

PAIN is decomposed into: PA, PI, PN, AI, AN, IN, P, A, I, and N.

In addition, the spatial information is known since the input query is provided by a user.

The ESI encodings forCHESTis decomposed into: 0C0H3, 0C1E2, 0C2S1, 0C3T0, 1HE2,

1H1S1, 1H2T0, 2E0S1, 2E1T0, 0C4, 1H3, 2E2, 3S1, and 4T0.

The ESI encodings forPAIN is decomposed into: 0P0A2, 0P1I1, 0P2N0, 1A0I1, 1A1N0,

2I0N0, 0P3, 1A2, 2I1, and 3N0.

Finally, all possible ESI sequences are generated: 0C0H3$0P0A2, 0C0H3$0P1I1, 0C0H3$0P2N0,

0C0H3$1A0I1, etc...

If any of these ESI sequences match any of the character spatial encodings from the

LDWR recognition, then that form is returned. Relevancy is determined if the input query

wordsCHESTandPAIN are actually found on that form according to the truth.
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Figure 7.2: Recall/Precision Chart using Query Expansion

7.4 Summary

This section presents the effectiveness of a medical form search engine before and after

the reduced lexicon. Two methods have been presented: one inwhich the recognized words

are matched and the second in which only the highest confidentcharacters are matched.

The character matching scheme has very low performance because characters, with no

mapping, have no meaning. The word level matching after the reduction provided an in-

crease of successful queries by 50% with more possibilitiesreturned to the user than had

the reduction not been applied.
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Chapter 8

Applications

Several applications are described in this section which can benefit from the real-time

storage of PCR or other medical form data. The first example described is the procedure

for a completehealth surveillance systemwhich takes a PCR form at the hospital, rec-

ognizes the content, stores and indexes the information in acentralized and secure data

repository. Once stored, other applications such assyndromic surveillance softwarecan be

used to extrapolite trends and red flag regional medical concerns such as a pandemic. To

improve the communications of such a health surveillance system, it is necessary to comply

with existing standards involved in the exchange of medicalinformation. This research is

shown to be compliant with the Center for Disease Control andHealth Level 7 information

exchange protocols. Since the automated recognition of medical forms is not perfect, the

integration of the technology with keying sites, to improvethe efficiency of human data

entry of such information, is also proposed. The data can also be used to evaluate the qual-

ity assurance of healthcare personnel by government authorities. Finally, the application of

this research towards a prescription verification system atpharmacies is also described.
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8.1 Health Surveillance

...We must prepare to minimize the damage and recover from any future terrorist attacks

that may occur despite our best efforts at prevention. Past experience has shown that pre-

paredness efforts are key to providing an effective response to major terrorist incidents and

natural disasters. Therefore, we need a comprehensive national system to bring together

and command all necessary response assets quickly and effectively... [131].

-United States Office of Homeland Security, 2002

The definition of a public health surveillance system is “theongoing systematic col-

lection, analysis, and interpretation of outcome-specificdata for use in the planning, im-

plementation and evaluation of public health practice” [28]. The most important theme in

this definition is the reference to the collection of data; without it, there is nothing to be

analyzed. As implied from the above quotation, access to medical data is one possible asset

in the construction of a national emergency system.

It is highly probable that no completely autonomous system can collect data with a

0% error rate. To date, there is no automated and centralizedsystem in the United States for

retrieving significant medical information from paper forms. The amount of information to

manually digitize by human beings is simply too great. However, with the introduction of

this medical form-driven handwriting technology, it is nowpossible to add a new piece to

the emergency system.

Figure 8.1 shows the flow of data extraction and dissemination for both state govern-

ment (e.g. New York State) and federal systems (e.g. Center for Disease Control (CDC)

[23]). The development of this system requires data in a standardized manner. The CDC

constructed the NEDSS format to manage diverse data in a standard organized format [23].

