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Abstract

Handwriting recognition (HR) is a challenging problem tieatmade tractable only
by the contextual constraints offered by specific applacegi The population of a national
emergency medical service database from the collectidmedNew York State (NYS) Pre-
hospital Care Report (PCR) calls for handwriting recogmitiSuch a database can enable
emergency preparedness, response, and homeland setMetgddress several research
challenges presented by the task of reading hand-filled #@Rparticular and medical
forms in general. Written text on such forms has poor letjjbdue to insufficient size
of writing areas (e.g. compressed text or text curved aloaggim), vehicle motion, writ-
ing with gloves, and the immediacy of the emergency enviremm Challenges include:
(i) written matter often spilling beyond the form boundari¢ii) diverse lexicons in the
medical domain, and (iii) low recognition performance daegbor legibility of text. A
fourth challenge is that modern search engines expect t@atpen known text and not on
handwriting. In order to address these issues, we haveajmatthe following: (i) the first
text extraction technique which operates on carbon paies, l[exicon reduction strategy
which maps partial recognition information to medical topategories, and (iii) an infor-
mation retrieval system capable of searching forms usingi\wating recognition results.

While the emphasis of this research is on medical forms,déas extend to any do-
main in which there is at least one sentence of text that casldssified under high level
topic categories. In the application of medical forms, isiewn that the words written
by health care professionals involved in all aspects oepatissessment can be organized

within the context of anatomical positions. Conceivabiyg patient with a broken leg is
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rescued, then the handwriting will be related to the ides@tfon and rescue efforts involv-
ing the anatomical position d¢gs

The primary issue is how the category is determined if thedhaitten words are
unknown. Since both the lexicon reduction step, aimed ataowipg the recognition per-
formance, as well as the search engine require the recabwizls, a new paradigm must
be developed to solve the problem. The algorithm describdthis research automati-
cally learns the salient relationships between charaétens correlated words, and maps
such related characters to categories. The quantity @dligitecognized characters is re-
stricted to two per word since the recognition engines carsnocessfully extract all the
characters; two is empirically determined as the maximwmsagrable quantity of charac-
ters recognized with high confidence. This raises the isoellisions between words that
have the same uni-gram or bi-gram. To address this sityatiansteps are performed: (i)
the distance information between character informatioenisoded, and (ii) the usage of
uni/bi-gram cohesive phrases, instead of independentsy@dhapped under the category.
At this stage, a list of spatially encoded uni/bi-grams uredeategory exists. However, the
notion of a collision now also extends to the category lelvel.example, the categoayms
andlegsmay both contain the phragdood loss To handle such ambiguities, it is neces-
sary to determine which uni/bi-gram phrases most uniquefiynds each category. A series
of steps is used to extract and weight the most relevantiugriém phrases (a.k.aermg
against the categories with which they are associated nGiveew form, the characters are
extracted, the category is automatically determined, ékedn is reduced, the handwrit-
ing recognition is performed, and query matches are returi@is results in recognition
improvements between 4.50%-7.25% after binarization asttprocessing, a handwriting
recognition improvement of 7.42% with a reduction in eraterof 10.88% and an increase
of effective queries by 50%.

The hybridization of handwriting recognition, natural garage processing, contex-
tual knowledge representation, and information retrievalovel. We show that it is pos-

sible to automatically determine a high level category asel itifor both recognition and
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retrieval even with several levels of ambiguity and rectignierrors. Medical forms were

chosen due to the high level of complexity inherent in a ldngeerogeneous corpus of
medical, pharmacological and English texts. Forms werétewriby multiple writers in

complex emergency environments. The emergencies repioitetye such situations as
extreme temperature and weather, fire, vehicle accidemisylance movement, and haz-
ardous materials. By addressing these problems in the musih&e circumstances, we
were able to gain information in two areas: (i) algorithmeefiveness in the worst case

scenario, and (ii) insight into human cognitive interptietas.
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Chapter 1

Introduction

Research in recognition of medical forms builds on the kraolgk acquired in several
branches of artificial intelligence during the last halfwey: handwriting recognition, in-
formation tetrieval, image processing, forms processiadpiral language processing, and
computational linguistics. Medical forms are used for saMeasons: (i) No pattern recog-
nition group has previously attempted the recognition aidveriting on medical forms (to
the best of our knowledge), (ii) the nature of these formsgmés complex PR problems,
(iif) medical printed text has a history of successful reskanvolving semantic analysis,

and (iv) there is high demand for epidemiological and heslitveillance data.

This research analyzes handwriting in the context of médocens. There are two
goals of this researclirecognitions the task of using an image containing handwriting as
an input and producing the ASCII conversion as output. fEfrgeval component involves
the search of medical forms based on a human query. Each godlecbroken down into
several component sub-goals, each with its own historygdréhmic approaches, capa-

bilities, and limitations.

This research operates under several assumptions: (ip¢h&dns of words on the

medical form have been previously segmented, (ii) at |e@%4 6f the words on a form are



readable by a person in order to be considered in any traoringst deck, (iii) layout of
the forms is known and consistent, and (iv) at least a singiesice of handwritten text

exists on the form.

1.1 Motivation

The National Strategy for Homeland Security released by¥hée House in July 2002
lists Emergency Preparedness and Respas®ne of the six critical mission areas for
Homeland Security [131]. Despite the publicity surrourdthe issue of preparedness
to guard against possible bio-terrorist attacks, there mt been many short to middle-
term practical technological solutions proposed to addtles problem. There is a strong
demand in the New York State Department of Health to greatiyrove the speed of col-
lecting NYS Pre-Hospital Care Reports (PCR) [135] data foybate a national Emergency
Medical Service (EMS) database, thereby providing emergemedical service providers
and health care administrators with a wealth of data thatbeansed in epidemiological
analysis, counter bio-terrorism and Mass Casualty Indegléfhese forms, which are a few
years behind in storage and analysis, are also used fordegamentation and EMS qual-

ity assurance.

Seven years of health care experience in the capacities 8fCeftified First Respon-
der and NYS Emergency Medical Technician, specializatiothe Artificial Intelligence
track of the Computer Science program, and work with the €wearftExcellence for Doc-
ument Analysis and Recognition (CEDAR) led the author tdiate and carry out this
research. The intent is to explore algorithms for the retammand search of handwritten
medical documents, toward the larger goal of a real-timecbaéle database for improved

knowledge, treatment and rescue efforts in the medical. field



1.2 Contributions

This dissertation makes the following contributions:

¢ The first application of recognition of handwritten medifaims.

e The first search engine using handwritten forms.

e The first binarization and post-processing strategy onarafrms.

e The first binarization algorithm using sinusoidal waves.

e A paradigm showing a mapping between character encodinggdpic categorization
used for lexicon reduction. This strategy is reusable foeptexicon driven handwriting
recognizers that are based on character segmentation.

e New metrics for measuring the performance of lexicon redactystems.

e Construction of the first data set of actual handwritten gerecy medical documents for

use in document analysis research.

e Compatibility with standard information protocols used Hgalth Level 7 (HL7) [55]
and the Center for Disease Control (CDC) [23].

e A framework for an automated, centralized, and securehgalveillance network.

¢ An advanced software system with diverse visual interfacelscommand-line execution

modes.



1.3 PCR Background

In the United States, any pre-hospital emergency medicalmavided has to be rigor-
ously documented. Departments of Health of each stateniresc standard medical form
to be used in documenting all information on the patientdgust and treatment from the
moment the rescue effort begins until he or she is transpaot¢he hospital. State laws
require emergency personnel to completely fill out this féomeach patient prior to ad-

mission into the hospital for care.

Data for this research, in the form of actual research capfitise PCR forms [135]

(see Figure 1.1), have been obtained under an agreemenheithiestern Regional Emer-
gency Medical Services (WREMS) [135] division of the New K@tate (NYS) Depart-
ment of Health. Each PCR is stored as a 300 DPI (dots/incloy cmlage. Computations
are only performed on zones containing the relevant mediéatmation; more specifi-
cally, no computations are performed on zones containitigqtadentifying information
or on PCRs involving patients with behavioral disorderse PICR is a form used to gather
vital patient information that is used by health care adstrators as a resource to identify
trends through macro-analysis. Currently, PCRs are mesiher forms, and the process
of keying this data into a database that can be processed iaed for trend information
can take up to several years in many states. A nationwidéas¢aof PCR data would be

invaluable for a public health syndromic surveillance syst

There are five major zones on the PCR containing the handwriitiformation of
interest (ordered from top to bottom): Chief Complaint (fg 1.2 Location 8), Subject
Assessment (Figure 1.2 Location 9), Past Medical Historguie 1.2 Location 11), Ob-
jective Physical Assessment (Figure 1.2 Location 13), Cents)(Figure 1.2 Location 14).
These handwritten areas contain numbers (e.g. 84), syr(dgls| = increase), abbrevi-

ations (see Appendix C for examples), anatomical desoript(e.g. thoracic), medical
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conditions (e.g. pneumothorax), pharmacological words. (eodeine) and common En-
glish. The handwritten zones can contain data from a lartgrdgeneous lexicon, and the
text often does not fit perfectly within form boundaries. Tegt zones, therefore, present
a highly challenging recognition problem. The rest of therf@onsists of elements such
as check-boxes, segmented character locations, and seghtigit-only locations. The
recognition of such elements are less challenging thanviatity recognition. However,

elements are not as complete or as verbose as handwriting.

The form available for processing and data mining is a cadoy. Figure 1.2 is a
top copy which is held by the hospital and is not availablerésearch. A top copy is the
most cleanly written since the data loss issues are notmirése with the carbon copies).
However, the carbon copies are still used in the medicakaystind are still backlogged.
The carbon mesh residue in various locations on the formpawicen/unnatural handwrit-
ing due to ambulance movement and emergency environmetitiigtler complexity to
the document. There is also an extension form that allowéiieare providers to continue
writing if there is no room in the Comments PCR region. Theafdtis form is, however,

rare.

While other work has been performed in the area of uncom&dghandwriting, it has
been limited to a large lexicon of only English [130]. Theeslalso been little prior work
on poor handwriting [18], especially in the environment loictcarbon paper and in the
emergency environment. Each section of this research wituds these issues in further

detail.

1.4 Taxonomy

In this section, the most commonly encountered handwritgilgs are listed. Any com-

bination of these styles can be found in the emergency emviemt. This provides some
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Figure 1.3: Good handwriting pressure

Figure 1.4: Small print

visual insight into the challenges of medical handwritiegagnition. The diversity of
characters and pen-to-paper handwriting pressure leagctgnition errors (see Figures
1.3 - 1.14). Note that PCRs containing an additional “cardgiion form,” which may be
attached in rare occurences, are omitted from this reseB€Rs are sometimes accompa-
nied by a printed electrocardiogram sample. The integnaifeuch information is outside

the scope of this research.

1.5 PCR Training and Test Deck Construction

Medical form training and test sets have been created mign#akoftware data entry
system has been developed that allows humans, known asrsuth manually segment all
PCR form zones and words, and to provide a human interpvatédr the word, denoted
as the truth. The use @futh indicates that the human classification of text is always the

correct interpretation.

The process of data entry, known as truthing, has two phggetsie digital tran-

scription of medical form text, and (ii) the classificatidif@rms into topic categories. The

Figure 1.5: Full line height



Figure 1.6: Narrow width

Figure 1.7: Mixed print and cursive types

Figure 1.8: No handwriting pressure on carbon copy

Figure 1.9: Reduced/Degraded pressure on carbon copy

Figure 1.10: Mixed pressure censitivity print type

Figure 1.11: Mixed pressure cursive

Figure 1.12: Linear line violation

Figure 1.13: Nonlinear line violation
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Figure 1.14: Reference to another document such as a catindorm

distribution of PCR forms under each category is approxayagqual in both the training
and test decks. The task has been supervised and perfornegeddalth care professional
with seven years of field emergency medical services (EMBgmance. This corpus of

handwritten emergency medical forms is the first of its kind.

1.6 Outline of Dissertation

Figure 1.15 graphically illustrates the layout of this éigation. Chapter 1 introduces the
reader with the problem statement, motivation, and intcedithe medical forms that are
used in this research. Chapter 2 then discusses prior wéokrmrecognition, handwriting
recognition, the need for contextual models in handwritinglysis, information retrieval,
latent semantic analysis and some cognitive insight ird@gproach of this work. Chapter
3 identifies all related pre-processing steps necessatiyddrandwriting recognition tasks.
Visual comparisons between binarization and post-pratgssgorithms are described.
Note that automatic word segmentation is not addressedsmibrk. Chapter 4 defines
metrics used in the evaluation of lexicon reduction aldgnis. Chapter 5 begins from the
pre-processed image and shows an approach for the autoneataghition of the hand-
written words on the form. Once an ASCII version of the meldizan is available, then it
is open to text processing algorithms. Chapter 6 compaxesadandwriting recognition
experiments and evaluates the performance of the lexiatuction algorithm defined in
Chapter 5. Chapter 7 compares the retrieval effectivenesaeadical forms before and
after the use of the lexicon reduction algorithm. Chapteescdbes several practical ap-

plications that can utilize this research. Chapter 9 dbssrthe software built to manage

10



truthing and algorithm experiments. Chapter 10 concludiés specifics insights of this
work. The appendices include ethics and security, a comgpsiistem, and a parallel pro-

cessing architectural requirement.

The objective is to provide techniques for the handwritiagognition and retrieval
of medical forms. This allows health surveillance and epiridogical software to have an
entirely new resource of medical information. Prior work naly has its own dedicated
chapter, but is included whenever the algorithm in questouires more detail to under-

stand.
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Figure 1.15: Dissertation Layout
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Chapter 2

Prior Work

Prior work is found in three locations of this dissertatidi:this chapter illustrates the
prior work in handwriting recognition, lexicon reductidorms processing, information re-
trieval systems, human cognition and ontology, (ii) chafteontains prior work relevant
to forms processing techniques, and (iii) chapter 5 dissupsior work relevant to lexicon

reduction techniques.

2.1 Background

Although handwriting recognition and lexicon reductiod[8ave been researched sub-
stantially over the years, many challenges still persigh@offline domain. Word recogni-
tion applications range from automated check recogni®&i, [postal recognition [38], his-
torical documents recognition [39] [46], and now emergem@&dical documents [85] [86]
[87]. Strategic recognition techniques for handwritingalthms such as hidden markov
models (HMM) [24] [57] [67] [82] [91], artificial neural netarks (ANN) [15] [26] [27]
[40] [96], and support vector machines (SVM) [7] [17] havebeleveloped. Lexicon re-

duction, any process aiming to eliminate irrelevant eatfiem a lexicon, has been shown
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to be critical to improvement of performance primarily besa of the minimization of pos-
sible choices [47]. Systems reporting high recognitiomewngh a large vocabulary corpus

have also been successful [67] [68].

Additionally, other lexicon reduction strategies havedugee extraction of character
information for lexicon reduction, such as that by Guileevet al. [50], which uses an
HMM. However, that research reduces the lexicon from a singtegory, namely cities in
Finland. In addition, usage of word length estimates for alnlexicon are available, and
the binarizatiort appears significantly cleaner [50]. Caesar, et al. [18] siiates that prior
reduction techniques [97] [116] [120] are unsuitable sitiy can only operate on very
small lexicons due to enormous computational burdens [@8gsar [18] further indicates
that Suen’s [123] approach of n-gram combinatorics is $&#rgb segmentation issues, a
common problem with medical form handwriting [18]. Howeveaesar’'s method [18] and
those that are dependent on using the character informatidhe character information
of only one word to directly reduce the lexicon, suffers ieasf the characters is selected

incorrectly [18]. This is observable in the cursive or mib@dsive handwriting types.

Many existing schemes, such as that of Zimmermann [143]inasghat acceptable
characters can be extracted. However, in the medical hativiigvdomain, there are very
high error rates. Therefore, operating a reduction schéatecan be robust to incorrectly
chosen characters is necessary. As a result, this reseasanhdved in the direction of an
alternate organization, namely, sequences of charaatengsad to determine a category
that has a lexicon of its own, thereby reducing the issuesiofithe character information
directly. Similar to the study by Zimmermann et al. [143]ydn¢he length encodings of
words are involved with the terms. However, a term in thisedasa phrase rather than an
individual word, and the use of wildcardss found to increase run-time and degrade per-

formance. In addition, the approach of Zimmermann et al3[pdovided an optimization,

A process for extracting foreground handwritten strokee|sixrom the document background.
2A regular expression pattern using tokens, such, & match alpha-numeric text.
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whereas our research also shows recognition improvements.

Kaufmann, et al. [64] present another HMM strategy, whicprimarily a distance-
based method and uses model assumptions that are not &pplicaghe medical environ-
ment. For example, Kaufmann [64] assumes that “...peopiergdy write more cooper-
atively at the beginning of the word, while the variabilitycreases in the middle of the
word.” In the medical environment, variability is appargritten multiple health care pro-
fessionals enter data on the same form. The medical envenhatso has exaggerated or
extremely compressed word lengths due to erratic movementehicle and limited paper
space. Kaufmann [64] only provides a reduction of 25% of éx&bn size with little to no

improvement in error rate, and the tests are run on a smaplsashwords.

Relatively little research has been done with the lingaistodel for the purposes of
lexicon reduction and information retrieval from degradhechdwritten images. On about
15% of the medical forms, half of the documents were comjyletelecipherable by hu-

man beings. This illustrates the challenges of automatamyretion.

2.2 Handwriting Recognition

Handwriting recognition (HR) is divided into two categ@ienline and offline. An HR
survey paper by Tappert [125] discusses the processingemagmition of on-line hand-
writing across multiple languages and compares the diftaze between on-line and off-
line recognition. Online recognition is performed on haadevdevices, such as PDAs, and
generally has the advantage of positional and temporal lketge, and the disadvantage
of having to process information rapidly to avoid user fragons. The offline recognition
process, such as the recognition of postal mail or histaazichents, performs all process-

ing on a document that has been completely handwritten. myroimcumstances, there is
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more available run-time (e.g. a user scanning a documenisgrehsonal computer), how-
ever offline recognition lacks positional and temporal klemlge. This study addresses
the offline recognition problem in which all text is availatib the machine. However, if
there is a substantial amount of handwriting text in an @ntecognition environment, the
algorithms can still be used. Migration to an online envinemt needs previous context
(e.g. a sentence) and the first one or two characters of a vednd kvritten (since lexicon

reduction occurs during the writing process).

The recognition of postal mail [38] [66] in the United Statésr example, is an
off-line procedure in which time constraints have beconweaasingly critical as society
has become dependent on automation. While postal recogmétia challenging problem,
many algorithms have been used to solve the problem. Soragthlgs incorporate postal
databases to reduce the possibilities of words in a corpbss i$ an example adexicon
reduction This dissertation will introduce an alternative appraadbwever, not all scenar-
ios have the luxury of an all-encompassing postal databagee This research addresses
another generation in recognition in which lexicons can ardy be large, but they can
also be on multiple heterogeneous topics. The task of hatidgvrecognition in forms
involves enormously complex handwriting, lacks a consistexture, exists at various lo-
cations within forms, involve multiple writers on the sanmdment, suffers exposure to

rescue situations, consists of free-form text, and has tabdae lookups.

Nevertheless, if people can read the handwriting on a meflioa, then it should
be possible to create automated systems as well. This statesnsupported by evidence
of high recognition performance by other automated systgitissimilar problems, such
as the postal mail recognition problem [38] [66]. Initialtyis expected that the machine
will not perform as well as humans. This is acceptable for teasons: (i) this is the first
attempt at recognition of this kind, and (ii) the proposestegn can operate in synchroniza-

tion with humans (i.e. as an assistive process where theinmeashbmits an interpretation
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to the human for verification and/or modification).

It is imperative to note McDermott’s warning with the usagemords in artificial
intelligence [83]. For example, while the worslsmanticor reasoningare used to describe
the process in solving a problem, it can be considered agipluical illusion. A stochastic
process, for example, may be used to solve a problem in whietahs solve byeasoning
however, the computational technique may or may not be paifigg an act ofeasoning
McDermott specifically uses the example that a human may mesoenputational function
UNDERSTANDwhich computes some output based on the input. Howeveg ffuihction
were named0034 it is difficult to presume that the function ismderstandingTherefore,

the use okyntacticandsemanticare more precisely defined in this research.

Handwriting recognition algorithms have generally staiéth syntactic approaches
and included semantiésalong the way [45] [49]. The syntactic approach can be though
of as a parser which does not exhibit any knowledge othergleametric (e.g. concavity,
curvature) information. Guillevic, et al. [49] discussemtextual, syntactic and semantic
details in cursive script using psychological models. Th&ssification of syntactic and
semantic analysis by human readers apuassing gamaas shown by Goodman [45].
An important issue that syntactic and semantic categoaiss is related to two layers of
ambiguity: (i) confusion with characters that are visualimilar or identical, and (ii) the
true® context of words in a sentence or paragraph. To address ihodtiens, this research
has two syntactic recognition steps (i.e. character etkbrm@and handwriting recognition
discussed later) separated byeananticstep (i.e. lexicon reduction involving the mapping

of terms to categories; discussed later).

In this researchsemantids defined as the mapping of words or word encodings to

3Techniques for interpretting the structure of handwritiends.
4Techniques for utilizing the meaning of handwritten words.
5The notion of truth is defined as the human interpretation.
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Figure 2.1: Lexicon Driven Word Recognizer Algorithm [66]

a finite set of topiccategories This combination of syntactic and semantic approaches
is shown to improve the performance by allowing the lexicoré reduced using these
categories Our research will show that is possible to use only thosedwdound on a
particular subject. This is then followed by the second agtit recognition step on this
reduced lexicon. In other words, by organizing heterogaseoformation into homoge-
neous categories, the ambiguity issues are intuitivelyeed; thereby, improving recog-
nition performance. While our algorithm combines differelassifiers, it differs from the
multiple classifier combination (MCC) problem. In MCC, tlesk is to make a classifica-
tion using the outputs of several independent classifiesmle solution for this problem
is the majority voting principle [124]. Another probabtisapproach in the context of nu-
meral handwriting recognition can be found by Xu, et al. [L&ur research uses different

classifiers which are serially dependent and therefore t8€Mroblem does not apply.

While many word recognition engines exist, the HR algorghchosen for this re-
search have had widespread trusted use with the UnitecsRastal Service (USPS) (see

Figure 2.1) [66]. In word model based recognition, all lexientries are treated as isolated
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words and matched against the input word image containinguating to recognize. The
lexicon entry with the best match is the top choice. In charamodel based recognition,
segments are matched against individual characters witlsdug any contextual informa-
tion implied by the lexicon. Word hypotheses are generatethe character recognition
results. If the best hypothesis is found in the lexicon, ttlenrecognition is done; oth-
erwise, the second best hypothesis is generated and tesigdo on. Since the lexicon
driven word recognizer (LDWR)[66] has the highest recagnitates, and it is lexicon de-

pendent, this research focuses on how to get the LDWR thdeshhaxicon possible.

While the LDWR has excellent performance in small lexicoag ( less than 100
words), it does not perform well on larger lexicons (exg5,000 words) due to the con-
fusion in selecting from many choices. The lexicon reducapproach presented in this
work addresses the inadequacies of this recognizer’simeaface by supplying it a smaller
lexicon. However, a challenge in reducing the lexicon isrétention of the actual word
after the reduction. Another inadequacy of LDWR is its higloerate due to the seg-
mentation procedure when applied to medical handwritirfger&fore, a new binarization
and post-processing algorithm is introduced to reduce satation failures due to broken
strokes. In order to address the LDWR'’s confusion, thisaedeshows that a couple of
characters from a word can provide sufficient semantic médron. For example, if “BL”
only matched the word “BLOOD?”, then our lexicon should be rgelaonly to those topic
categories involving “BLOOD.” This has the potential of vethg the lexicon while main-
taining correct word retention since the semantic analysisrporates the characters, by
the same recognizer, as a suggestion. The more suggestouidaul, the better the guess

of the semantic category.
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2.3 Lexicon Reduction

Lexicon reduction is any process that takes an unknown iimpage of a word and a
set of possible ASCII words (i.e. the lexicon), and produgesibset of words (i.e. the
reduction). It has been shown that the reduction in lexidea kas strong potential for
improving the recognition performance [47] [66] [81]. Thigjective of lexicon reduction
is generally to: (i) produce the smallest subset of wordsibptes, and (ii) retain the de-
sired word, which is obviously unknown, within this subgelearly, if the desired word is

not in the lexicon during the time of word recognition, therdrionage will fail recognition.

Several approaches for lexicon analysis and reduction heea performed previ-
ously. Holistic approaches, such as Madhvanath'’s [80], [8Ihotivated by human reading
studies and utilizes word shapes such as length, ascermibdeacenders. Holistic algo-
rithms provide a visually intuitive approach to reductiorhis becomes compromised in
the emergency setting where health-care professionalgrédneg in several environments:
(i) movement in large emergency vehicles which are changpegds, (ii) walking with the
patient into the emergency room (ER), (iii) rescuing andingi with medical gloves, and
(iv) the existence of multiple writers. This severely imggall holistic aspects of a word.
For example, a moving ambulance that changes speed affecddength, un-smooth driv-
ing surfaces affect word height, and different writers etff@l directions and structure of
the words. Consider the image in Figure 2.2, in which theragtdtter is out of alignment
with the rest of the word and has strong potential for beiaggfied as an ascender [80].
Since holistic approaches are not involved in charactel EBsgmentation, this approach is

intuitively problematic in such situations.
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Figure 2.2: Problematic example for holistic approachesrdvdisplayed issternal”)
2.4 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a theory and procedurec@mputing the relation-

ships between the context of words and terms to a semanéigagt

... LSA represents the meaning of a word as a kind of average ofitfas-
ing of all passages in which it appears, and the meaning o$sage as a kind

of average of the meaning of all words it contains. [70]

Landauer, et al. states here that while the human approaeimantic comprehension
is unknown, LSA mimics human sorting of words into categeaed simulates “passage
coherence” [70]. The terfatent semanti¢s coined due to the semantic inferences it at-
tempts to achieve [70]; latent is used in the connotation odracealedmeaning. In this
research, we are concerned with modeling the semanticoreships between partially rec-
ognized handwritten characters and a cate§olore specifically, this research shows that
this character information, from words describing patte@atment, is sufficient for mod-
eling and later querying for a medical category. This féaiés both improved handwriting

recognition performance and improved search engine gesult

LSA represents these term-category associations in rfeuttiphogonal dimensions
simultaneously. This allows a reduction performed on LSAninimize those parameters
necessary to produce a deeper semantic meaning [34] [7@, WwBich is a statistical ap-

proach for constructing these relationships, does not @aaleinput other than the words

5This bares resemblance to contextual vocabulary acopridity Rapaport [103]
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and categories. It is still able to compute such relatigski.e. no external knowledge
bases are necessary). LSA performs these computationspbyirgpthe Singular Value
Decomposition (SVD) [121] to a matrix. The SVD equatisin= U ¢ S e V1 computes the
eigenvalues and eigenvectors [5] from a rectangular ma3trjx0] [34]. This matrix con-
sists of weighted and normalized frequencies indicatiegéfationships of terms (rows) to
categories (columns) computed beforehddctontains the row eigenvectors of terrivs?
contains the column eigenvectors of categories,Saodntains the now decomposed singu-
lar values (notesingular valuesare equal to the square-root of the eigenvalues), computed
from the matrices, in descending order along the diagorta. values along this diagonal
represent the degree of variance such that the first elemeheidiagonal has the most
variance and the last element has the least variance. Theti@a can be performed by
deleting the smallest values in this diagonal matrix [34]][7Once decomposed into or-
thogonal vectors (i.e. all vectors are perpendicular tdhedber in multiple dimensions),
the classification of an unknown vector of terms against g@@priate vectors in the de-
composed matrices can be performed by computing the cobthe vectors. This allows
the unknown vector of terms to be matched against a categbiy.can be thought of as a
guery into the multiple dimensional semantic category egat] [22] [34]. The theorem

and proof by induction that all matrices have an SVD can beaddn [127].

SVD has also been used to model data in diverse areas suchasxjgession [4],
protein molecular dynamics [41] [106], weather forecas{i#3], call-routing [21] [22],
image compression [104], face recognition [52], cryptasial [89], and information re-
trieval [11] [12] [34] [140]. The most stable utility found tompute the SVD in the Java
programming language [60] is provided by NIST's JAMA packd§9]. This package
utilizes QR-Decomposition (a.k.a. QR-Factorization) i3§tead of approaches such as
Gram-Shcmidt [5], which suffers from rounding errors dgrcomputation [1]. The SVD
numbers computed in this research were verified againspipenalix by Deerwester et al.
[34].
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2.5 Forms Processing

In this section, some examples of form recognition typesllarstrated from more to less

constrained. The purpose is to illustrate the increasimgptexity in form recognition.

e Figure 2.3: Bank checks are forms in which there is a smaltéxof humbers and
their string counterparts (e.g. 1,000 and One ThousandpB] This figure depicts the
steps in performing bank check recognition: pre-procgssagmentation, word recogni-
tion, generation of numerical cost candidates, and finaligtaf recognition results with
confidence scores. The use of word recognition to restréctekicon of cost candidates is

an example of lexicon reduction.

e Figure 2.4: Census forms are restricted to a small quantityadionary words relating

to information such as occupation, employment, locatitm, @.9. School) [79].

¢ Figure 2.5: Postal mail-piece recognition contains haittvgrelated to street addresses,
cities, states, countries, barcode markings, variousgtaand codes. Address block infor-
mation (noting both the return address and the destinatidneas), which contain either

the hand or machine print address, need to be recognizedmesuapplication [38] [66].

Historical documents (although not strictly a form) contanconstrained handwrit-
ing, may use an archaic vocabulary, and are written on a eonguirface [39] [46] [126].
They represent the challenge of handwriting recogniti@e (Bigure 2.6) when no form

structure applies.

In order for work on Figures 2.3 - 2.6 to be performed, it ises=ary to have form

extraction algorithms available [8] [94]. Such algorithaiseady exist. We assume that
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Figure 2.3: Bank Check Recognition Example [65]

existing algorithms are sufficient for the extraction of Hadwriting regions of the PCR,
and that the five major handwriting components of the PCR laeady extracted. These

regions are static and hence easily located on the form.

2.6 Information Retrieval

Information retrieval generally involves the indexing nfarmation followed by a query
to a search engine. Surveys of these technologies can bd fiofi®5] [48] [53] [58] [71]
[72] [102]. This research is concerned with the retrievaindbrmation using semantic-
based indexing in the medical domain using a vector spaceshjdd] [22] [34] [71]
[72][140].
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Figure 2.6: Historic Document [46]

Yang et al. [140] learned the association between wordsradeking terms of docu-
ments using a Linear Least Squares Fit (LLSF) approach WaeMEDLINE [84] database
and Mayo patient records [140]. In order to manage the prnoblef unrestricted vocabular-
ies, the work draws associations based on those assignedrgnisubjects. In addition, it
introduces the phrassurface-based matchingivhich denotes any search technology ap-
proach that determines a match only when the document casrtaé words from a query.

It finds that other suckurface-based matchirgpproaches have poor performance when
unrestricted vocabularies are used, and concludes thatter b@proach is to solve the
problem using concept-based categorization and retri@Vas approach involves the cat-
egorization of document words in relation to a category gisiector space [140]. Yang et
al. [140] differs from Salton [110] and Deerwester [34] byppang between two vector
spaces; a source space of words (x-axis) to texts (y-axeéspaarget space of document

category sets (y-axis) to categories (x-axis). Yang et aK40] uses it to map the text
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“AIDS and Guillain Barre Syndrometo the two categories (i.e. category s&gquired
Immunodeficiency Syndromahd“Polyradiculoneuritis”. It computes the Singular Value
Decomposition (SVD) [74] [44] on a co-occurrence matrix @hhsolves the mapping func-
tion needed for LLSF. At this point, the text is essentiallyded towards certain target cat-
egories. Given a source text, the category can be queriedrbputing the cosine in vector
space and using the highest score to represent the higmektiate [140]. Evaluation was
conducted with respect to Categorization and Retrievaliiphe weighting schemes, and
differing morphological processing. It was executed ord¢hdata sets: (A Data Set of
Clinical Categorization (SURCLgontaining reports in natural language by physicians, (ii)
A Data Set of MEDLINE Retrieval (MEDIRJ)ontaining title and abstract from a MED-
LINE citation, and (iii)A Data Set of MEDLINE Document Indexing (MEDQlontaining

word and category information.

Chu-Caroll et al. [21] [22], (to be discussed in greater dlatahe following sections)
focuses on a similar approach using a single SVD. While Yarad. §140] performed the
analysis on text, Chu-Caroll [21] [22] took voice recogmitidata as an input and produced
a caller destination to solve the call-routing problem.sTi@search is closer to Chu-Caroll
[21] [22] in using recognition information as an input. Inditibn, their work illustrates
robustness to noisy data, reduction in error rates, andradaitl-routing success rate. Our

research concentrates on the handwriting domain.

The Yang et al. [140] and Chu-Carroll [21] [22] techniqueséaimilarities with the
lexicon reduction problem addressed here. Similarities@aund in medical and recogni-
tion approaches. Yang’s et al. [140] approach involves apimgpbetween vector spaces
of information in the medical domain; however, the data is iknown text format. Chu-
Caroll's [21] [22] approach involves mapping of voice renagd words to a caller desti-
nation. However, those terms are constructed using thesweiwognition information as

the input. In this approach, the question is whether low denfte recognition characters
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from a pair of unknown words have a cohesion which can be nthfipa category in the
medical domain. Using this information, the recognitiogiee itself can be bootstrapped
to improve the recognizer and then use all of the informatiioimdex medical forms con-

taining only handwriting.

2.7 Human Cognition and Ontology

The question of human perception is still an open problemeustudy in many dis-
ciplines, such as Atrtificial Intelligence (Al), Cognitiveei®nce, Philosophy, and Neuro-
science. Ontology is a branch of cognitive science and pbghy using such things as
topologies, axioms, and logic to describe reality. SinceisAhot a solved problem, a
gap exists between how a human mind computes a solution ama lsomputational sys-
tem solves the same problem. Therefore, creating a stamfiodbgical framework in
bio-informatics has not yet been achieved. A biomedicablmgly is conerned with the
relationships among classes or categories [25]. This relsexhibits traits of biomedical
ontologies in which a human classifies human injury and aibs a higher level anatom-
ical category. These relationships are similar to seveashbdical ontologies. The Foun-
dational Model of Anatomy (FMA), developed by the Univeysif Washington, models
information and categories of the human body [25]. Rossé&][béeaks down a biomed-
ical entity into several sub-categories, one of which detdataterial anatomical entity
Several other references and examples of anatomical gitsloan also be found in [25].

In the framework of ontology, our research maps partiallpwn and inaccurately
recognized handwritten medical text to anatomical caiegdhat can be used to loop back
into the handwriting recognition and information retrieadgorithms. Description logic
used with electronic patient health records for defininghsiuee-form medical text rela-
tionships to escape the more primitive ‘a8 type relationships, can be found in Smith
[117]. The application of the ontology, namely the mappifteoms to categories, can be

approached from a statistical perspective rather than@nmg description logic. This is
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a requirement since it is not known how human beings intétpgadwritten information.

This paper promotes the theory of terminology mappings adtheecords in accordance
with Smith [117] in two ontologies: (i) the recognition offarmation, and (ii) the inter-

pretation of information. While this approach creates darahte ontology in phase (i),
further medical inferences can be used by Smith’s [117]rdupghase (ii). It should be
further noted that Smith [117] also incorporates temponavkedge like logic into the set
theory. This is used in the medical domain to determine aecaffect relationship (e.g.