Once the data are available in a secure and centralized repository, it will allow for contin-

uous access to medical form data for the purposes of epidemiological analysis, outbreak
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Figure 8.1: Possible Health Surveillance Protocol
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detection, counter-bio-terrorist information technology, health-care quality assurance, and

further enhancement to the medical student’s studies and awareness.

The health surveillance application described in Figure 8.1 allows the creation of a

data processing facility where high speed scanners can be used to scan stacks of PCR forms,

feed the forms into the image processing and recognition algorithms, and produce ASCII

text output as well as a PCR category, all with related confidence levels. These forms can

then be sorted within each category on content severity. Once sorted, the forms can be

provided to the various branches of the Department of Healthresponsible for health-care

provider quality assurance. This is currently a non-automated process involving inefficient

human labor. In addition, the forms appear to be entering thesystem at a faster rate than

they can be analyzed, creating a continuous backlog of such information. Several problems

are currently created due to this information access slow-down:

• A health care professional could continue several years without receiving comments on

the quality of care. This means that all patients managed by that health-care professional

might have been affected by an incorrect or non-optimal medical decision that could have

been addressed sooner.

• Any outbreak (e.g. whooping cough, SARS, ebola, bird flu), may go undetected until a

substantial number of people are affected. The proposed Health Surveillance System aims

to address these needs.

• The ability to improve and standardize flaws in rescue tactics and techniques may take

years to discover.

Further details on infectious disease informatics, outbreak detection, health surveillance

and biological terrorism can be found in [25] [28] [35].
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8.2 Center for Disease Control (CDC) Integration

The Public Health Information Network (PHIN) and the National Electronic Disease

Surveillance System (NEDSS), standardized by the CDC, werecreated for such tasks as

establishing medical trends [23]. However, there are vast amounts of data that are not being

collected due to resource limitations. Their systems can beimproved with the introduction

of medical form recognition and information retrieval systems. The CDC also has a Secure

Data Network Standards and Procedures protocol for allowing the secure communications

of such information [23].

The Logical Data Model Data Dictionary (NLDM) [23] protocolmodules of interest are:

• Observation class: allows subjective, objective and assessment-based input.

• ObservationInterp: allows a “very rough interpretation” of an observation.

Using the data provided by the algorithms in this research, the NLDM Observation

classes can be populated so that the following CDC PHIN systems can use them: Early

Event Detection (EED), Outbreak Management (OM), and Countermeasure and Response

Administration (CRA) [23].

8.3 Health Level 7 (HL7) Integration

Health Level 7 (HL7) [55] is an OSI layer data exchange protocol designed as a stan-

dard for message communication between medical applications. While there is a grammar

and vocabulary to this system, there is also the ability to have a custom message, called a

Z-Segment. The Z-Segment proposed should be in XML format, and would contain the

following information:

〈PCR − F ORM〉
〈IMAGE − ID〉 [pcr-image-id]〈/IMAGE − ID〉
〈CHECKSUM〉 [checksum]〈/CHECKSUM〉
〈ACCESS − PERMISSIONS〉 [permissions]〈/ACCESS − PERMISSIONS〉
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〈CRY PTOGRAPHIC − HEADER〉 [crypto-header]〈/CRY PTOGRAPHIC − HEADER〉
〈CRY PTOGRAPHIC − EXPIRATION〉 [crypto-expiration]〈/CRY PTOGRAPHIC − EXPIRATION〉
〈CREATION − DATE〉 [creation-date]〈/CREATION − DATE〉
〈EXPIRATION − DATE〉 [expiration-date]〈/EXPIRATION − DATE〉
〈AUTOMATED − COLLECTION − SITE − ID〉 [site-id] 〈/AUTOMATED − COLLECTION − SITE − ID〉
〈LOCALE − INF ORMATION〉 [locale-information]〈/LOCALE − INF ORMATION〉
〈RECOGNITION − CONF IDENCE〉 [pcr-recognition-confidence]〈/RECOGNITION − CONF IDENCE〉
〈HUMAN − V ERIF IED〉 [human-verified]〈/HUMAN − V ERIF IED〉
〈HUMAN − NOTES〉 [human-notes]〈/HUMAN − NOTES〉
〈HUMAN − LANGUAGE〉 [human-language]〈/HUMAN − LANGUAGE〉
〈PCR − TAGGED − CATEGORIES〉

〈CATEGORY1〉 [category-name]〈/CATEGORY1〉
〈CATEGORY2〉 [category-name]〈/CATEGORY2〉

.

.

.
〈CATEGORYn〉 [category-name]〈/CATEGORYn〉

〈/PCR − TAGGED − CATEGORIES〉
〈RECOGNITION − DATA〉

〈WORD1〉
〈TEXT〉 [text] 〈TEXT〉
〈RECOGNITION − SCORE〉 [recognition-score]〈RECOGNITION − SCORE〉
〈COORDINATES〉 [coordinates]〈COORDINATES〉

〈/WORD1〉
〈WORD2〉

〈TEXT〉 [text] 〈TEXT〉
〈RECOGNITION − SCORE〉 [recognition-score]〈RECOGNITION − SCORE〉
〈COORDINATES〉 [coordinates]〈COORDINATES〉

〈/WORD2〉

.

.

.
〈WORDn〉

〈TEXT〉 [text] 〈TEXT〉
〈RECOGNITION − SCORE〉 [recognition-score]〈RECOGNITION − SCORE〉
〈COORDINATES〉 [coordinates]〈COORDINATES〉

〈/WORDn〉
〈/RECOGNITION − DATA〉

〈/PCR − F ORM〉

All segments must be protected by the maximum government approved security and

cryptographic standard when transmitted over a network. Furthermore, the XML message

should be encrypted with a private key-based algorithm. Hospitals would need to register

to have access to a specific private key. This restricts hospital access to those designed by

the appropriate Department of Health agencies.

8.4 Keying Sites

Currently, the only way to enter medical information is to have keyers enter this infor-

mation at data entry warehouses. When great amounts of medical information are to be

collected, it is inefficient to rely on human data entry. An improvement to this is to have

an automated medical handwriting recognition system propose its interpretation of a form

to a human keyer. The human keyer can visually confirm and, thereby, change only the in-

formation which is inaccurate. The improvement in data entry time can be estimated using
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the RAW match handwritten recognition rate.

8.5 Quality Assurance Improvement

When a trained professional assists a patient, how is the performance of that health-care

worker evaluated? A backlog of medical forms currently exists due to the enormous daily

influx of PCR forms. Therefore, a health-care professional who aids a patient may not

be evaluated for years. Perhaps they are not even in the same jurisdiction or in the same

career path. The spot checking of a small portion of medical forms in a short period of

time is more effective than analyzing all forms with a long lag. It, therefore, follows that

the forms to retrieve are those which most likely involve themore complicated and, hence,

more error-prone rescue scenarios (e.g. respiratory arrest). The brute force approach is less

effective.

8.6 Prescription Medications Protection System

In spite of the advancements of computer technology, paper is still used to file prescrip-

tions. In some instances, misinterpretations of medical prescriptions have caused unneces-

sary suffering [101].

Common causes of medication errors as described by [101]:

• Look-alike containers

• Poor handwriting and look-alike drug names

• Oral orders misheard or understood

• Improper patient identification (in hospital and pharmacy)

• Improper drug storage

• Taking another’s medication
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While not all of these can be addressed by an automated recognition system, thepoor

handwritingcan be checked. Since the automated system needs context, a prescription

from the doctor should include a short description or reasonfor the medication in addition

to the medication and dosage which is prescribed. The introduction of this system would

only be used as a supplement to that of the pharmacist. Considering that such errors result

in 1/12 of hospital admissions and 1/8 of emergency room visits [101] [3], according to the

American Society of Health System-Pharmacists (ASHP) [3],a supplemental automated

system is justified. Although it is important to note that theintroduction of another tech-

nology also runs the risk of creating additional errors [98].