“mechanism of injury” due to a car accident).

The motivation for using anatomical categories in the masledkofold: (i) intuition
that treatment is related to a patient’s condition in the rgeyxecy medical environment,
and (ii) philosophical theories in SmithAnatomical Information Sciencd18]. This
framework uses a FMA, a computational system consistingadfll@ction of 1.5 million
statements involving 70,000 kinds of anatomical relatmps [118]. Since the relation-
ship mappings involve known text which is unavailable dgtime recognition process, this
system is much larger than what would be required in this oaeénvironment, which typ-
ically employs fewer than 30 concepts in a specific domainil&\this possible that global
deployment of this research in multiple fields may one dag takvantage of such systems,
it is not currently feasible to use a general knowledge bassgecific forms. The theory
defined in Smith’s work focuses on actual anatomical conoest locations and contain-
ment of anatomy within the body, the theory maps terms tocamniafl categories. This
dissertation contributes to the newly establisA@a@tomical Information Sciendé18] by
introducing an alternative type of term mapping involvirgaacter recognition informa-

tion.
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2.8 Summary

The section introduces prior work in the areas of handvgitiecognition and infor-
mation retrieval. This research assumes that the medioal éan be segmented into its
regions using the afforementioned form processing stiegedhe greatest challenge is the
improvement of the handwriting recognition algorithm taiféate medical form search-
ing. The Lexicon Driven Word Recognizer (LDWR) [66] is that&-of-the-art handwriting
recognition engine that will be improved on by the use of a texicon reduction strat-
egy. This reduction technique uses latent semantic asalygielate partial handwriting
character information to anatomical categories. The seleof the anatomical categories
has its roots t@natomical information scien¢evhich argues that the human information
can be categorically mapped as an anatomical ontology. ditiad, the patient treatment
is related to those anatomical positions that are treatéerefore, the hypothesis of the
lexicon reduction algorithm is that some recognized chiaraccan be used to represent

anatomical categories.
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Chapter 3

Binarization of Carbon Copy Images

This research evaluates several algorithms that extratvwréting from medical form
images (see Figure 3.1) to eventually provide the best hatwgy recognition perfor-
mance. This extraction of handwritten stroke pixels frora timage is known as bina-
rization. The research copy of the NYS PCR [135] is a carbosimd®cument where both
the foreground handwriting and the background carbon pageapproximately the same
intensity values. While the handwriting on the top form haga contact between ink
and paper, the carbon does not transfer to the paper if thensufficient pressure. This
loss of complete character information in the carbon copygea character strokes to break
after binarization, which leads to recognition failurdse(phrasg@ressure sensitivity issues
will refer to this situation). Prior binarization algoritis have been reported to better man-
age noisy and complicated surfaces [42] [75] [136] [141]wdaer, the broken/unnatural
handwriting due to ambulance movement and emergency emagnts, as well as carbon
smearing from unintentional pressure to the form, add &rttomplexity to the binariza-
tion task. A lexicon-driven word recognizer (LDWR) [66] ised for evaluation of the
binarization methods. Analysis of the LDWR, as well as avigiv of an actual NYS PCR

image, can be found in [86].
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Figure 3.1: NYS PCR Objective Physical Assessment

Figure 3.2: Grayscale 256 Carbon Mesh Handwriting Exan¥@% Zoom)
3.1 Carbon Paper

The inconsistent carbon paper, which shows varying grdgsotensities (see Figures
3.1 and 3.2), is referred to as carbon mesh. Figure 3.1 showsample of the “Objective
Assessment” region of the NYS PCR form. It provides an owenaf the complex nature
of the handwriting on the carbon paper. Figure 3.2 shows &/filom of one word from
Figure 1. It shows the carbon paper mesh integrated withahsoa handwriting stroke.
The displayed worébd, in Figure 3.2, is a common abbreviation for abdomen. Sihee t
carbon paper causes the paper, the stroke, and any antddrzge the same intensities, the
binarization problem becomes complex. Details of the apgibbn of existing algorithms
will be discussed in the following sections. This paper déss an algorithm for binariz-
ing the handwriting on carbon paper while preserving thedaaiting stroke connectivity

better than prior algorithms.

Pressure sensitivity issues, as a result of light strokpsimmanship, affect the extent
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of character connectivity after binarization. In order floe carbon copy to receive a rea-
sonable representation of the top copy original, the heath professional needs to press
down firmly with the writing instrument. Since the emergemcywironment is not con-

ducive to good penmanship, the binarization and cleanugrigthgns need to compensate.

The carbon paper forms also contain guidelines, which oftefere with the char-
acter strokes. These lines can be detected by those pixtlawrayscale value less then
a pre-determined threshold; this is consistent acrosoatd in our data set. To reduce
stroke fragmentation, it is sufficient to retain the pixeéanthe line, thus keeping most
character ascenders and descenders reasonably conridutethrm drop-out step is per-

formed before binarization.

3.2 Prior Work

In this section, methods described in previous works arepesed with our algorithm
presented in this research. First we consider the progessithe image in Figure 3.3a,
using various filters. The histogram of this image, shownigufe 3.4, shows that the
foreground (handwriting stroke) and background (carbgmepause the same intensities
in the supplied range. A split at any position in the histograsults in loss of both fore-
ground and background information. The x-axis of the histogrepresents the grayscale
values 0-255 such that the left most position O represeatsktdnd the right most posi-
tion 255 represents white. The y-axis of this histogram & dhantity of pixels for its
corresponding grayscale intensity. The mean, median amdiatd deviation are compu-
tations on the grayscale intensities. The standard dewiatiows the statistical dispersion
of grayscale intensities with respect to the mean. The smsthndard deviation value in-
dicates the grayscale values are clustered around the miegasity value. The evaluation
of pre-processing filters followed by the application ofstixig binarization algorithms on

image 3.3a is discussed throughout this research.
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Figure 3.3: Smoothing Operations (a) Original image + Foropdut (b) Mean filter (c)
Median filter (d) Gaussian filter (e) Weiner filter

Gaussian, median, mean and Weiner filtering/smoothing baga studied in previ-
ous works, as a base step, or an integrated step, for noiswaéand image enhancement
[42] [51][119] [128] [142]. Mean filter (Figure 3.3b) showset least damage to strokes in
our experiments. Median filter (Figure 3.3c) illustrategese character damage. Gaussian
filter (Figure 3.3d) demonstrates characters being wasttedhe background. Weiner fil-
ter (Figure 3.3e) produces an image very similar to the métan, fexcept the background
surface is slightly lighter and stroke edges are sharpeto<Gat al. [42] uses the Weiner

filter as a pre-processing step to filter image noise.
Global thresholding algorithms determine a single thré&shod apply it to the entire
image. Inthe PCR application, the high pressure sensiteasaare binarized well, whereas

medium to low pressure areas run the risk of being classiidzthakground.

Other works use algorithms that address some weaknesség @tsu [76] [99]

method, such as with degraded documents. Any algorithnttmputes a global threshold
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Mean: 143.26
Median: 34.60
Std Dev: 34.60
Pixels: 46K

Text and Carbon Paper
Intensities Mixed
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Figure 3.4: Histogram for Image in Figure 3.3a

splits the histogram into foreground and background pixeisg that threshold. However,
since both foreground and background pixels can have the saansities at different po-
sitions on the image, splitting the histogram globally writorrectly classify foreground
pixels and backgrounds. The Wu/Manmatha [136] method é¢g@ddeast two histogram
intensity peaks and globally splits the histogram. Thisseauarge portions of the hand-
writing to be lost to the background. To compensate, a hiatagsplit is allowed to occur
directly before the largest intensity peak in the image¢dribe highest histogram peak in
Figure 3.4). This improves the performance of the algorjthut, still suffers from stroke

and background pixels trapped in the largest histogram (ssskFigure 3.4).

The Niblack binarization [93] algorithm is an adaptive teicfjue that has been com-
pared to other methods in applications such as image and tagdedetection and extraction
[134], low quality camera images [114], low quality grayiecatility maps (such as cable
and hydro maps with various intensity and noise issues J128H low quality historical
documents [42]. This algorithm results in severe noiseggagedges and broken char-
acter segments. While post-processing improves the #hgomperformance, the broken
character strokes result in lower performance. This is duadan-variance computations

occurring at lighter stroke regions.
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Sauvola binarization [111] modifies the Niblack algorith®3] and attempts to sup-
press noisy areas. In the cases of stronger handwritingymesSauvola [111] has positive
results. However, Sauvola [111] has fewer positive regtlis Niblack [93] in our ex-
periments. Sauvola’s [111] noise suppression affectsigfmer strokes thereby causing

incorrect recognizer segmentation.

Gatos, et al. [42] introduced an algorithm that incorpaa&auvola [111], but this
implies that the performance of Gatos, et al. [42] will drdpng with that of Sauvola
[111]. While Gatos, et al. [42] does illustrate a performaimoprovement over Sauvola
[111], this combination still under-performs Niblack [9&fter post-processing. This is
because Gatos often loses holistic features due to in¢drae&ground estimation of the

paper.

Logical binarization uses heuristics for evaluating wieth pixel belongs to the
foreground or background. Other adaptive binarizatioatstiies are integrated with such
heuristics. The Kamel/Zhao algorithm [63] finds stroke temas and then later removes
the noise in the non-stroke areas using an interpolationtlaregholding step. Various
stroke width combinations from 1-10 pixels were tried. Huer the stroke is not ade-

guately traced using this algorithm.

The Yang/Yan [141] algorithm is a variant of the method depeld by Kamel/Zhao
[63]. The modifications are meant to handle low quality insag#ected by varying in-
tensity, illumination, and artifacts such as smearing. By, the run analysis step in this
algorithm is computed using only black pixels. Neither thiefround (handwritten stroke)
or background (carbon paper) of the carbon copy medicalddrave black pixels; nor are
the foreground pixels the same intensity throughout. Tloeeethe stroke-width computa-
tion, which is dependent on the run-length computationnoébe trivially determined in

the carbon paper forms.
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In addition to the binarization algorithms, various postgessing strategies are com-
monly used. The despeckle algorithm is a simple noise rehteghnique using a 3x3
mask to remove a foreground pixel that has no D8 neighboi@][Ilihe blob removal al-
gorithm is a 9x9 mask that removes small pixel regions the¢ Im® neighbors [119]. The
amorphous artifact filter removes any connected componkosgpixel area is less than a
threshold (60 pixels in this research) [119]. The NiblacR][9 Yanowitz and Bruckstein
method [142] was found to be the best combination strategirigy and Taxt [128]. The
Shi and Govindaraju method is an image enhancement stritagyas been used on postal

mail-pieces [115].

3.3 Proposed Algorithm

Prior algorithms have relied on techniques such as histognaalysis, edge detection,
and local measurements. However, these techniques areflessve on medical forms.
Our algorithm uses a larger central NxXN mask, which deteesithe intensity of one re-
gion, and compares it with the intensities of multiple dymzatly-moving smaller PxP

masks (see Figures 3.5, 3.6 and 3.7).

One hypothesis in managing the varying intensities of tibaramesh and its sim-
ilarities with the stroke is to use a wave trajectory (seeufdg 3.6 and 3.7) for the D8
positioned masks (see Figure 3.5), as opposed to a lingactoey (see Figure 3.8). A
wave/trajectory is a path, in a Cartesian system, that atelsiacross an axis in 2D space
with an amplitude and frequency that can be adjusted (segd-8)6). The experiments il-
lustrate that the use of a wave trajectory is beneficial ferftilowing reasons: (i) There is
a better chance of the trajectory of the mask to evade a stfipk€he possibility of finding
a background region as close as possible to the central masihanced. Note that as one

goes further out from the center mask, the more likely it iirtd that the carbon mesh of
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5x5 Central Region (v)
3x3 Outer Regions (w;)
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O A (w) region that has a darker mean intensity than (v)

Figure 3.5: Initial Mask Placement Example (N=5 and P=3)
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Figure 3.6: Sine Wave Trajectory
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Figure 3.7: Sine Wave Coverage

East Mask * 4 Easterly Sine Trajecto
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Figure 3.8: Linear Trajectory
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Figure 3.9: Random Trajectory

the background can change. (iii) The best background rdgicompare to a handwriting
stroke may or may not be the edge of the stroke. (iv) Areasnding a stroke in the
same trajectory can be observed. (v) Eight points of coraparione for each trajectory,
are performed (as opposed to one point used on other alg@jthVith the inclusion of a
stopping condition operating independently on each ttaggcthis approach, as opposed
to other global and adaptive approaches, does not get cdrtfinequare mask windows
which are relative to a central position. In this contexg thave trajectory for scanning
can be thought of as searching for lighter pockets in thensitg fluctuation of the carbon

mesh (see Figures 3.6 and 3.7).

A sine wave trajectory offers the benefit of beginning at thigio and allowing a
continuous trajectory regardless of distance (i.e. theawaill continue until the stopping
condition is met as opposed to being confined to an arbitrary.blt allows the control
of frequency and amplitude that is necessary to adjust fokstwidth. Sinusoidal waves

have been used in other contexts for the modeling of humawomfiection for on-line
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handwriting recognition, feature extraction and segmentd9], shape normalization of
Chinese characters [77], and signal canceling of pathcédgiemors while writing [56].
Based on these studies, and the knowledge of the Englishatkarset, it was possible to
scan out from a character stroke at a certain frequency. dlloiws a handwriting stroke
to be maneuvered, as opposed to traced, in the search fogroackl regions. The sine
trajectory can be thought of as a path which has the potent@abss handwritten strokes.
This allows the background paper on both sides of the stinlad]| directions, and with a
dynamic distance, to be evaluated. Intuitively, more smgacebe searched and both sides
of the stroke can be evaluated in the same computationabstegriable distances. It is
also presumed that in a moving ambulance, carbon smeanngrislikely since the writer
will press harder on the document to maintain balance in éecle. While strokes in the
English language contain both curves and straight linabegpixel level they can be con-
sidered piecewise linear movements such that a linear sitlerase the stroke and reduce
the likelihood of finding the background. Furthermore, &inti features (such as the area
in the letter “D”) are typically small. Missing the carbongsa inside such character holes
may result in missed background analysis. This motivatedude of a higher sine wave
frequency so that the trajectory would pass through theecasitholistic features as fre-
guently as possible. Additionally, since the thicknesstafracters fluctuates, it is difficult

to precisely calculate the true stroke width.

An input grayscale image 0 (black) to 255 (white) is the inpuatd a binarized image
is the output. At a given position on the image, there are &kmas single mask is denoted
as=. The mean intensity of all pixels within a single mask is deddy M(=). The central
mask which slides across the image is denotedihyaid has a size NxN, such that’N
3 and consists of numerically odd dimensions (e.g. 3x3, 8x8l, 7x7). The size of)
is based on the estimated stroke width constant denotetl biyhe value of¢ has been
estimated to be 5 pixels, thereforg (s of size 5x5. At eachu() position over the image, 8

masks are initially stationed in each D8 position (Figut &and are denoted by() where
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1 <i < 8. The mask size of.() is PxP such that X P < [N/2]. Note that P< [N/2]
allows a small mask the opportunity of preserving smalldtaifeatures when moving on
the sine curve, and also making sure that the mask will notlayé¢v). Each () is ini-
tially stationed as close t@) as possible so as to avoid the mask overlapping betwegn (
and @). Each (;) moves in its respective D8 direction, either linearly (Ségure 3.8),
randomly (see Figure 3.9) or via a sinusoidal wave (see EigL). The Mg;)is computed
at each position along the trajectory and stops at a posifiten one cycle and when the
current mask average intensity is lighter than the prevames on the sine trajectory. A
list of mean values for each position on that trajectory isaded byM (w;), whereqis a
coordinate on the sine curve. The lowest intensity mask anghessine wave trajectory is
represented by the equatidi(w; )i, = min(M(w;)v,)). Next, a comparison of all the
D8 M (w;)m:n pOSitions are made against ¥)( If there are 3-4 (empirically determined)
of the 8 M (w;).m:n Values which satisfy the equatiod (w; )i — M (v) > k, such thate

is a small constant (using= 10), then the center pixel ob] is classified as a foreground
pixel. The valuex defines a tolerance with respect to the localized intensittdhtion of
the carbon paper and denotes the carbon intensity sirgitafiié. Given that a new image
has been initialized to white background pixels, it is ondg@assary to mark the foreground
pixels when they are found. A dynamic programming step iglusestore each/(w;),
corresponding to the appropriate region on the image bedmd to improve the run-time

performance.
The sinusoidal trajectory is defined by Equation 3.3.1.

y = 2¢sin(%x) (3.3.1)

The coordinate (X, y), on a sinusoidal trajectory is relativits starting location (ori-
gin). A nearest neighbor approach is sufficient for coneersif real coordinates to pixel
coordinates. Eacly; is computed on the sine curve trajectory (see Figures 3.@af)d

Note that usingy as the amplitude in Equation 3.3.1, without the coefficievil, result
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Figure 3.10: Sliding Square WindowFigure 3.11: Sliding Circular Window

o ANt , Stable 21U
nt |, Stable peius

Figure 3.12: Window Binarization Examples: (a) Sliding SguuWindow (b) Sliding Cir-
cular Window

in a distance oR¢ between the highest and lowest y-axis points (usings the stroke
width). In addition, usin@¢ as the amplitude yields a distance of 4 times the stroke width
to account for the possibility of 2 touching strokes (i.eotiwuching letters). In this way,
the curve efficiently exits a stroke while searching for tlekground. The consta%tis
used in Equation 3.3.1 so that the sine frequency does et tine handwritten stroke. The
constant chosen is handwriting style specific. The objedtivo evade the stroke, but since

the stroke pixels are not known, nor easily approximate@rstant is chosen.