While no automated system can solve this problem completely, an assistive system

can reduce suffering in a small number of subjects. It is proposed that a standard form be

constructed to capture the basic conceptual information. Extra checking can be performed

on those medications which might be hazardous to certain patients.
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Chapter 9

Software System

A new enterprise software environment, built by the author from scratch using approx-

imately 50,000 lines of well structured object oriented (OOP) code, facilitated the follow-

ing processes: (i) truthing: the process of data entry of allform data (see Figure 9.2), (ii)

reviewing: the process of correcting and viewing truthed data (see Figure 9.3), (iii) integra-

tion with any SQL compliant relational database managementsystem (RDBMS) to orga-

nize and manage sets of images to be truthed and reviewed (seeFigure 9.1), (iv) a scientific

visualization tool capable of observing the application ofall text extraction and recogni-

tion algorithms presented in this paper (see Figure 9.4), (v) a multi-threaded, multi-tier,

cross-platform environment using transport layer security (TLS) over an object serialized

TCP/IP layer to facilitate secure real-time truthing, reviewing and evaluation, and (vi) a

series of batch operations involving image processing, handwriting recognition and form

retrieval. In addition to the elaborate GUI, the system can perform combinatorial algorithm

sequences on training and test decks and, finally, output extensive reports. The software

is the result of strong engineering effort and successful completion of rigorous unit test-

ing. The architecture consists of several diverse and scalable programming languages and

database engines includingJavaTM [60] andMySQL R© [90].

There are four interfaces to the software. Figure 9.1 shows the interface for TCP/IP
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network communications and between multiple clients to a designated server. There is also

a frame in which the creation and management of sets is performed. Figure 9.2 illustrates

the interface used by people to identify the locations and interpretation of words on PCR

images. Figure 9.3 shows an interface used for the review andverification of words by an

additional arbitrator. Figure 9.4 is an interface which allows the real-time analysis of pre-

processing, binarization, post-processing, and recognition algorithms used during research.
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Figure 9.1: Network and Database Communications
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Figure 9.2: Truthing Interface
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Figure 9.3: Reviewing Interface

1
1

5



Figure 9.4: Recognition Interface
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Chapter 10

Conclusions

10.1 Summary

This research describes the development of new algorithms by hybridizing handwriting

recognition, information retrieval, image processing, natural language processing and la-

tent semantic analysis.

Major contributions of this research are:

• The first search engine which operates on handwritten medical forms (see Chapter 7).

• A new lexicon reduction paradigm which can be applied to lexicon driven handwriting

recognition algorithms (see Chapter 5).

• New metrics for evaluating the performance of lexicon reduction algorithms (see Chapter

4).

• A new binarization algorithm with comparative results against other such algorithms and

post-processing techniques. A new strategy using sinusoidal waves has been introduced.

This is the first algorithm that operates on carbon paper (seeChapter 3).

• Six practical applications of this research (e.g. health surveillance infrastructure) (see

Chapter 8).

• Compliance with standard health informatics protocols established by the CDC [23] and
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HL7 [55] (see Chapter 8).

• A highly evolved software system capable of analyzing thesetechniques (see Chapter 9).

Insights provided by these new algorithms:

• The binarization algorithm shows a non-boundary restrictive approach based on compar-

ing the intensity of different regions of the image using a wave trajectory. Prior algorithms

depend on such techniques as sliding windows, mean-variance comparisons and interpo-

lations that are shown to under-perform. This new techniquenot only improves the per-

formance of automated algorithms, but produces images which are enhanced to the human

eye as well.

• The lexicon reduction paradigm shows that only a few characters from words are suffi-

cient in determining a topic category. This is analogous to the human interpretation of the

content of a form even if some of the characters cannot be readby a person. More specif-

ically, this shows that the contextual acquisition of handwriting content can be accurately

represented even with partial information. This is an improvement over algorithms which

attempt to achieve perfect recognition as a prerequisite toknowledge representation. This

also suggests that humans toggle between recognition and content just as the lexicon re-

duction algorithm bootstraps the same recognition processwith an intermediate statistical

interpretative step.