One alternative approach to the sinusoidal approach waitd bearch for the light-
est mean intensity mask within a sliding window that is theealistance as one complete
cycle of the sinusoidal wave. Figures 3.10 and 3.11 illastthe window structures and
Figure 3.12 shows the output. The procedure for computiegetwindow structures is
to calculate the intensity average of all 3x3 masks withinimdaw. It is then possible to

compare the lightest of these averaged intensity masksthwlaverage intensity of the
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central 5x5 mask. However, only a single mask value withenwlindow is compared to
the central mask which requires(as defined above) to be larger £ 30 in Figure 3.12)
resulting in a completely black image. This is due to thedargrea of coverage which
increases the likelihood that a lighter area will alwaysdog relative to the center mask,
thereby classifying the area as foreground. In additioerehs a degradation of holistic
features, close-proximity characters combining and mavkdn characters than in the sine
wave approach (see section 5 results). This requitesbe based on the image. The sine
wave approach rarely suffers from this situation since @tl@ of the trajectories authen-
ticate a foreground value instead of one value. Thereftwecarbon intensity similarity
rule breaks down, and causes the effectiveness of thegagshthdow approaches to be as
problematic as a global thresholding technique. In this,wa&yecomes the global thresh-
old.

Another possible approach computes the Otsu [99] algorirsmall windows rather
than over the entire image. However, this results in an dupage nearly identical to that
obtained by computing Otsu [99] globally. The thresholdssan are negligibly different

between windows and, therefore, the image is still noisyraady strokes are still broken.

An alternate strategy to the sine wave is a randomized maskment (Figure 3.9).
Instead of the outer masks moving on the sine wave trajectioey move on the y-axis
randomly within the same rectangular area of the sine wawement. It may be expected
that the randomized version (see Figure 3.9) will perfornvel as the sine wave. How-
ever, since the window involved in the sine wave trajectoiseeasonably small, if a stroke
is present within that window, and the randomized approacised, there is no guarantee
that the stroke will be evaded. Therefore, if a random pasis chosen, and that rests on a
stroke as opposed to the background, then the desired loaridyposition is missed. The
sine wave approach is more likely to cross the stroke ratteer tracing it. Furthermore,

due to the nature of randomized approaches, the recogngsuiits may not be consistent.
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Figure 3.13: Image Processing Combinations

3.4 Results

All experiments (see Figure 3.13) were performed on a seRoP6GRs consisting of
~ 3,000 word images and various size lexicons (see Figures 3.16 d7. 3The linear,
random, square and circular strategies (see Figures B%-&ere outperformed by Otsu
[99]. The sine wave strategy presented here outperformeuiat algorithms, with a 11-
31% improvement. After post-processing there was a 4.5% .itnprovement (see Figures

3.16 and 3.17).
The handwriting phrase depicted in Figure 3.14 and 3.15d ‘&it, stable pelvis”

means “abdominal soft-not-tender, stable pelvis.” Figuel4 and 3.16 show the per-

formance of the aforementioned binarization strategi¢h wd post-processing support.
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Figure 3.14: Comparison of Binarization Algorithms Onlya) (Original image (b)
Original image with form drop out (c) Wu/Manmatha Binaripat (d) Kamel/Zhao Bi-
narization (e) Niblack Binarization (f) Sauvola Binarimat (g) Otsu Binarization (h)
Gatos/Pratikakis/Perantonis Binarization (i) Sine WaugaBzation
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Figure 3.15: Comparison of Binarization Algorithms witlethBest Post-Processing Strat-
egy: (a) Original image (b) Original image with form drop dagy Wu/Manmatha Bina-
rization + Shi/Govindaraju + Despeckel (d) Kamel/Zhao Biration + Shi/Govindaraju
+ Despeckel + Amorphous Filter (e) Niblack Binarization +dpeckel + Amorphous Fil-
ter (f) Sauvola Binarization + Yanowitz/Bruckstein + Deskel (g) Otsu Binarization +
Despeckel + Blob Removal (h) Gatos/Pratikakis/PerantBmsrization + Despeckel +
Amorphous Filter (i) Sine Wave Binarization + Amorphoudéil
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Figures 3.15 and 3.17 reflect the performance of the bestctgp post-processing com-

binations from Figure 3.13.

With respect to Figures 3.16 and 3.17, the y-axis repredbptpercentage of cor-
rectly recognized words by the LDWR [66] versus the lexicare ©n the x-axis. It is
expected that the performance decreases with an increésddan size since the LDWR
[66] is lexicon driven and, therefore, has more choices framich to select. The defini-
tion of correctly recognized words is in the context of rawagnition performance. The
error rate is consistently high in this application. Furthere, words in the form region
were manually segmented. The LDWR [66] algorithm uses poegssing strategies for
its own noise removal and smoothing before executing itsgeition algorithm [66] [113]
[16]. Therefore, a noisy image submitted to the LDWR aldontwill be internally pre-
processed by the handwriting recognizer. The first lettanaiuthor’'s name is used to refer
to the algorithms: (G)atos, (K)amel, (N)iblack, (O)tsu)g®vola, (W)u. (SW) designates

Sine Wave binarization.

3.5 Conclusions

Several methods address the problem of extracting degtaxietiowever, they generally
cause broken gaps and lost holistic features. It appedralg@ithms relying on histogram
separation, interpolation and mean-variance performlpobr addition, these algorithms
determine a foreground pixel based on a single value fromgaialiding window, some-
times computed after an intensity interpolation. Howewer, algorithm classifies a pixel
based on 8 masks that observe other pixel regions in a nearlfashion. The results seem
to improve the readability for humans as well as improve iaatic recognition perfor-
mance substantially. This provides insight into the huntalitato effectively extract the
stroke. The following chapters use word images, binariretjmmocessed by the sine wave

and amorphous filter, and proceed with the handwriting rettimg.
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Chapter 4

Lexicon Reduction Measures

Recall the definition of lexicon reduction from Chapter 213vhich a process produces
a smaller lexicon using an unknown word image and a compéadedn for inputs. The
purpose of the reduction is to improve both performance anetime of the recognition
algorithm [47] [80] [81]. The following sections discussethypothesis, reasoning, and

performance measures involved in the reduction approach.

4.1 Lexicon Category Hypothesis

This research proposes the following hypothesis, whicheirsfied experimentally: A
sequence of confidently recognized characters, extracted &n image of handwritten
medical text, can be used to represent a topic category.eldasgories are a finite list
determined by a human trainer and stored in a knowledge Bakxicon can be reduced
by keeping only those words belonging to those categoriég tdpic categories used in

this research pertain to human anatomy and are found in Zable
The associations between category and form word relatipasinie performed by a

person skilled in health care. Each category contains adexof words extracted from

only those medical forms assigned with a respective cayeg@verlapping may occur. It
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is the aim of the lexicon reduction algorithm to determine tategories for an unknown
form. Only words assigned to the determined categories s&d during the recognition
process. It was originally conceivable that the completetn could be determined from
medical data sets. However, in reviewing the OHSUMED [138]M MeSH [92], and
NLM UMLS [129] data sets, the text information appears irgietent with the text infor-
mation found in the PCR reports. These medical databasediaical, laboratory, and/or
research-based information in which the semantic scommidétailed for PCR handwrit-
ing recognition. Since there is no obvious correlation leetwvthe phrases or categories
from these medical data sources, they cannot be used. Itdeasdetermined by prior

research that the use of such databases may decreaseatgteidormance [53].

Another approach to the extraction uses the bubble shestv#étee Figure 1.2 Lo-
cation 10) on the medical PCR forms as categories; typictiigse types of form blocks
have high recognition. Most of the PCR forms suffer from tbiofving: (i) Bubbles that
should have been filled in are not, (ii) bubbles are not alveaysectly filled in, (iii) some
bubbles still require the entry of a handwritten phrase texhem, (iv) a high frequency
of transcription of other documents over the carbon copsnforesult in incorrect carbon
markings over the entire region, and (v) the requirementbblte information in the mod-
eling research requires a form with a similar organizati@cdll the fields in Figure 3).
Therefore, while form information may appear to be usefukas found to be incomplete
and inaccurate. As a result, an alternative approach farihting categories using the

form handwriting was used.

4.2 Anatomical Categories

All PCRs are manually tagged with up to five categories frotl@d.1. During the test-
ing, the system detected categories automatically. Thik veadependent on the semantic

of words and categories in the emergency medical domairs. dfatomical topology, used
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as the PCR categories, corresponds to the patient ailmestida(s) (see Table 4.1). A
PCR can be tagged with multiple categories. Anatomicabcates were chosen to test the
hypothesis that the patient’s treatment (information anredical form) is related to the
patient’s ailment locations, which are anatomical by ratun our data set, no form had

more than five category tags.

The subjectivity involved in determining the categorieskesthe construction of a
hierarchical chart representing all patient scenariob vaspective prioritized anatomical
regions a difficult task and exceeds the scope of this relsearbe following are some

examples for classifying medical form text into categofsee Table 4.1):

Example 1: A patient treated for an emergency related to tegm@ancy would be classified

under theReproductive Systeoategory (see Table 4.1).

Example 2: A conscious and breathing patient treated forsipat wounds to the abdom-
inal region would fall into theCirculatory/Cardiovascular Systedue to potential loss of
blood, as well as being categorized falbdominal, Back, and Pelvitategories (see Table
4.1).

4.3 Lexicon Category Methodology

The recognition of a word out of context can be a difficult taskn for human beings.
Consider the task of reliably identifying the words in Figsid.1 or 4.2 out of context. The
words may be in the domain of English, medicine and/or phaohogy. The interpretation
of the handwriting in Figures 4.1 and 4.2 require contexhdee humans.

In reference to Figure 4.3, consider the same words in ticaliahcontext on a medi-

cal form. While some doubt still remains with respect to tit two words, it is expected
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12°]

10 Body Systems 6 Body Range Locations| 4 Extremity Locations | 4 General
Circulatory/Cardiovascular Abdomen Arms/Shoulders/Elbows Fluid/Chemical Imbalance
Digestive Back/Thoracic/Lumbar | Feet/Ankles/Toes Full Body

Endocrine Chest Hands/Wrists/Fingers | Hospital Transfer/Transport
Excretory Head Legs/Knees Senses

Immune Neck/Cervical

Integumentary Pelvic/Sacrum/Coccyx

Musculoskeletal

Nervous

Reproductive

Respiratory

Table 4.1: Categories are denoted by these Anatomicali®usit



Acosn €

Figure 4.1: Unknown Word 1 with no Context [86]

SE e

Figure 4.2: Unknown Word 2 with no Context [86]

that one would have a higher confidence in the identity oféhesrds because of con-
textual clues. Furthermore, if told that this phrase is fbom the objective assessment
of a medical form, the certainty increases further. The &nphrase is “Several Possible
Wounds” and on the medical form from which this example wasageted, an individual

had fallen from a dangerous height [86].

Although syntactic recognition algorithms are still nesaay, research has shown that
recognition performance is lexicon driven [20] [47] [504[d66] [81] [139] [143]. There
is a need to compensate for the degradation in recognitiomracy caused by large lexi-
cons. The modeling of associations between medical fortratex categories restricts the

recognizer classification to specific topics [86].

Games such as The Wheel of Forttiaed crossword puzzles involve the relation-
ships of characters to words and words to phrases. Simikwiye characters in the ex-

ample are easily recognizable while others are not. If issuaned that some characters

1Game show website can be found here: http://www.wheeloffe.com

SEvere. ACH € PN <

Figure 4.3: Unknown Words in Context (“several possible nagl) [86]
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are recognized with high confidence, it is possible: (i) teirthe meaning from the con-
text and use the information to improve word recognitiord ér) use partially recognized

character information to decipher the context.

4.4 Measuring Lexicon Reduction Performance

The performance measures for lexicon reduction as descbhpé/ladhvanath [80] and
Govindaraju, et al. [47] are discussed in this section. Aclex reduction algorithm takes
an input word imager; and a lexiconl; and computes a reduced lexicgh such that
Q; C L; andi which indicates the position within a list ofimages such that < i < n.
The truth of the image; is represented as. The functionE computes the expectation (the
mean is used to estimate the expectation) [14] of a randorablar A random variable
is a function or mapping representing the outcome of an éxeit. These performance
measures will be used when gaining insight into the effeckss of the lexicon reduction
technique. In this research, all words on a PCR receive time saduced lexicon. In this

situationi is not used to distinguish independent lexicons for eacli\aod can be omitted.

e Accuracy of Reductiomy = E(A) such thatx € [0, 1] [80].

The valuea simply represents the mean existance of a word in the redeséembn. A
is a random variable [14] which indicates whether or not thightof the image exists in
the lexicon. In the context ol\, the variablet represents the truth for an image aQd

represents a reduced lexicon.

1, ifteq

0, otherwise

A =

e Degree of Reductiorp = E(R) such thap € [0, 1] [80].
The valuep simply represents the mean size of the reduced lexicon. @heR is a

random variable [14] representing the extent of the redactiln the context oR, the
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variable L represents a complete lexicon and Q represeetiuzed lexicon.

(L - Q)
R=""1

e Reduction Efficacyy = Arpwr x o'~ such thatA; pwr, 1, o, p € [0, 1].

Reduction efficacy was originally defined @s= o - p such thaty, p,n € [0, 1] by Mad-
hvanath [80]. The value is a single value which incorporates both the accuracy of re-
duction and degree of reduction for determining the efiectess of the reduction. The
constantk allows a weighting of the accuracy relative to the degreeediiction and is

empirically determined [80].

However, the equation = o - p appears to be counter-intuitive for the following reasons:

o Case 1:Suppose that the recognition rate improves by 50% or drofDBf. Since the
efficacy measure does not take into account the recogndita the true effectiveness of
the reduction is not apparent. One assumption that appzarsdt in this equation is that
a reduction with the word still remaining in the lexicon meangood reduction. However,
suppose that the word images themselves are so complitetethé recognizer still fails
in the interpretation, regardless of the existence of thelwothe lexicon. Since the intent
of the reduction is to improve the recognizer peformanas,dbapendence must be incor-
porated into the measure. This case is especially of coneehe difficult interpretation

of medical handwriting.

o Case 2:Suppose that: = .9 andp = .1; when multiplied together, in the case thatl,
the result will be same as = .1 andp = .9. In other words, the value of a high degree of
reduction with low accuracy is equivalent to a high degreaaauracy with low reduction.
These cases are actually not equivalent and thereforedhotlreceive the same value.

Given the same values for and p, ask increases, the measure in accuracy is penalized.
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This is not desired since the accuracy of the reduction i€ mg®ortant, considering a lex-
icon driven word recognizer requires the existence of thelwmthe lexicon. Conversely,
ask decreases, the measure of the output of the equation chexyg@sentially. Therefore,
selecting a constant in the exponent, especialkyig fractional, is not intuitive because
of the non-linear nature of the computation. While the exise ofk appears to be for

weighting the degree of accuracy over the degree of redudtie output is misleading.

o Case 3:The purpose of theeduction efficacys to provide a means of comparison be-
tween different recognizers. However, the applicatiortgpeconstant ok would therefore
have to be the same for all applications to make an appregranparison. In other words,
one cannot penalize in the first reduction algorithm, promotein the second reduction

algorithm, and then usgas a basis of comparison between the two algorithms.

An alternative measure for reduction efficacy can be asvaio

n=Arpwg x ' "

The A, pwr represents the difference in the recognizers performamcdefore and af-

ter the reduction. In other words\;pwr = LDWRyper — LDW Rpegore SUCh that
LDW Rgfier and LDW Ry sore represent the recognition rate after and before the reduc-
tion, respectively. The introduction &, 5,z addresse€ase 1 The accuracyd) is the
base relative to the reductiop)(to weight the importance of the accuracy higher than the
reduction. Therefore, an increase in accuracy and decneaséduction is better than an
increase in reduction with a decrease in accuracy. ThiseaddgCase 2 This new metric
also allows the comparison of the same reduced lexicon orifferent recognizers. The
original equation did not allow this. This has been made iptss®y removing the need
for the empirically chosen constak(this satisfiecCase 3 as well as previously satisfying

Cases 1 and 2Note that a smath number does not imply a poor reduction effectiveness.
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It is merely a value used to compare the reduction betweéerdift recognizers. A nega-
tive n value indicates a drop in recognizer performance due toetkiedn reduction. The
eqguation balances the effectiveness of both the changeagméion performance and the
accuracy relative to the reduction. The larger the efficadyeris, the better the effective-
ness of the reduction for one recognizer versus anothee tiat this does not measure the
effectiveness of the recognizers since only the recogmaprovement {; py r) relative

to the reduction is considered.

e Lexicon Densityorpwr(L) = (vipwr(L))(fLowr(n) + dowr) [47].

The valuep represents the density of the lexicon, with respect to angreeognizer, as
described by Govindaraju et al. [47]. A larger density vahdicates that the words com-
pared aresimilar or closer[47]. The LDWR [66] is the recognizer which operates on a
lexicon £ of wordsw;...w,,. The valued;py i IS @ recognizer independent constant in

whichlIn 2 (i.e. the natural log defined &sg.2) is used [47].

n(n —1)

izj dLowr(wi, w;)

ULDWR<£) = Z

The functionv,pwr(L) is defined as the reciprocal average distance between all
word pair combinations. The standard functibbw r(w;, w;) is a recognizer dependent
computation used to denote a distance metric between twalisdpvords essentially mea-
suring the confusion between the words by LDWR [66] [47]. téwer, even with the dy-
namic programming step, the process is computationalgnsive. Although the LDWR
algorithm is a segmentation based algorithm like WR-1 [#8]performance is impacted
by the size of the lexicon and therefore it is more complex WéR-1 [47]. The computa-
tion of theslice distancewhich is a comparison between the possible segmentatitireof
recognizer to lexicon entries is therefore cumbersome.refbee, we use the string edit
distance, also suggested as a natural alternative by Gardjdet al. [47], and we also
introduce the notion ofeduction densityfdiscussed shortly). The notion of the distance

metric is similar to the notion of perplexity in the speecbagnition community [6] [47].
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The functionf,pwr(n) = In(n) was shown by Govindaraju, et al. [47] to be the most

effective.

e N-Gram Lexicon Distance Metrici, pw g(w;i, w;) = 7(wi, w;) /T (wi, w;).