• The automated indexing of semantic content using partiallyrecognized natural language

encoded information, mimics the human ability to get the gist of the information on the

form. These computations have resemblance to ontological frameworks used in anatomi-

cal information science. This is shown with the mapping of partial character recognition

information to topic categories for recognition and retrieval of medical data.
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A new paradigm for lexicon reduction and information retrieval in the complex situ-

ation of handwriting recognition of medical forms. The strategy is novel in their hybridiza-

tion of linguistics, statistical modeling and handwritingrecognition. A series of theoretical

and practical recognition rates are provided as evidence. An improvement in raw recogni-

tion rate from∼25% of the words on a PCR form to approximately∼33% has been shown.

A reduction in false accepts by∼7%, a reduction in error rate by∼10%-25% and a lexicon

reduction from 32%-85% were also attained. In addition an information retrieval approach

using the lexicon reduction technique showed an increase indocument return of 50%. The

addition of a category motivated query facilitates about 85% relevant searches at the recall

position of 0.1 (see Table 7.1).

In addition, certain computational elements of bootstrapping are consistent with the

human interpretation of information in unknown visual context. The training data used

for the experiments can be considered incomplete due to the inherent complexities in the

definition of a character. While the error rate is high for themachine, it is also high for the

human and yet, both systems can still interpret the information.

Unfortunately, the error rate in the handwriting recognition still remains high. This is

consistent with approximately 15% of those forms in which humans could not decipher at

least 50% of their content. For all words across the remaining 85% of forms, approximately

10.5% of the words contained at least one human unrecognizable character. Examples of

the difficulties in interpretation are evident in the taxonomy from Section 1.4. The main

difficulties are (i) faded handwriting creating lost strokes, and (ii) shaky handwriting in

mobile environments. The situations create error because of the inconsistencies with the

training values. Furthermore, while the human still has a higher recognition rate, it does

take longer for a human to interpret the handwriting versus reading more clean handwrit-

ing. This implies that higher level semantic reasoning is necessary to interpret medical

handwriting.
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10.2 Future Work

The following is a list of items that needs to be researched and developed in order to com-

plete an operational system:

• Electrocardiogram (ECG) Category Modeling:In certain Advanced Life Support (ALS)

cases, paramedics may tape an ECG sample printed from the ECG/defibrillation unit to the

PCR form. This provides the temporal electrical nervous system firings at various positions

in the heart which trigger the cardiac muscles. There are hundreds of such possible rhythms

which indicate such things as heart attack or heart disease.This information could be used

to assist with form context tagging.

• Temporal Information Modeling:All PCR forms contain temporal information involving

arrival and departure from the scene, extrication durationand at least two vital signs, at two

different times, for comparative purposes. It is conceivable that such information, would

be useful in further restricting the possible categories. However, substantial timing infor-

mation needs to be available to data mine such trends.

• Form Registration:Each state is likely to have its own form and, in the future, many

different types of forms may be involved. To accommodate this, known formats need to be

registered within the system. Only after the appropriate form template is determined can

the recognition task begin.

• Anchor Detection:Before any recognition task is performed, anchor points on the form

indicating the bounds of handwriting text locations must beidentified. In addition, the de-

tection and recognition of bubble sheet values, circled items, etc. must be determined.
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• Symbol Recognition:Medical text often contains symbols that need to be detected, ex-

tracted and recognized. Unlike most characters in the English language, symbols can in-

volve several strokes of various sizes and combinations. Simply treating symbols as addi-

tional character classes will intuitively degrade recognition performance.

• Word Separation:While form lines on the NYS PCR may assist with word separation

tasks, other form templates may lack such anchor points. In addition, ambulance movement

and emergency environments complicate the expected lengthand boundaries of words.

• Word Spotting:In this task, the input of a set of forms and a word to locate it should pro-

duce those forms without brute force recognition of all words. This would greatly improve

the indexing ability of medical forms for search engines. This is due to the difficulty of the

recognition task as opposed to analysis of ASCII text.