The n-gram lexicon distance metrits an alternate distance metric introduced in this re-
search, that is substituted into the Govindaraju et al. [@xiton density equatiop. This
formula computes the lexicon confusion due to the lexicalmegion algorithm. In contrast
to making the lexicon density dependent on the recognizedoae with Govindaraju et
al. [47], the dependence is to the lexicon reduction algoritl’ denotes the total number
of combinations (see definition in Section 5.1.1.3) of uAgitam terms generated between
w; andw;. The valuey represents the number of uni/bi-gram terms thatratsecommon
betweenw; andw;. This keeps the equations compatible with the reciprocahlldws
the density function, using this alternative distance ogto be computed on both a com-
plete lexicon and a reduced lexicon showing the similariityro/bi-gram term occurrences
within the lexicon. Note that since the recognizer takey arlexicon of words as an input
and computes its own distance information, only the NSI (B&iotes “No Spatial Infor-
mation” used as the encoding procedure for the uni/bi-genmg; see details in Section
5.1.1.3) term encodings are used. Since the lexicon remuictvolves the ESI (ESI denotes
“Exact Spatial Information” used as the encoding proceduréhe uni/bi-gram terms; see
details in Section 5.1.1.3) term encodings, the applicadiothis n-gram lexicon distance
metric metric only provides an approximation. The computation afivolves two steps:

(i) generating the NSI encodings for and determining their occurencedn and, (ii) the
same step applied by reversing thevalues. These two values are averaged and then re-

turned as the value of.
In order to distinguish between thexicon density distance metrand then-gram

lexicon distance metriequations, the values ando” will be respectively used. Using the

two equations, the confusion among lexicon words and wgjrhim terms can be shown.
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This is important since it is likely that the LDWR [66] will pduce the same high char-
acter confidence scores used for anchor points, for a wordigisaly computed during
the uni/bi-gram term recognition extraction. Althouglelik this situation is still not guar-
anteed since the choice of the words in the reduced lexicdiffesent from the complete

lexicon.

4.5 Discussion

The performance measures in this section provide insighthe effectiveness of the lex-
icon reduction algortihm. The reduction of the lexicon iloNgs recognition performance
only if the unknown word remains in the lexicon afterwards.atidition, if the lexicon is
too dense (i.e. the words are too similar), then it is alssibdes that the recognizer will
select a word which is geometrically similar (ergaximizeandminimizemay be consid-
ered similar). Therefore, an increase lexicon densitycagis the recognition can drop as
well. The formulas in this section will be used when discagghe results of any lexicon

reduction.
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Chapter 5

Topic Categorization

5.1 Proposed Algorithm

Topic categorization in this research is the process ofjasgy categories representing
the topic content of the form. This challenge is similar te dall routing problem. In the
call routing problem, researchers at Lucent Technologiek voice recognition informa-
tion as an input and produced the call destination as an b[2pliI[22]. Here, we take
characters with the highest recognition as an input andym®dhigher level anatomical
categories. Both problems receive recognition data as gpuband produce a topic as

output.

The road map in Figure 5.1 illustrates the layout of the psagoalgorithm. This is
broken up into three areas: (i) training, (ii) recognitiamd (iii) retrieval. A knowledge
base is constructed during th@ining phasefrom a set of PCR forms. This contains the
relationships between terms and categories that are ugbe byher two areas. Thecog-
nition phasetakes an unknown form, and reduces the lexicon using the letige base.
This phase is evaluated using a separate testing deckly-afr all content of the PCR
form has been recognized, a search can take place by enteringuery. This phase is

tested by querying the system with a deck of phrase inpute fdlms are then ranked
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accordingly and returned to the user.

In the training phase, a mechanism for relating uni-granastasgrams (henceforth:
uni/bi-grams discussed in the following section) as welt@ggories from a PCR training
deck are constructed. The testing phase then evaluatelgtrétan’s ability to determine
the category from a test form by using a Lexicon Driven Wordd&mizer (LDWR) [66] to
extract the top-choice uni/bi-gram characters from alldgorA maximum of two charac-
ters per word is considered, since LDWR [66] successfultyaexs a bi-gram with spatial
encoding information 40% of the time. ¥ 3 characters are selected, then the LDWR [66]
will only successfully extract a character 1% of the time. Hence the limit of two was

selected (see examples in Figure 5.4).

5.1.1 Training

The training stage involves a series of steps to constru@tednthat represents relation-
ships between terms and categories. Recall that each forimes@ up to five categories. In
the first phase, lexicons are constructed using all the wioodsall forms under a category.
In the second phase, phrases are extracted from the forig asiohesion equation. These
phrases are then converted to ESI encoding terms (ESI dgiibtact Spatial Information”
used as the encoding procedure for the uni/bi-gram ternesgetails in Section 5.1.1.3).
A matrix is then constructed utilizing the ESI terms for tlogvs and the categories in the
columns. The matrix is then normalized, weighted, and peapim Singular Value Decom-

position format.

5.1.1.1 Filtering

Stopwords are those words that are not used for categoryntietgion in this applica-

tion. The list of~400 stopwords provided by PubMed are omitted from the |lex{&]
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[54]. An additional list of~50 words (e.g. patient, staff, nurse, etc.) found in most BCR
which have little bearing on the category, are omitted frbm¢ohesion analysis (the fre-
guency of two words co-occurring versus occurring indepetig; see Equation 5.1.1) but
retained in the final lexicon. It is common to apply other f8téo reduce the likelihood
of morphological mismatches [54]. However, strategiehsag ‘stemming’ [54] cannot
be applied before recognition because the text is not yetlA&@ is therefore unknown.
Consider a handwritten word image representing “rhythrhat heeds to be recognized.
The alteration of “rhythms” to “rhythm” in the lexicon willfsect recognition performance.
However, at the end of classification, these words are cersidequivalent. Therefore,

word stemming is applied after the LDWR [66] has determimedASCII word translation.

5.1.1.2 Phrase Construction

A phrase is defined as a sequence of adjacent non-stopwandd fio [37]. Although
an empirical study in Fagan [37] indicates that importamaphs may wrap around stop-
words [37], the inclusion of stopwords degrades perforraandhe training experiments
here. Furthermore, since longer sequences of words as svelhger sentences have been
shown to be more successful than shorter contingent wordls pBirases are computed
within the text area of a single PCR region utilizing a naltlaaguage cohesion technique
used by Fagan [37] [54].

A passage P is the set of all wordsfor a PCR form under a category C treated as
a single string. For each C, every pair of passages, dergtadd P, is compared. Here
we denoteuv, as a word located at positiorwithin a passage P. tf, € P, w; € Py, wy €
Py,w, € P, suchthaty > o andb > a, then a potential phrase consisting of exactly
two words is constructed. The cohesion of phrases under@asthen computed. If the
cohesion is above a threshold, then that phrase reprebantsategory C. Thus a category

C is represented by a sequence of high cohesion phrasesardinthose PCR passages
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manually categorized under C.

° f(waa wb)
S (wa) f (ws)

The cohesion between any two words andw, is computed by the frequency that

cohesion(wg, wy) = 2

(5.1.1)

w, andw, occur together versus existing independently. The top #@siwe phrases are

retained for each category (see Equation 5.1.1).

Consider the following two unfiltered text phrasgsand S, under the categorggs
Sp: “right femur fracture”
Sy “broken right tibia and femur”

The candidate phrasésP, andC P, after the filtering step are:
CP;: “right femur” . .. “right fracture”. . . “femur fracture”

C Py “broken right”. .. “right femur” . ..

The phrase “right femur” is computed fromP, andC' P,, sincew, andw, = “right”,
wy andw; = “femur”, and the conditions > a andd’ > o’ have been met. If the cohesion
for “right femur” is above the threshold across all PCR foumsler thdegscategory, then

this phrase is retained as a representative of the catéegggay

Tables 5.1 and 5.2 illustrate some top choice cohesive phirgenerated. Notice
that digestive system and pelvic region are anatomiadtige However, different infor-
mation is reported in these two cases resulting in mosthgidint cohesive phrases. The
phraseCHEST PAINoccurs in both categories, however, have different conegitues.
This implies that the term frequencies will also likely b&atient and therefore commonly
occurring terms need to be weighted appropriately to tregory (this will be discussed
in more detail in Section 5.1.1.5). Phrases sometimes mamake sense by themselves;
however, this is the result of using a cohesive phrase fanmuvhich words may not be

adjacent.
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FREQUENCY COHESION PHRASE

6 0.67 DCAP BTLS
166 0.35 CHEST PAIN
91 0.38 PAIN O

1860 2.49 PAIN HIP

144 0.34 HIP JVD

112 0.39 PAIN CHANGE
275 0.81 HIP FX

110 0.37 HIP CHANGE
82 0.38 PAIN 10

163 0.40 JVD PAIN

106 0.40 CAOX3 PAIN
202 0.50 PAIN JVD

213 0.55 PAIN LEG

205 0.42 CHEST HIP

3 0.33 PERPENDICULAR DECREASE
121 0.33 FELL HIP

118 0.36 PAIN FX

2251 3.01 HIP PAIN

390 0.83 PAIN CHEST
288 0.59 HIP CHEST

Table 5.1: Top Cohesive Phrases for the Category: Pelvis
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FREQUENCY COHESION PHRASE

30
5
42
52
9
6
39
4
25
31
31
11
25
6
3
11

0.72
0.31
0.54
0.81
0.25
0.43
0.51
0.24
0.54
0.37
0.47
0.34
0.44
0.21
0.21
0.25

PAIN INCIDENT
PAIN TRANSPORTED
PAIN CHEST
STOMACH PAIN
HOME PAIN
VOMITING ILLNESS
CHEST PAIN
CHEST SOFT

PAIN SBM

PAIN X4

PAIN JVD

PAIN EDEMA

PAIN PMSX4

PAIN SOFT

SBM INCIDENT
PAIN LEFT

Table 5.2: Top Cohesive Phrases for the Categbigestive System

5.1.1.3 Term Extraction

There are three term encoding formats: NSI, ESI and ASI. $arha particular encoding

will later be associated with an anatomical category and asehe essential criterion for

lexicon reduction.

No Spatial Information (NSI):

An asterisk (*) indicates that zero or more characters aneddetweerC; andC,. NSI

encodings are the most simple form of encoding (see Figdrexamples).

UNI-GRAM ENCODING: +C'x

BI-GRAM ENCODING: xC} * Cyx
BI-GRAM ENCODING EXAMPLE: BLOOD — *L*D*
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Remove Stopwords

High Cohesion Low Cohesion

High Cohesion

v

Generate All Possible Character Combinations (Remove Duplicates)

Blood bl, bo, b6, bd, Io,}a{ Id, 0o, od, od

Nostrils no, ns, nt, nr, ni, nl, hs, os, ot, or, oi, ol, 0, st, sr, si, sl, ss ...
Mouth mo, mu, mt, mh, ou, ot, oh, ut, uh, th

Pairing All High Cohesion Phrases and Construct nm-gram Terms
(Blood, Nostrils) (bl, no), (bl, ns), (bl, nt), (bl, nr) ...
(Blood, Mouth) (bl, mo), (bl, mu), (bl, mt), (bl, mh) ...

Figure 5.3: Term Extraction from High Cohesive Phrases
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Exact Spatial Information (ESI):
The integers (X, y, z) represent the precise number of cteasbetweert; andC;. ESI
encodings are an extension of the NSI encodings with theisiah of precise spatial in-
formation. In other words, the number of characters befaiter and between the highest
confidenceC; andC, characters are part of the encoding. These encodings amedsie
successful since there are fewer term collisions involvidénce the ESI encodings are
preferred.

UNI-GRAM ENCODING: zCy

BI-GRAM ENCODING: zCyCsz

BI-GRAM ENCODING EXAMPLE: BLOOD— 1L2DO0

Approximate Spatial Information (ASI) :
The integersz,, ., z.), denoted as length codes, represent an estimated rangarateh
ters betweer’; andC,. A 'O’ indicates no characters, a '1’ indicates between oné a
two characters, and a '2’ represents greater than 2 chasacfbe ASI encodings are an
approximation of ESI encodings designed to handle the desetlie precise number of
characters may not be known with high confidence.

UNI-GRAM ENCODING: z,Cy,

BI-GRAM ENCODING: z,C,y,Csz2,

BI-GRAM ENCODING EXAMPLE: BLOOD— 1L1DO0

Combinatorial Analysis

The quantity of all possible NSI, ESI and ASI uni-gram andykam combinations,
for a given word of character length n, such that 1, is represented by the mathematical
series of Equation 5.1.2. Regardless of the encoding, tine spantity of combinations

exists since the distance between characters is known.

C(n) = ((nz_l(n - i)) +n> - (((g) (n— 1)) +n> (5.1.2)



o [ R I
(ID: 473) - - HOHE® K| *AR

Figure 5.4: NSI Encodings Example (Blue Letters: LDWR[66¢cessfully extracted)

However, the functiol@ only considers the combinations of an individual entry. The
combination inflation of a uni/bi-gram phrase is shown by &@n 5.1.3. The equation

parametersa andb represent the string lengths of the words considered inasghr

P(a,b) = C(a) - C(b) (5.1.3)

For example:
Let the phrase to evaluate uni/bi-gram combinationBB&EMONARY DISEASE
Let n = length(*PULMONARY") =9
Let m = length(“DISEASE”) = 7
C(n) = 45 uni-gram + bi-gram combinations for “PULMONARY”
C(m) = 28 uni-gram + bi-gram combinations for “DISEASE”
P(n,m) = 1,260 uni-gram + bi-gram phrase combination0LMONARY DISEASE

Each of these encodings has its advantages and disadvanfBige choice is ulti-

mately based on the quality of a handwriting recognizeriitgbo extract characters. If a
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handwriting recognizer cannot successfully extract pmsa information, then NSl is the

best approach. If extraction of positional informationediable, then the ESI is the best
approach. However, NSI and ASI create more possibilitiexémfusion since distances
are either approximated or omitted. ESI is more restriatwehe possibilities as the pre-

cise spacing is used, leading to lesser confusion amongterm

Using the ESI protocol, all possible uni/bi-gram terms aystisetically extracted
from each cohesive phrase under each category. For exaBig¥QD can be encoded
to the uni-gram 0B4 (zero characters before 'B’ and four abiars after 'B’) and the bi-
gram 0B3DO (zero characters before 'B’, three charactetwdsn 'B’ and 'D’ and zero
characters following 'D’). All possible synthetic positial encodings are generated for
each phrase and chained together (a'$’ is used to denotdreedhghrase). For example,
CHEST PAIN encodes to: 0C4$0P0A2 ... 0C4$1A2 ... 0OCOH3$DR.1I0COH3$0P2NO,
etc. Therefore, each category now has a list of encoded ghi@msisting of positional
encoded uni/bi-grams. These terms are the most primitmesentative links to the cate-
gory used throughout the training process. In the trainimgsp, the synthetic information
can be extracted since the text is known. However, in thengeghase, a recognizer will
be used to automatically produce an ESI encoding since shéebet is not known. To im-
prove readability, the notatiomi(;, 1) is used to represent an ESI encoding of a two-word

phrase (e.g. Myocardial Infarction: (my, in), (my, if), (mg), etc ...).

5.1.1.4 Term-Category Matrix Construction

A matrix A, of size|T'| by |C|, is constructed such that the rows of the matrix represent
the set of terms T, and the columns of the matrix represenseéh@®f categories C. The
value at matrix coordinate (t,c) is the frequency that eacmts associated with the cate-
gory. The term frequency corresponds to the phrasal frexyueom which it was derived.

It is the same value as the numerator in the cohesion formefar(to Equation 5.1.1):
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1 Category = Collection of Related Documents
Categories &——»

Terms (Character Phrases)

\4

Figure 5.5: Term Category Matrix (TCM) Overview

f(wq, wy). For example, if the frequency of CHEST PAIN is 50, then alhteencodings
generated from CHEST PAIN, such as (ch, pa), will also rexaifrequency of 50 in the

matrix.

Step 1: Compute the normalized matrix B from A using Equation 5.24][22]:

At,c

\ o=t Al

Matrix A is the input matrix containing raw frequencies, MatB is the output ma-

Bt,c - (514)

trix with normalized frequencies, and (t,c) is a (term, gaty) coordinate within a matrix.

Step 2: Term Discrimination Ability
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& c;@l& Q& Construct a Term-

%)
.@@f;@:"ﬁ B+ i ey o
S ELEF S

lnoylo 0 0 32/ 00 0 0o

(blns)| 6 0 0 28 0 28 0 0 0O

(.rt)| 0 00280 0000 ®@G
oo 4 031 0 0/ 0 14 0

(bl,mo)l 0 0 0 33 055 0 00

b,mu) 0 0 033 00 0 410

b,mty| 0 5 0 @ 0 18/0 0 0

om0 0/ol28/0 0 0 0/ 0 ®@®@
(bo,no)f 9 0 0 28/0 12 0 0 0

(bo,ns)l 0 0 0 32| 038 0 00

& o L

P L | ®

(bl, mt) occurred 42 times across all PCR's under Head

Figure 5.6: TCM Frequency Construction Example
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The Term Frequency times Inverse Document Frequency (TH= Wizighting ap-
proach is used to favor those terms which occur frequenttis wismall number of cate-
gories as opposed to their existence in all categories [{@][ While Luhn [78] asserts
that medium frequency terms would best resolve a docuntgmicludes classification of
more rare medical words. Salton’s [109] theory, stating tbians with the most discrimi-
natory power are associated with fewer documents, allowssamedium frequent word to

resolve the document.
STEP 2A Compute the weighted matrix X from B using Equatidn%[21] [22] [54]:

IDF(t) = logQ% (5.1.5)

IDF computes the inverse-document-frequency on term t,céinds the number of cate-

gories containing term t.

Step 2B Weight the normalized matrix by IDF values using Hgueb.1.6 [21] [22] [61]
[54]:

X,.=IDF(t)- By, (5.1.6)

Matrix B is the normalized matrix from Step 1, IDF is the cortadional step defined in

Step 2, and Matrix X is a normalized and weighted matrix.

5.1.1.5 Reduced Singular Value Decomposition (R-SVD) [34]

The normalized and weighted term-category matrix can nowdael as the knowledge
base for subsequent classification. A singular value deositipn variant, which incorpo-
rates a dimensionality reduction step allows a large temtegory matrix to represent the

PCR training set (see Equation 5.1.7). This facilitatestagmy query from an unknown
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(bl, no)

(bl, ns) |.

(bl, nt)
(bl, nr)
(bl, mo)
(bl, mu)
(bl, mt)
(bl, mh)

(bo, no)|.

(bo, ns)

) é@é\ & Produce Matrix B by
&Y C\G.i\ o‘).{:-"“ Normalizing Matrix A
®$0&$@§06 ¥ ¥ @ o 2
FSF L F T EE
0 0,010 0 0 0 0 0
15 00 .70 0 .70, 0 |0 |0
0 0,010 0 0 0 0 0 o0
0 12/ 0 91,0 0 0 .41 0
0 0/ 0 510 .8 0 0 0 —l
0 0/ 0 630 0 0 780 Term
0 .11 0 @ 0390 00 Vector
0 0 0010[0 0|0 00 o0
28 00 .88/ 0 .38 0 00
0 0/ 0 640 .76 0 0 0
o O
o ! O

Matrix values are now normalized.
Term Vector's are now all of unit length.

Figure 5.7: TCP Normalization
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(bl, no)

(bl, ns) |.

(bl, nt)
(bl, nr)
(bl, mo)
(bl, mu)
(bl, mt)
(bl, mh)
(bo, no)

(bo, ns)

Matrix values are now adjusted to improve
discrimination ability.

Q& S Produce Matrix X by
{}? 65{'9“ 2@ computing IDF on
'(P“o@,:\ &6\ Matrix B terms
Q@%&\@ \,\(\@‘)\Z@e"e@a“%@*@&"’&& &
0O 0 0 95 0 0 0 00
07 0|0 340 34 0 0 0O
0O 0 0 950 0 0 00 . .
0 .06/0 .44/ 0 0|0 .20 0
0 0 0 330 b6 0 00 ﬂ
0 0/0 410 0 0 510 Term
0 .05 0 @ 0 190 0 0 Vector
0 0 0 950 00 00 o0
18, 0|0 570 .25/0 0O
0O 0 0 4210 49 0 00
® ®
o ! ®

Figure 5.8: TCM Inverse Document Frequency (IDF)
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PCR using the LDWR [66] determined terms [21] [22] [34].

X=UeSeVT (5.1.7)

Matrix X is decomposed into 3 matrices: U is a (T x k) matrix negenting term

vectors, S is a (k x k) matrix, and V is a (k x C) matrix repregemnthe category vectors.

The value k represents the number of dimensions to be finatifyrred. If k equals
the targeted number of categories to model, then SVD is pagd without the reduction
step. Therefore, in order to reduce the dimensionalitycthitionk < |C| is necessary

to reduce noise [34].

5.1.2 Testing

Given an unknown PCR form, the task is to determine the cayeafadhe form, and use
the reduced lexicon associated with the determined categatrive the LDWR [66]. In
addition, the category determined can be used to tag theidrich can be subsequently
used for information retrieval. The query task is dividetbithe following steps: (i) Term
Extraction, (ii) Pseudo-Category Generation, and (iin@date Category Selection [21]
[22].

5.1.2.1 Term Extraction

Given a new PCR image, all image words are extracted fromadihm,fand the LDWR
[66] is used to produce a list of confidently recognized ctigras for each word. These are
used to encode the positional uni/bi-grams consistent tigHformat during training. All
combinations of uni/bi-phrases in the PCR form are constdicEach word has exactly
one uni-gram and exactly one bi-gram. A phrase consistsadftlxtwo unknown words.
Therefore it is represented by precisely four uni/bi-pasaéI-BI, BI-UNI, UNI-BI and
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UNI-UNI).

5.1.2.2 Pseudo-Category Generation

An (m x 1)query vector Q is derived, which is then populated with tmmt&equencies
for the generated sequences from the Term-Extraction Htagerm was not encountered
in the training set, then it is not considered. Positionajfiams are generated to yield the
trained terms 37% of the time, and similarly positional greams 57% of the time. The
experiments here illustrate this to be a sufficient numbeehs. A scaled vector repre-

sentation of Q is then produced by multiplyigd and U.

5.1.2.3 Reduced Singular Value Decomposition (R-SVD)

Once the pseudo-category is derived, R-SVD is applied ®ifaHowing reasons: (i) It
converts the query into a vector space compatible input(igrtie dimensional reduction
can help reduce noise [34]. Since the relationship betweenstand categories is scaled
by variance, the reduction allows parametric removal of Egnificant term-category re-

lationships.

5.1.2.4 Candidate Category Selection

The task is now to compare the pseudo-category vector Q \&ith gector inV, e S,
(from the training phase) using a scoring mechanism. Thiaeasore is used for matching
the query [21] [22]. Bothx andy are dimensional vectors used to compute the cosine in
Equation 5.1.8. Vectors andy in the equations represent the comparison of the vectors:

pseudo-category Q to every column vectoi/jre S,..

T
z = cos(x,y) = Ty (5.1.8)

\/Z?:l %2 ' ?:1 %‘2
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Figure 5.9: Pseudo-Category Vector
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Q
A‘z'é
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thé
X
c®
(s}
O
el
(bl,no) [ O
(bl,ns) | 2
(bl,nt) | 1

The LDWR recognition
(bl,nr) | 1 | engine found the uni/bi-gram
(bl, mo) | 1 sequence (bo, no) three
times on a single PCR.

(bl, mu) [ O
(bl,mt) | 2
(bl,mh) | O
(bo, no) @
(bo, ns) | 1

Figure 5.10: Pseudo-Category Integration

U (mixk) S kxk) VT kxicp

Figure 5.11: Matrix Decomposition Visual
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® Al document categories
© Unknown document category

Figure 5.12: Simplified Multi-Dimensional Category Vecfpace

Each cosine score is mapped onto a sigmoid function usingetts square fitting
method, thereby producing a more accurate confidence s2by¢22]. The least squares
regression line equations used to satisfy the equationfé® + b are shown in Equations

5.1.9 and 5.1.10 [73]:

a =

N Tl — Dy Ti )i Yi (5.1.9)
T D T D 1.
n Zi:l xT; (Zi:l xl)

n

b= %(Zyi —a) ) (5.1.10)
i=1

1=1

The fitted sigmoid confidence is produced using the cosineesaad the regression line,
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using equation (9):

1

m (5.1.11)

confidence(a,b, z) =

The confidence scores, one for each category, are then ussmtkithe categories. If
a category is above an empirically chosen threshold, thanctitegory is retained for the
PCR. Multiple categories may be thus retained. All wordsesponding to the selected
categories are then used to construct a new lexicon whiamalyfisubmitted to the LDWR
recognizer [66]. Given a test PCR form, and the reduced dexithe LDWR [66] converts

the handwritten medical words in the form to ASCII.

5.1.25 Result

Each word which is recognized is compared with the truth. &l@v, a simple string
comparison is insufficient due to spelling mistakes and vagations of word forms which
are semantically identical. This occurs 20% of the time imithe test deck words. There-
fore, a Porter stemming [62] [100] [105] and a Levenshtenm§tEdit Distance [13] of
1 allowable penalty are performed on both the truth and tbegmizer result before they
are compared. Levenshtein is only applied to a word thatlis\ml to be> 4 characters
in length. For example, PAIN and PAINS are identical. Howgetas also results in an

improper comparison irr11% of the corrections (see Table 5.3).

5.1.3 Time Complexity

Given a series of steps involving the lexicon reduction nhathés section breaks down
the individual run-times in worst case O-notation. The eatibn of training an entire
knowledge base for the recognition of a single word is taledldere. These complexities

assume that the handwritten word image has been extracbedized and pre-processed.
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FIGHT vs EIGHT vs LIGHT FINE vs FIRE

MEDICAL vs MEDICATION FOOD vs FOOT

1400 vs 2400 LEFT vs LIFT

BAIL vs RAIL MOANING vs MORNING
BALL vs CALL MARK vs MARY

MOLE vs MOVE PUNCH vs LUNCH
CALF vs CALL REACH vs REACT
CARD vs CARE vs CART SCARE vs CARE
COLD vs TOLD SEVER vs FEVER
NECK vs DECK STABLE vs TABLE
FALL vs CALL FEET vs FEED

FOUND vs BOUND vs SOUND vs POUND

Table 5.3: Word Collisions

5.1.3.1 Training Complexity

The training performance is based on the summation of theWolg complexities:

e Filtering: O(|l|) such that represents the complete lexicon.

e Cohesive Phrase Constructio®(Xy;| P;|*) such thatP; represents a paragraph of text.
e Term Extraction:O(Zy(; jyp,ec;a?b?) such that; = |w,| andb; = |w, | wherew; andw;
represent the first and second words from the cohesive ppyaseler category’;.

e Matrix Normalization and Weighting:2 x O(mn)) such thaimis the quantity of terms

andn is quantity of categories.
Therefore total training run-time is:
O(lI) + O(Swil Pif*) + O(Sw(i jypiec, aib7) + (2 x O(mn)

5.1.3.2 Recognition Complexity

The recognition performance is based on the summation dbtlosving complexities:
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e Term Extraction:O(Xv;g(h;)) such thay(h;) represents the run-time of the LDWR [66]
on the handwritten image wherei denotes the index of each word image on a single PCR
form.

¢ Pseudo-Category Generatio®(m) such thatmrepresents the quantity of possible terms
in which the frequencies are tallied.

e Singular Value Decompositior® (mn? + m?n) such thamis the quantity of terms and
nis quantity of categories [44].

e Cosine Score Computatio®(m) x O(mn) such that a single vector of valuégm) is
compared against the matiix(mn) values.

e Regression Computatior®(m) x O(mn) such that a single vector of valué§m) is
compared against the matiix(mn) values.

e Sigmoid MappingO(m) x O(mn) such that a single vector of valuegm) is compared

against the matrix)(mn) values.

Therefore total recognition run-time is:

O(Zvig(hi)) + O(m) + O(mn® +m?n) + (3 x (O(m) x O(mn)))

5.2 Atrtificial Neural Network Implementation

Initially, the model used for relating terms to categoriessva backpropagation artifi-
cial neural network (ANN) [88]. The training procedure ihwed the NSI encodings con-
structed from adjacent handwritten word images using th&VRJ66]. This encoding was
then formatted to a bit string compatible input layer anthd against the neural network
by setting the output layer to the target categories (se@€&ig.13). During the recognition
phase the ANN would be queried using the terms for the topcehtategories (see Figure
5.14). The lexicon would then be constructed from those bajioe categories, in the same
way that it had been done with the SVD approach, and then stdshto the LDWR [66]

for handwriting recognition.
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Unfortunately, the ANN approach ran into scalability issindering performance.
The ANN could only be computed on a training deck of 30 PCR® arest deck of 10
PCR'’s. A lexicon of approximately 800 words was reduced % 98sulting in< 3% im-
provement to recognition with a momentum of 0.1 and learnatg of 0.3. This approach
was chosen for two reasons: (i) the ANN’s ability to computea-linear decision surface
which was expected due to the overlapping nature of termsruadategory, and (ii) the
ANN'’s resistance to noise which can be controlled to somergiy using the momentum
constant to escape local minima in the hypothesis spacele\WWid ANN implementation
may perform well on a larger data set, the actual performangeknown due to computa-

tional limitations.

5.3 Summary

The detailed mathematical and algorithmic structure feréxicon reduction model has
been presented. The latent semantic indexing model is ntateable than the artificial
neural network model. The training phase involves the ektya of cohesive phrases under
each anatomical cateogory from a training deck. The termsxracted from the cohesive
phrases and then mapped against the categories. Duringstiregtphase, the LDWR [66]
is used to extract the highest confident character infoomatnd query the latent semantic
model for the highest confident categories. The reduceddexs then constructed from
these categories and provided to the LDWR [66] for a secotatpretation of the input
word image. The next section will compare the effectivernéske recognition before and

after the reduction.

87



INPUTS:
r====Human Segmented Binarized Word Images

: Human Specified Presenting Medical Problem T
S
| v, ~ -
Ib( Fiiy 3 HEE, N;‘-' I'!l" ETE ) ¥ Y ,"?C*"'._L =AEL S~
N E N T T S N O T ”

A sliding window of 3 image words

Generate all possible substring sequences

k4
| =0+3 H*l Nu |
o' *E*N VO
CrA* —— *E* uo
*A*3 *H*N* = NO
*E*T* wu
NC

..011010000100111001010... <*— C*A*-H*F*-NO

Train each sequence to the topic category

----------------------J

* L &8 B & N J J
Respiratory
Distress

-': .\-"---.__ "'.
.-’;_-; HIDDEN C
]

SUBSTRING BITS CATEGORY

Figure 5.13: ANN Training
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INPUT: Human Segmented Binarized Word Images

(Ryd HEen NO srqurea A0kcL EALL

A sliding window of 3 image words

Generate all possible substring sequences

Y
| *0*3 H*l NU |
oY *E*N vo
C*A* = H'F* uo
o . | =H*N* —— NO
b~ wu
NC

...011010000100111001010... <*—— C*A*-H*F*-NO

Query the ANN to retrieve the topic category

.’ _.d,j_f I (‘ | —
y S w \ N Respiratory
Distress

:’r HIDDEN ‘I (confidence score)

SUBSTRING BITS CATEGORY

%
R

Figure 5.14: ANN Recognition
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Chapter 6

Recognition Experiments and Results

In this chapter, the results of several experiments ilaastthe effectiveness of our al-
gorithm. Accept rate, error rate, and raw rates are repdoteseveral experiments found
in Table 6.1. Improvements to recognition rates and err@srare reported in Table 6.2.
The effectiveness of the reduced lexicon is found in Tal8e A.description of the training
and test decks can be found in Table 6.4. The correct ranKingtegories by the lexicon
reduction algorithm is shown in Figure 6.1. The breakdowiegricon sizes by category

can be found in Figure 6.2.

CL CLT AL ALT SL SLT RL RLT

ACC | 76.34%| 76.92%| 63.52%| 66.59%| 70.51%| 71.51%| 70.70%| 71.06%
ERR | 71.93%| 69.65%| 57.24%| 47.12%| 62.26%| 59.44%| 62.04%| 59.45%
RAW | 23.31%| 25.32%| 32.31%| 41.73%| 30.30%| 32.73%| 30.62%| 32.63%
LS 5628 |8,156 |1,193 | 1,246 |2514 |2,620 |2,401 | 2,463

IL - - 23.89%| 8.02% | 16.06%| 10.46%| 16.61%| 12.23%
IHL | - - 33.33%| 97.98%| 48.19%| 73.99%| 46.59%| 62.96%

Table 6.1: Handwriting Recognition Performance
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CLTtoRLT | CLtoRL | CLTto ALT | CLTto SLT
RAW Match Rate| T 7.48% 17.42% | 117.58% 17.42%
Error Rate 1 10.78% 1 10.88% | | 24.53% 1 10.21%

Table 6.2: Comparison between Handwriting Recognitiondfxpents

LEXICON ANALYSIS METRIC | VALUE
Accuracy of Reductiond) 0.33
Degree of Reductiorp] 0.83
Reduction Efficacy) 0.06
Lexicon Density (') 1.07— 0.87
Lexicon Density (") 0.50— 0.78

Table 6.3: Lexicon Reduction Performance between the Cemmplexicon (CL) and the
Reduced Lexicon (RL)

ENVIRONMENT ITEM VALUE
Training Deck PCR Size 750
Testing Deck PCR Size 62
Training Deck Lexicon Size 5,628
Testing Deck Lexicon Size 2,528
Training + Testing Deck Lexicon Size 8,156
Training Deck Words for Modeling 42,226
Testing Deck Words to Recognize 3,089
Modeled Categories / RSVD Dimensions 24
Category Selection Threshold 0.55
Maximum Categories per Form 5
Average Categories per form 1.40
Max Phrases Per Category 50
Apple OS X Memory Usage 520 MB
Apple OS X G4 1GHZ Train Time 15-20 mins/exp
Apple OS X G4 1GHZ Test Time 3 hrs/exp

Table 6.4: Handwriting Recognition System Environment
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Lexicon Sizes by Category
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6.1 Performance Measures

ACC (accept recognition rate)number of words the word recognizer accepts above an
empirically decided threshold.

ERR (error recognition rate)number of words incorrectly recognized among the accepted
words.

RAW (raw recognition rate)top choice word recognition rate without use of thresholds.
LS (lexicon size)the lexicon size for the experiment after any reductions.

IL (truther word not present in the lexiconpercentage of words (for a specific experiment)
not in the lexicon as a result of incorrectly chosen categgoor due to the absence of that
word in the training deck.

IHL (human being could not completely decipher wonggrcentage of the !L set in which
even human beings could not reliably decipher all or soméefcharacters in the word

(given the context).

6.2 EXxperiments

CL (complete training lexicon)The union of all words in the training set.
CLT (complete training lexicon + test deck lexicor)he union of all the words in the

training and test sets.