• Writer Modeling: From the practical perspective, it is important to improve the recog-

nition rate of medical forms using all possible means. Part of this effort can involve reg-

istration of health care professionals handwriting against an identification value. Suppose

that a standard health care ID is known and a sample of handwriting from that individual

is known. Then models can be constructed based on the individuals writing. Although the

emergency environment is expected to produce different handwriting for the same writer,

nevertheless, this approach is expected to solve various performance and run-time issues.

• Relevance Feedback:Medical form retrieval performance may improve by incorporating

human or machine feedback. A human could mark query results as relevant or irrelevant.

The system could then construct a better representative query using terms from the marked

documents. The topic categories from human indicated relevant documents could also be

used to restrict the returned documents to the same or similar categories. Further details on

relevance feedback approaches can be found in [102] [108].
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10.3 Limitations

Chapter 3 specifies a binarization algorithm which was designed to operate with carbon

mesh forms. However, not all forms or environments require this particular algorithm to

be used. Therefore, the appropriate binarization algorithm would need to be determined

for any registered form. Chapter 5 describes a lexicon reduction strategy that assumes

that there is sufficient body of text. In other words, determining a category from a single

word is not expected to work. In addition, a PCR deck that doesnot provide any cohesive

phrases under a category implies either that there are no cohesive phrases or that the deck

has to be larger. Chapter 7 provides a search engine that expects only two words as input

due to the modeling of the cohesive phrases. Involving more than two words may result in

an exponential increase in phrase computations depending on the requirements of a system.
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Appendix A

Medical Ethics and Information Security

While the technology to design medical recognition systemsis becoming a reality, it

is also important to note the ethical responsibilities in such a task, particularly when re-

lated to epidemiological classification. The invention of such technology as a medical form

search engine would not be made available to the public, for privacy and security concerns;

instead, the design would be restricted to those medical personnel who are authorized to

search for desired information. Therefore, as expected in systems that use this research,

and including this research itself, it is imperative that patient confidentiality remain se-

cured [19] [25] [28]. The best way to handle this is by blocking recognition or storage of

any patient-specific information during the recognition phase, if such information is avail-

able. Note that the medical forms in this study have patient restricted information blanked

out. The security of patient information is protected by theHIPAA Privacy Standard [33]

[10].

In addition to patient security, there is also a need to protect all medical related in-

puts and computed outputs. To defend against such computed information from being

acquired by an unauthorized party, various cryptographic security protocols must be inte-

grated. However, cryptographic technologies, for information transfer and storage [112],
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and all publicly available cryptographic algorithms (excluding the impractical Vernam ci-

pher [112]) are vulnerable to time. More specifically, information protected with the most

secure of cryptographic algorithms today can likely be accessed using a brute force at-

tack, using a rough estimate of 10-15 years; hence, the National Institute of Standards

and Technology (NIST) approves such algorithms as the Advanced Encryption Standard

(AES) with a 10-year expiration. To accommodate this situation, a migration step from one

cryptographic system (e.g. AES) to a later one must be performed. If a brute force attack

upon the public appears reasonably possible, then such a medical analysis system must be

disabled until the data can be properly migrated to the latest cryptosystem in a secure and

isolated environment. Further discussion on data mining inbiomedical applications, as it

pertains to the Terrorist Information Awareness (TIA) program developed by the Defense

Advanced Research Projects Agency (DARPA) [30] [31] [32], is discussed by Chen, et al.

[25].
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Appendix B

Parallel Processing

Due to the complexity of the recognition task across a geographic region, various strategies

in distributing the work load are necessary.

• Region Level Parallel Processing:Suppose New York State needed to recognize a vast

number of forms. Automated sites should exist at each hospital rather than transporting all

forms to a central location. Once a set of forms is scanned andrecognized at the automated

site, the data can then be more efficiently centralized (see Figure B.1).

• Deck Level Parallel Processing:Suppose that a region site has a great volume of medical

forms. For example, it is expected that New York City will have a larger volume of medical

documents than Buffalo. However, the time constraints in recognizing all forms within the

region is constant. In order to reduce problems with a largerregion falling behind, more

machines can be used to distribute the decks. Once the systemis trained, the recognition

procedure for all subsequent forms can be handled independently.

• PCR Level Parallel Processing:Suppose that the Region and Deck level distribution is

still inefficient. The next step is to parallel process the algorithm itself. This research allows

for two additional breakdowns: (i) each of the five handwriting sections on the PCR image
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Figure B.1: Parallel Processing

can be binarized independently, and (ii) the initial recognition of confident characters for

each word can be handled independently. These tasks can be appropriately distributed to

additional machines with higher processing power. Once finished, these machines would

report back to the central machine to connect the pieces and continue with the algorithm.
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Appendix C

EMS Abbreviations List

Table C.1 contains a list of commonly used abbreviations used by healthcare profession-

als on PCR forms. They allow more information to fit within form boundaries as well as

increase the speed of documentation during the rescue effort. The left column shows the

abbreviation used and the right column indicates its respective meaning. General case-

sensitivity for the abbreviations are shown.

ABBREVIATION MEANING
# number
(h) hypodermic
(R) rectal
1x once
2 secondary / due to
2nd second degree
a.s. left ear
A.U. both ears
abd. abdomen
abdl. abdominal
ABG arterial blood gases
adm. admitted
AEMT advanced emergency medical technician
ALS advanced life support
AM before noon
amp. ampule
amt. amount
ant. anterior
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as lib. as desired
ax. axillary
B black
b.i.d twice daily
B.M. bowel movement
B.S. blood sugar
bilat bilateral
bl. blood
BGL blood glucose level
BLS basic life support
BP blood pressure
C. centigrade
c/c chief complaint
c/o complaining of
CA cancer
CAO / COA conscious alert oriented
cap. capsule
CCU critical care unit
CHF congestive heart failure
ck check
cl chronic
cl. chloride
cm centimeter
cmp. compound
CNS central nervous system
CO2 carbon dioxide
con’t. continue
COPD chronic obstructive pulmonary disease
CPT chest wall percussion
CS cesarean section
CSF cerebral spinal fluid
cu. cubic
CVA cerebrovascular accident (stroke)
D.O.A dead on arrival
D.O.B date of birth
D.T.’s delirium tremens
D/C discontinue
D/S dextrose in saline
D/W dextrose in water
dil. dilute
disch. discharge
dr. dram
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DSD dry sterile dressing
DTR deep tendon reflex
Dx diagnosis
E.D.C. estimated date of confinement
EMS emergency medical services
E.S. emergency service
ea. each
EKG electrocardiogram
emerg. emergency
EMT emergency medical technician
ETOH alcohol
ext extremities
F fahrenheit
F.B. foreign body
F.R.O.M full range of motion
F.U.O fever undetermined origin
FD fire department
FHB fetal heartbeat
fl. fluid
FR first responder
FRU first responder unit
fx fracture
G.B. gall bladder
G.C. gonococcal infection (gonorrhea)
G/W glucose in water
gal. gallon
gen. general
GI gastro intestinal
Gm. gram
gr. grain
GSW gunshot wound
gtt. drop
GU genito-urinary
H2O water
HEENT head / eyes / ears / nose /throat
hs hour of sleep
ht. height
hx history
I & O intake and output
I.M. intramuscular
ICU intensive care unit
inc. incontinent
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incl. include
incp. incomplete
ing. inguinal
inspr. inspiration
int. internal
invol. involuntary
IV intravenous
kg kilogram
km kilometer
KVO keep vein open
(L) left
L. liter
lat. lateral
lb. pound
liq liquids
LLQ left lower quadrant
LMP last menstrual period
LOC loss of consciousness
LPM liters per minute
LPN licensed practical nurse
LRI lower respiratory infection
LUQ left upper quadrant
m medicines
max. maximum
med/surg medical-surgical
meq milliequivalent
MI myocardial infarct (heart attack)
min. minute
mm milligram
mog microgram
MVA motor vehicle accident
n/g nasal gastric
N/S normal saline
N/V nauseau/vomiting
Na sodium
NaCL sodium chloride
neg. negative
NKA no known allergies
NKDA no known drug allergies
no. number
norm. normal
NPO nothing by mouth
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O2 oxygen
o.s. left eye
o.u. both eyes/ each eye
OB obsterics
oint. ointment
oz ounce
p. pulse
PD police department
P.E. physical exam
P.I.D. pelvic inflammatory disease
P.O. telephone order
p.r.n. whenever necessary
PEARL pupils equal and reactive to light
ped pediatric
per by
PERL pupils equal/reactive to light
PM afternoon
po by mouth/orally
po orally/by mouth
poss. possible
post post-operative
post part post partum
post. posterior
prep. preparation
pt patient
px. physical
q every
q.d. every day
q.h. every hour
q.l.d. four times a day
q4h every four hours
(R) right
R. respiration
R.O.M. range of motion
R/O rule out
reg. regular
rehab rehabilitation
RLQ right lower quadrant
RUQ right upper quadrant
RX prescription
s.o.s. once if necessary
sat. saturated
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sc. subcutaneous
seco second
sep. separated
SNT soft-not-tender
so. solution
sob short of breath
Sod sodium
staph staphylococcus
stat. at once (immediately)
strep streptococcus
subl. sublingual
tab tablet
TBA to be admitted
tbsp. tablespoon
temp temperature
tid three times daily
TPR temperature pulse respiration
tsp teaspoon
TX transport
unr unremarkable
V.O. verbal order
v.s. vital signs
vag. vaginal
vasc. vascular
via by way of
vol. volume
w. white
W/N/L within normal limits
wk. week
WNL within normal limits
wt. weight
x1 once / applies to one
x2 twice / applies to two
x3 applies to three
x4 applies to four
y/o years old
yo years old
yrs years