AL (assumed training lexicon)This is a reduced lexicon constructed from the training
deck where the categories are determined by an Oracle.

ALT (assumed training lexicon + test deck lexicoBme as AL except that all words from
the test set are also inserted into the training deck cagdgricon. This gives the upper

bound for the effectiveness of the reduced lexicon strategy

RL (reduced lexicon)The reduced lexicon from the training deck, which is the orod
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words from the top ranked categories returned by the worolgr@zer. This is a practical
measure of the current performance of the system.

RLT (reduced lexicon + test deck lexicodame as RL except that all words from the test
set are inserted into the training deck category lexiconis hows the effectiveness of

word recognition under the assumption that the categoigdes are complete.

SL (synthetic term generation)his is the reduced lexicon in which the categories are de-
termined by a synthetic generation of the truth word. Thikéstheoretical upper bound of
RL in which the handwriting recognition is a 100% accept kait& a 0% error rate.

SLT (synthetic term generation + test deck lexicd@gme as SL except that all words from
the test set are inserted into the training deck categorgdax This is the theoretical upper
bound of RLT.

6.3 Discussion

In all experiments it is assumed that the word segmentatidreatraction has been per-
formed by a person. Also, forms in which 50% of the contemi@ecipherable by a human

being are omitted. This occurs 15% of the time.

In reference to Table 6.2 which is computed from the mosvegiechanges in Table
6.1 : The theoretical RLT (i.e. comparing RLT to CLT) imprewhe RAW match rate by
7.48% and drops the error rate 10.78% witthegree of reductiop = 61.59%. The practi-
cal RL (i.e. comparing RL to CL) improves the RAW match rate/42% and drops the
error rate by 10.88%, with degree of reductiop = 51.30%. The RLT and RL numbers
are close due to the difference in the initial lexicon siZe{ST/RLT starts with 6,561 words
(i.e. training deck and testing deck lexicons) whereas th#RC starts with 5,029 words
(i.e. training deck lexicon only). The RLT lexicon is morengplete, but the lexicon is

larger. The RL lexicon is less complete, but the lexicon igken Thus, RLT gives the
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advantage that the recognizer has a greater chance of tldebsorg a possible selection
and RL gives the advantage of the lexicon being smaller. THE ghows the theoretical
upper bound for the paradigm: (i) the categories are cdyrdetermined 100%, and (ii)
the lexicon is complete. The ALT (i.e. comparing ALT to CLmproves the RAW match
rate by 17.58% and drops the error rate 24.53% witlegree of reductiop = 83.01%.
The synthetic experiments (SL and SLT) also do not offer mongrovement which shows
perfect character extraction does not guarantee recogniiprovement. This is due to
two reasons: (i) a form is a representation of many cham@ed so some incorrectly
recognized characters are tolerated, and (ii) the remgiwords on the form to be recog-
nized are difficult to determine even when the lexicon is tmesed with only words of
known uni/bi-gram terms. Table 6.3 provides insight inte #ffectiveness of the lexicon
reduction from the complete lexicon (CL) to the reduceddenri (RL) experiments. The
lexicon density distance metri¢ shows less confusion among lexicon words considering
all the characters are equally important. This implies thatreduced lexicon will be less
confusing to the recognizer. Timegram lexicon distance metrghows an increase in the
guantity of words with common NSI encodings. This implies tecognizer has a greater

chance of selecting a word using the confidently selectedhctexs.

6.4 Summary

Both theoretical and practical recognition experimenigsehzeen shown both before and
after the lexicon reduction algorithm was applied. The atgom has shown approximately
8% improvement to raw recognition rate, a reduction in erede by about 11% and a
lexicon reduction of over 50% in practical experiments. He theoretical situation that
the categories are always correctly determined, a redognihprovement of about 18%,

a reduction in error rate by about 25% and a lexicon reducif@about 83% are shown.
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Chapter 7

Medical Form Search Engine

7.1 Search Method

In this section, various search engine approaches are cethpehe inputs to the search
engine are a set of PCR medical forms and a query. The outpuhase forms which

match the input query.

All known available search engines are based on the assumipigt the text is al-
ready in a digital text format. The technologies have fodumeparsing and organizing the
content in a variety of formats (e.g. PDF, PS, HTML, XML, arttier proprietary docu-
ment formats). There is no widely used search engine teoggevhich can directly search
and analyze the content of digital handwritten documenkss Guery ability is necessary
for the Health Surveillance (see Appendix) applicationdoess medical forms presented

with a specific type of medically related condition.

In order to have a query deck of sufficient size, we use theeldagut strategy which
is explained as follows. Suppose a total of 10 PCRs are dkaildake the first PCR as
the test deck and the remaining 9 PCRs as the training dediperfiorm the recognition
and tagging on that single PCR. Next, repeat the processpexicat now the test deck
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consists only of the 2nd PCR while the training consists effifst PCR and the remaining
8 PCRs. The recognition and tagging on the 2nd PCR is now ipeeid. This exhaustive
processing of recognition and tagging repeats 10 timesghlyeproviding a training deck
and an unbiased test deck of the same size. Applying thispsom 800 PCR forms, the
notion is the same, except the split is Leave-100; i.e. 8 mx@ats are performed using
groups of 100. Finally, a set of 1,250 phrases, constructed adjacent non-stopwords,
are extracted from an isolated deck of 200 PCR forms (i.eset@80 forms are not a subset
of the 800 deck) such that each phrase is found in at leastooneifh the 800 deck.

A query is performed by scanning the forms in the 800 test flmalecognized words
that match an input query phrase. Two query experimentsexfermed and displayed in
Figure 7.1: CL and RL. In the CL (complete lexicon) experite¢ne raw LDWR recog-
nized words computed from the full lexicon are compared regjahe query. In the RL
(reduced lexicon) experiment, the raw LDWR words computechfthe reduced lexicon
are compared against the query. A set of ranking rules argedppelevance determined,
and the recall-precision table generated (see Table 6.Figude 7.1). A relevant PCR is
a document in which a human truther classifies at least oner@we of each word from

the input phrase.

Ranking rules given an input phrase of exactly two words:
e Both words must match the recognized words or that PCR isatotrred.
e A double precision rank is computed by summing the valuekese two steps:
o Summing the frequencies of the occurring phrase words iddlcament.
o Summing the distance between all recognized word occuggeimcthe document
using Equation 7.1.1. Let(a;,b;) be a function which computes the distance between
the input phrase of two words, andb; such that andj respectively represent the word

position in the document.
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|a;i — by
Unlike typical text retrieval systems, the words on a PCR im@yncorrectly recog-
nized by the handwritten recognition engine. In additioeneyal search engines need to
be concerned about external influences such as spammingj; v8hmot a concern in this
application. Therefore, a more trivial ranking measurehsag of nearness/proximity in

Equation 7.1.1 is sufficient.

7.2 Results

The comparison of the complete and reduced lexicon quesiebe found in Figure 7.1.

The plot illustrates only those queries which returned asti@ne record. This is because

the precision valuel?(el%‘le?jievtS’”QGUEd) is undefined when no documents are returned [54].
Queries in the CL series returned 0 forms 73% of the time, ahdmed only 1 record on
average. The RL returned 0 forms 23% of the time and returrfiedatuments on average.

Thus, with RL, about 3 times more queries had at least on®nssp

NOTE: The two curves for CL and RL in Figure 7.1 are not dinecttmparable as the CL
curve reflects data from 50% fewer queries correspondin@seswhen no forms were

returned.

7.3 Discussion

One question that arises is the validity of the search engjppeoach. An alternative
search engine approach involving the expansion of the gigenys into their respective
ESI combinations can be applied directly to the initial LDWtaracter recognition results.
This would effectively bypass the more elaborate searcinerexcept that this alternative

approach significantly under-performs. While results atarned 99.8% of the time, with
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125 records returned on average, the precision of the seisultery low. As intuitively
expected, the uni/bi-grams match more terms due to the lfoa®ml information. The
recall/precision chart in Figure 7.2 illustrates a dropeatrieval effectiveness. This demon-
strates the dependence of the searches to operate at thiewerdather then the character
level. The lexicon reduction strategy which improves thedveriting recognition perfor-

mance also improves the search effectiveness as expected.

For example, consider input query phr&3dEST PAIN

CHESTis decomposed into: CH, CE, CS, CT, HE, HS, HT, ES, ET,C, H,,Bn8 T.
PAIN is decomposed into: PA, PI, PN, Al, AN, IN, P, A, I, and N.

In addition, the spatial information is known since the ihguery is provided by a user.

The ESI encodings faCHESTis decomposed into: 0COH3, 0C1E2, 0C2S1, 0C3TO0, 1HE2,
1H1S1, 1H2TO0, 2E0S1, 2E1TO0, 0C4, 1H3, 2E2, 3S1, and 4TO.

The ESI encodings fdPAIN is decomposed into: OPOA2, OP1I1, OP2NO, 1A0I1, 1A1NO,
2I0NO, 0P3, 1A2, 211, and 3NO.

Finally, all possible ESI sequences are generated: 0COP{B3%D, 0COH3$0P1I1, 0COH3$0P2NO,
OCOH3$1A0I1, etc...

If any of these ESI sequences match any of the characteakpatiodings from the

LDWR recognition, then that form is returned. Relevancyetedmined if the input query
wordsCHESTandPAIN are actually found on that form according to the truth.
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Figure 7.2: Recall/Precision Chart using Query Expansion
7.4 Summary

This section presents the effectiveness of a medical foarckeengine before and after
the reduced lexicon. Two methods have been presented: arfech the recognized words
are matched and the second in which only the highest confaderacters are matched.
The character matching scheme has very low performancaubeazharacters, with no
mapping, have no meaning. The word level matching afteredeation provided an in-
crease of successful queries by 50% with more possibilidesned to the user than had

the reduction not been applied.
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Chapter 8

Applications

Several applications are described in this section whichbemefit from the real-time
storage of PCR or other medical form data. The first exampderdeed is the procedure
for a completehealth surveillance systemhich takes a PCR form at the hospital, rec-
ognizes the content, stores and indexes the informationcené&ralized and secure data
repository. Once stored, other applications sucsyasiromic surveillance softwacan be
used to extrapolite trends and red flag regional medicalemscsuch as a pandemic. To
improve the communications of such a health surveillanstesy, it is necessary to comply
with existing standards involved in the exchange of medidarmation. This research is
shown to be compliant with the Center for Disease Controltd@alth Level 7 information
exchange protocols. Since the automated recognition ofaalefdrms is not perfect, the
integration of the technology with keying sites, to imprdiie efficiency of human data
entry of such information, is also proposed. The data cantessused to evaluate the qual-
ity assurance of healthcare personnel by government atisoi~inally, the application of

this research towards a prescription verification systepmatmacies is also described.
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8.1 Health Surveillance

...\We must prepare to minimize the damage and recover frgnfuaare terrorist attacks
that may occur despite our best efforts at prevention. Pgsteence has shown that pre-
paredness efforts are key to providing an effective resptmmajor terrorist incidents and
natural disasters. Therefore, we need a comprehensivematsystem to bring together
and command all necessary response assets quickly anthadffec. [131].

-United States Office of Homeland Security, 2002

The definition of a public health surveillance system is ‘timgoing systematic col-
lection, analysis, and interpretation of outcome-speddéta for use in the planning, im-
plementation and evaluation of public health practice’|[Z&e most important theme in
this definition is the reference to the collection of datathwut it, there is nothing to be
analyzed. As implied from the above quotation, access tacakdiata is one possible asset

in the construction of a national emergency system.

It is highly probable that no completely autonomous systamallect data with a
0% error rate. To date, there is no automated and centraizgdm in the United States for
retrieving significant medical information from paper fanThe amount of information to
manually digitize by human beings is simply too great. Hosvewith the introduction of
this medical form-driven handwriting technology, it is npwssible to add a new piece to

the emergency system.

Figure 8.1 shows the flow of data extraction and dissemindtioboth state govern-
ment (e.g. New York State) and federal systems (e.g. Ceotdditease Control (CDC)
[23]). The development of this system requires data in adstatized manner. The CDC
constructed the NEDSS format to manage diverse data in dast@nrganized format [23].
Once the data are available in a secure and centralizeditayog will allow for contin-

uous access to medical form data for the purposes of epidiegical analysis, outbreak
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detection, counter-bio-terrorist information technglogealth-care quality assurance, and

further enhancement to the medical student’s studies anccaess.

The health surveillance application described in Figuiealows the creation of a
data processing facility where high speed scanners careodaiscan stacks of PCR forms,
feed the forms into the image processing and recognitiooridiigms, and produce ASCII
text output as well as a PCR category, all with related contiddevels. These forms can
then be sorted within each category on content severity.eQocted, the forms can be
provided to the various branches of the Department of Heakponsible for health-care
provider quality assurance. This is currently a non-autedhprocess involving inefficient
human labor. In addition, the forms appear to be enteringylséem at a faster rate than
they can be analyzed, creating a continuous backlog of sticimation. Several problems

are currently created due to this information access slowrd

¢ A health care professional could continue several yeaisouttreceiving comments on
the quality of care. This means that all patients managedhaiyttealth-care professional
might have been affected by an incorrect or non-optimal n&diecision that could have

been addressed sooner.
e Any outbreak (e.g. whooping cough, SARS, ebola, bird flu)y ma undetected until a
substantial number of people are affected. The proposeliiHgarveillance System aims

to address these needs.

e The ability to improve and standardize flaws in rescue taditd techniques may take

years to discover.

Further details on infectious disease informatics, oathdetection, health surveillance

and biological terrorism can be found in [25] [28] [35].
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8.2 Center for Disease Control (CDC) Integration

The Public Health Information Network (PHIN) and the Naabiklectronic Disease
Surveillance System (NEDSS), standardized by the CDC, werated for such tasks as
establishing medical trends [23]. However, there are vastuats of data that are not being
collected due to resource limitations. Their systems camipeoved with the introduction
of medical form recognition and information retrieval grsis. The CDC also has a Secure
Data Network Standards and Procedures protocol for aliptyia secure communications

of such information [23].

The Logical Data Model Data Dictionary (NLDM) [23] protocwiodules of interest are:
e Observation class: allows subjective, objective and assest-based input.

e Observationnterp: allows a “very rough interpretation” of an obserwat

Using the data provided by the algorithms in this reseatot NLDM Observation
classes can be populated so that the following CDC PHIN systan use them: Early
Event Detection (EED), Outbreak Management (OM), and Gaomtasure and Response
Administration (CRA) [23].

8.3 Health Level 7 (HL7) Integration

Health Level 7 (HL7) [55] is an OSI layer data exchange protatesigned as a stan-
dard for message communication between medical applicati¥hile there is a grammar
and vocabulary to this system, there is also the ability teeteacustom message, called a
Z-Segment. The Z-Segment proposed should be in XML format,vaould contain the

following information:

(PCR — FORM)
(IMAGE — ID) [pcr-image-id)(/IMAGE — ID)
(CHECKSUM) [checksum|(/CHECKSUM)
(ACCESS — PERMISSIONS) [permissions{ /ACCESS — PERMISSIONS)
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(CRY PTOGRAPHIC — HEADER) [crypto-header] /CRY PTOGRAPHIC — HEADER)
(CRYPTOGRAPHIC — EXPIRATION) [crypto-expiration)(/CRY PTOGRAPHIC — EXPIRATION)
(CREATION — DATE) [creation-date /CREATION — DATE)
(EXPIRATION — DATE) [expiration-datef / EX PIRATION — DATE)
(AUTOMATED — COLLECTION — SITE — ID) [site-id] (/AUTOMATED — COLLECTION — SITE — ID)
(LOCALE — INFORMATION) [locale-information(/ LOCALE — INFORMATION)
(RECOGNITION — CONFIDENCE) [pcr-recognition-confidencdl/ RECOGNITION — CONFIDENCE)
(HUMAN — VERIFIED) [human-verified(/ HUMAN — VERIFIED)
(HUMAN — NOTES) [human-notes]/HUM AN — NOTES)
(HUMAN — LANGU AGE) [human-language]/ HUM AN — LANGU AGE)
(PCR — TAGGED — CATEGORIES)

(CATEGORY?7 ) [category-name] /CAT EGORY7)

(CATEGORY?>) [category-name] /CAT EGORY?)

(CATEGORYy,) [category-name] /CAT EGORYy,)
(/PCR—-TAGGED — CATEGORIES)
(RECOGNITION — DATA)
(WORD7)
TEXT) [text] (TEXT)
RECOGNITION — SCORE) [recognition-scorel RECOGNITION — SCORE)
COORDINATES) [coordinatesf COORDINATES)

TEXT) [text] (TEXT)
RECOGNITION — SCORE) [recognition-scorel RECOGNITION — SCORE)
COORDINATES) [coordinatesf COORDINATES)

(WORDy,)
(TEXT) [text] (TEXT)
(RECOGNITION — SCORE) [recognition-scoref RECOGNITION — SCORE)
(COORDINATES) [coordinatesf COORDINATES)
(/WORDy)
(/RECOGNITION — DATA)
(/PCR — FORM)

All segments must be protected by the maximum governmembapg security and
cryptographic standard when transmitted over a networkthEtmore, the XML message
should be encrypted with a private key-based algorithm.pials would need to register
to have access to a specific private key. This restricts tedsgacess to those designed by

the appropriate Department of Health agencies.

8.4 Keying Sites

Currently, the only way to enter medical information is tavddeyers enter this infor-
mation at data entry warehouses. When great amounts of alediormation are to be
collected, it is inefficient to rely on human data entry. Arpmovement to this is to have
an automated medical handwriting recognition system wejis interpretation of a form
to a human keyer. The human keyer can visually confirm andellyechange only the in-

formation which is inaccurate. The improvement in datayetine can be estimated using
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the RAW match handwritten recognition rate.