Table C.1: Handwriting abbreviations used on PCRs
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Appendix D

The EDGE Project [36]

In the past, it has taken up to 6 weeks to identify any form of outbreak (e.g. whooping

cough, SARS) or bio-terrorist attack. As a result, the New York State Department of Health

is critically seeking practical, alternative methods for automating the data input of medical

information. This urgency, however, is seconded by their primary goal of providing med-

ical care. One such technology developed was a tablet-like device which could store all

information digitally. This would, in theory, bypass the need for paper forms; particularly

the NYS PCR. The EDGE device, developed by CUBRC, is one such instrument that has

been deployed as a beta project [36].

The EDGE (Electronic Data Gathering for EMS) [36], shown in Figure D.1, is a

hand-held computer platform developed by the Center for Transportation Research. It is

designed for use by pre-hospital care providers (e.g., EMT’s and paramedics) with the ob-

jectives to:

• Improve the timeliness, quality and quantity of data characterizing the pre-hospital care

environment, particularly for cases associated with motorvehicle crash-related trauma.
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Figure D.1: EDGE Device

• Provide EMS personnel with real-time support and information such as treatment proto-

cols and prompts for required data.

• Provide a tool to improve pre-hospital care quality.

Western New York (WNY) has served as the beta test site for EDGE development and

testing. As of this writing, EDGE units are being used by approximately thirty emergency

response agencies, including 14 commercial and 16 volunteer EMS agencies. [36]

While in theory these devices were expected to perform well,some scientists believe

they will not be practically ready for at least another decade. Emergency environments are

conducive to chemicals, extreme cold and heated temperatures, sea and fire rescue, bodily

fluids, as well as complex physical movement such as extrication, mass casualty incidents,

terrorist and biochemical attack. During these 18 months, the units, while of excellent de-

sign and concept, have frustrated some health-care professionals and have, at times, broken
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down. Even one failure is unacceptable in the highly stressful rescue environment. There-

fore there are concerns regarding the current practicalityand cost.

While to some this technology does not appear to be able to replace paper documents

yet, the need to capture real-time health data, which can lagup to four years behind, is

strongly desired due to its potential value in epidemiological systems.
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