8.5 Quiality Assurance Improvement

When a trained professional assists a patient, how is tHerpgnce of that health-care
worker evaluated? A backlog of medical forms currently exaékie to the enormous daily
influx of PCR forms. Therefore, a health-care professionab &ids a patient may not
be evaluated for years. Perhaps they are not even in the sais@igtion or in the same
career path. The spot checking of a small portion of medimah$ in a short period of
time is more effective than analyzing all forms with a long.lat, therefore, follows that
the forms to retrieve are those which most likely involve tiere complicated and, hence,
more error-prone rescue scenarios (e.g. respiratorytariidee brute force approach is less

effective.

8.6 Prescription Medications Protection System

In spite of the advancements of computer technology, papili used to file prescrip-
tions. In some instances, misinterpretations of medicsdgiptions have caused unneces-

sary suffering [101].

Common causes of medication errors as described by [101]:
e Look-alike containers
e Poor handwriting and look-alike drug names
e Oral orders misheard or understood
e Improper patient identification (in hospital and pharmacy)
e Improper drug storage

e Taking another’s medication
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While not all of these can be addressed by an automated rigiooggystem, thgpoor
handwritingcan be checked. Since the automated system needs contarsaiigtion
from the doctor should include a short description or redsothe medication in addition
to the medication and dosage which is prescribed. The inttooh of this system would
only be used as a supplement to that of the pharmacist. Gamgigdthat such errors result
in 1/12 of hospital admissions and 1/8 of emergency roontsvj$D1] [3], according to the
American Society of Health System-Pharmacists (ASHP)d3upplemental automated
system is justified. Although it is important to note that theeoduction of another tech-

nology also runs the risk of creating additional errors [98]

While no automated system can solve this problem completelassistive system
can reduce suffering in a small number of subjects. It is psep that a standard form be
constructed to capture the basic conceptual informatiatraiEhecking can be performed

on those medications which might be hazardous to certaiarmat
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Chapter 9

Software System

A new enterprise software environment, built by the autihomf scratch using approx-
imately 50,000 lines of well structured object oriented @@ode, facilitated the follow-
ing processes: (i) truthing: the process of data entry dioath data (see Figure 9.2), (i)
reviewing: the process of correcting and viewing truthetd dsee Figure 9.3), (iii) integra-
tion with any SQL compliant relational database managersgstem (RDBMS) to orga-
nize and manage sets of images to be truthed and revieweHi{gae 9.1), (iv) a scientific
visualization tool capable of observing the applicatioralbftext extraction and recogni-
tion algorithms presented in this paper (see Figure 9.4)a (wmulti-threaded, multi-tier,
cross-platform environment using transport layer seg({fiitS) over an object serialized
TCP/IP layer to facilitate secure real-time truthing, esving and evaluation, and (vi) a
series of batch operations involving image processinggWwaiting recognition and form
retrieval. In addition to the elaborate GUI, the system canfiqgm combinatorial algorithm
sequences on training and test decks and, finally, outpahsixie reports. The software
is the result of strong engineering effort and successfoipietion of rigorous unit test-
ing. The architecture consists of several diverse and lsleagaogramming languages and
database engines includidgva®! [60] andMySQL® [90].

There are four interfaces to the software. Figure 9.1 shbesnterface for TCP/IP
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network communications and between multiple clients tosagieted server. There is also
a frame in which the creation and management of sets is peefdr Figure 9.2 illustrates
the interface used by people to identify the locations amerjmetation of words on PCR
images. Figure 9.3 shows an interface used for the reviewarfication of words by an
additional arbitrator. Figure 9.4 is an interface whicloa the real-time analysis of pre-

processing, binarization, post-processing, and recograigorithms used during research.
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Chapter 10

Conclusions

10.1 Summary

This research describes the development of new algoritlynylbridizing handwriting
recognition, information retrieval, image processinguna language processing and la-

tent semantic analysis.

Major contributions of this research are:

e The first search engine which operates on handwritten middicas (see Chapter 7).

e A new lexicon reduction paradigm which can be applied todewidriven handwriting
recognition algorithms (see Chapter 5).

e New metrics for evaluating the performance of lexicon reauncalgorithms (see Chapter
4).

¢ A new binarization algorithm with comparative results agabther such algorithms and
post-processing techniques. A new strategy using sinabwigves has been introduced.
This is the first algorithm that operates on carbon paperCéepter 3).

e Six practical applications of this research (e.g. healtivesllance infrastructure) (see
Chapter 8).

e Compliance with standard health informatics protocolal@gthed by the CDC [23] and

117



HL7 [55] (see Chapter 8).

¢ A highly evolved software system capable of analyzing theskniques (see Chapter 9).

Insights provided by these new algorithms:

¢ The binarization algorithm shows a nhon-boundary restectipproach based on compar-
ing the intensity of different regions of the image using a&aajectory. Prior algorithms
depend on such techniques as sliding windows, mean-varieormparisons and interpo-
lations that are shown to under-perform. This new technitpteonly improves the per-
formance of automated algorithms, but produces imageshdrie enhanced to the human

eye as well.

e The lexicon reduction paradigm shows that only a few charadtom words are suffi-

cient in determining a topic category. This is analogoustohiuman interpretation of the
content of a form even if some of the characters cannot belrgadperson. More specif-

ically, this shows that the contextual acquisition of harithiag content can be accurately
represented even with partial information. This is an improent over algorithms which
attempt to achieve perfect recognition as a prerequisikmowvledge representation. This
also suggests that humans toggle between recognition artdntqust as the lexicon re-
duction algorithm bootstraps the same recognition proggtssan intermediate statistical

interpretative step.

e The automated indexing of semantic content using partiattpgnized natural language
encoded information, mimics the human ability to get the gfshe information on the
form. These computations have resemblance to ontologimaileéworks used in anatomi-
cal information science. This is shown with the mapping atiphcharacter recognition

information to topic categories for recognition and retaleof medical data.
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A new paradigm for lexicon reduction and information retakin the complex situ-
ation of handwriting recognition of medical forms. The &gy is novel in their hybridiza-
tion of linguistics, statistical modeling and handwritiregognition. A series of theoretical
and practical recognition rates are provided as evidenodnfrovement in raw recogni-
tion rate from~25% of the words on a PCR form to approximatel$3% has been shown.
A reduction in false accepts by7%, a reduction in error rate by10%-25% and a lexicon
reduction from 32%-85% were also attained. In addition &orimation retrieval approach
using the lexicon reduction technique showed an increadedaoment return of 50%. The
addition of a category motivated query facilitates abo®t88levant searches at the recall

position of 0.1 (see Table 7.1).

In addition, certain computational elements of bootsthagare consistent with the
human interpretation of information in unknown visual @it The training data used
for the experiments can be considered incomplete due tantierent complexities in the
definition of a character. While the error rate is high for th@chine, it is also high for the

human and yet, both systems can still interpret the infaonat

Unfortunately, the error rate in the handwriting recogmitstill remains high. This is
consistent with approximately 15% of those forms in whicimlans could not decipher at
least 50% of their content. For all words across the remgi88%6 of forms, approximately
10.5% of the words contained at least one human unrecodeizhbracter. Examples of
the difficulties in interpretation are evident in the taxomnofrom Section 1.4. The main
difficulties are (i) faded handwriting creating lost strekand (ii) shaky handwriting in
mobile environments. The situations create error becatidednconsistencies with the
training values. Furthermore, while the human still hasghér recognition rate, it does
take longer for a human to interpret the handwriting vergasling more clean handwrit-
ing. This implies that higher level semantic reasoning iseseary to interpret medical

handwriting.
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10.2 Future Work

The following is a list of items that needs to be researchebidmveloped in order to com-

plete an operational system:

¢ Electrocardiogram (ECG) Category Modelintn certain Advanced Life Support (ALS)
cases, paramedics may tape an ECG sample printed from th&lEfit&llation unit to the
PCR form. This provides the temporal electrical nervousssygirings at various positions
in the heart which trigger the cardiac muscles. There ardtaals of such possible rhythms
which indicate such things as heart attack or heart dis@dsg information could be used

to assist with form context tagging.

e Temporal Information ModelingAll PCR forms contain temporal information involving
arrival and departure from the scene, extrication duratimhat least two vital signs, at two
different times, for comparative purposes. It is concddbat such information, would
be useful in further restricting the possible categorieswelver, substantial timing infor-

mation needs to be available to data mine such trends.

e Form Registration:Each state is likely to have its own form and, in the futurenya
different types of forms may be involved. To accommodats, tkiiown formats need to be
registered within the system. Only after the appropriatenftemplate is determined can

the recognition task begin.
e Anchor DetectionBefore any recognition task is performed, anchor pointshenférm

indicating the bounds of handwriting text locations mustdentified. In addition, the de-

tection and recognition of bubble sheet values, circletsteetc. must be determined.
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e Symbol RecognitionMedical text often contains symbols that need to be deteeted
tracted and recognized. Unlike most characters in the Emdginguage, symbols can in-
volve several strokes of various sizes and combinatiomaplgitreating symbols as addi-

tional character classes will intuitively degrade rectigniperformance.

e Word SeparationWhile form lines on the NYS PCR may assist with word separatio
tasks, other form templates may lack such anchor pointgdditian, ambulance movement

and emergency environments complicate the expected |lamgthoundaries of words.

¢ Word Spottingin this task, the input of a set of forms and a word to locatbaigd pro-
duce those forms without brute force recognition of all weor@ihis would greatly improve
the indexing ability of medical forms for search enginesisiit due to the difficulty of the

recognition task as opposed to analysis of ASCII text.

¢ Writer Modeling: From the practical perspective, it is important to imprave tecog-
nition rate of medical forms using all possible means. Phthig effort can involve reg-
istration of health care professionals handwriting agaansidentification value. Suppose
that a standard health care ID is known and a sample of hatialgvfiom that individual
is known. Then models can be constructed based on the indigavriting. Although the
emergency environment is expected to produce differendwating for the same writer,

nevertheless, this approach is expected to solve varigt@rpgnce and run-time issues.

¢ Relevance Feedbackiedical form retrieval performance may improve by incoqiorg
human or machine feedback. A human could mark query ressitslavant or irrelevant.
The system could then construct a better representativy qaang terms from the marked
documents. The topic categories from human indicated aatedocuments could also be
used to restrict the returned documents to the same or sicalegories. Further details on

relevance feedback approaches can be found in [102] [108].
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10.3 Limitations

Chapter 3 specifies a binarization algorithm which was desigo operate with carbon
mesh forms. However, not all forms or environments requirg particular algorithm to
be used. Therefore, the appropriate binarization algorityould need to be determined
for any registered form. Chapter 5 describes a lexicon malustrategy that assumes
that there is sufficient body of text. In other words, deteimy a category from a single
word is not expected to work. In addition, a PCR deck that cam¢provide any cohesive
phrases under a category implies either that there are rest@hphrases or that the deck
has to be larger. Chapter 7 provides a search engine thattexgay two words as input
due to the modeling of the cohesive phrases. Involving nfaae two words may result in

an exponential increase in phrase computations dependitigggequirements of a system.
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Appendix A

Medical Ethics and Information Security

While the technology to design medical recognition systé&rnsecoming a reality, it
is also important to note the ethical responsibilities inhsa task, particularly when re-
lated to epidemiological classification. The inventionaéls technology as a medical form
search engine would not be made available to the publicrfeaqy and security concerns;
instead, the design would be restricted to those medicabpeel who are authorized to
search for desired information. Therefore, as expectegstems that use this research,
and including this research itself, it is imperative thatigra confidentiality remain se-
cured [19] [25] [28]. The best way to handle this is by blockiecognition or storage of
any patient-specific information during the recognitiomgd, if such information is avail-
able. Note that the medical forms in this study have patiesiricted information blanked
out. The security of patient information is protected by HHEAA Privacy Standard [33]
[10].

In addition to patient security, there is also a need to pta# medical related in-
puts and computed outputs. To defend against such compufiniation from being
acquired by an unauthorized party, various cryptograpdgtisty protocols must be inte-

grated. However, cryptographic technologies, for infaioratransfer and storage [112],
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and all publicly available cryptographic algorithms (axdihg the impractical Vernam ci-
pher [112]) are vulnerable to time. More specifically, im@tion protected with the most
secure of cryptographic algorithms today can likely be ased using a brute force at-
tack, using a rough estimate of 10-15 years; hence, the iNdtiostitute of Standards
and Technology (NIST) approves such algorithms as the Agk@fncryption Standard
(AES) with a 10-year expiration. To accommodate this situraia migration step from one
cryptographic system (e.g. AES) to a later one must be paddr If a brute force attack
upon the public appears reasonably possible, then such i@ahadalysis system must be
disabled until the data can be properly migrated to the iatgptosystem in a secure and
isolated environment. Further discussion on data miniriggomedical applications, as it
pertains to the Terrorist Information Awareness (TIA) paorg developed by the Defense
Advanced Research Projects Agency (DARPA) [30] [31] [32Kliscussed by Chen, et al.
[25].
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Appendix B

Parallel Processing

Due to the complexity of the recognition task across a ggmgcaegion, various strategies

in distributing the work load are necessary.

e Region Level Parallel Processinguppose New York State needed to recognize a vast
number of forms. Automated sites should exist at each halspither than transporting all
forms to a central location. Once a set of forms is scannedenutjnized at the automated

site, the data can then be more efficiently centralized (gpedB.1).

e Deck Level Parallel Processing@uppose that a region site has a great volume of medical
forms. For example, it is expected that New York City will bavlarger volume of medical
documents than Buffalo. However, the time constraints dogaizing all forms within the
region is constant. In order to reduce problems with a larggion falling behind, more
machines can be used to distribute the decks. Once the sistesimed, the recognition

procedure for all subsequent forms can be handled indepénde
e PCR Level Parallel Processingsuppose that the Region and Deck level distribution is

still inefficient. The next step is to parallel process tlgoathm itself. This research allows

for two additional breakdowns: (i) each of the five handwgtsections on the PCR image
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Local Local Local
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PCR's PCR's PCR's

Q0O

-Servers

Global
------------------------------------------ R-SVD
Matrix

Figure B.1: Parallel Processing

can be binarized independently, and (ii) the initial reabgn of confident characters for
each word can be handled independently. These tasks carplspaptely distributed to
additional machines with higher processing power. Oncsligil, these machines would

report back to the central machine to connect the piecesamtthae with the algorithm.
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Appendix C

EMS Abbreviations List

Table C.1 contains a list of commonly used abbreviationd byehealthcare profession-

als on PCR forms. They allow more information to fit withindfoboundaries as well as

increase the speed of documentation during the rescud.effbe left column shows the

abbreviation used and the right column indicates its rdgmemeaning. General case-

sensitivity for the abbreviations are shown.

ABBREVIATION | MEANING

# number

(h) hypodermic

(R) rectal

1x once

2 secondary / due to
2nd second degree

a.s. left ear

A.U. both ears

abd. abdomen

abdl. abdominal

ABG arterial blood gases
adm. admitted

AEMT advanced emergency medical technic
ALS advanced life support
AM before noon

amp. ampule

amt. amount

ant. anterior
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as lib. as desired

ax. axillary

B black

b.i.d twice daily

B.M. bowel movement

B.S. blood sugar

bilat bilateral

bl. blood

BGL blood glucose level
BLS basic life support

BP blood pressure

C. centigrade

clc chief complaint

c/o complaining of

CA cancer

CAO/COA conscious alert oriented
cap. capsule

CCuU critical care unit

CHF congestive heart failure
ck check

cl chronic

cl. chloride

cm centimeter

cmp. compound

CNS central nervous system
CO2 carbon dioxide

con't. continue

COPD chronic obstructive pulmonary disease
CPT chest wall percussion
CS cesarean section

CSF cerebral spinal fluid

Cu. cubic

CVA cerebrovascular accident (stroke)
D.O.A dead on arrival

D.O.B date of birth

D.T.s delirium tremens

D/C discontinue

D/S dextrose in saline

D/W dextrose in water

dil. dilute

disch. discharge

dr. dram
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DSD
DTR
Dx
E.D.C.
EMS
E.S.
ea.
EKG
emerg.
EMT
ETOH
ext

F.B.
F.R.O.M
F.U.O
FD
FHB
fl.

FR
FRU
fx
G.B.
G.C.
G/W
gal.
gen.
Gl
Gm.
ar.
GS
gtt.
GU
H20
HEENT

ht.
hx
& O
[.M.
ICU
inc.

dry sterile dressing

deep tendon reflex
diagnosis

estimated date of confinement
emergency medical services
emergency service

each

electrocardiogram
emergency

emergency medical technician
alcohol

extremities

fahrenheit

foreign body

full range of motion

fever undetermined origin
fire department

fetal heartbeat

fluid

first responder

first responder unit

fracture

gall bladder

gonococcal infection (gonorrhea)
glucose in water

gallon

general

gastro intestinal

gram

grain

gunshot wound

drop

genito-urinary

water

head / eyes / ears / nose /throat
hour of sleep

height

history

intake and output
intramuscular

intensive care unit
incontinent
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incl.
incp.
ing.
inspr.
int.
invol.
v
kg
km
KVO
(L)
L.
lat.

Ib.

liq

LLQ
LMP
LOC
LPM
LPN

LRI

LUQ

m

max.
med/surg
meq

MI

min.

mm

mog
MVA

n/g

N/S

N/V

Na
NaCL
neg.
NKA
NKDA
no.
norm.
NPO

include

incomplete

inguinal

inspiration

internal

involuntary
intravenous

kilogram

kilometer

keep vein open

left

liter

lateral

pound

liquids

left lower quadrant
last menstrual period
loss of consciousness
liters per minute
licensed practical nurse
lower respiratory infection
left upper quadrant
medicines

maximum
medical-surgical
milliequivalent
myocardial infarct (heart attack)
minute

milligram

microgram

motor vehicle accident
nasal gastric

normal saline
nauseau/vomiting
sodium

sodium chloride
negative

no known allergies

no known drug allergies
number

normal

nothing by mouth
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02
0.S.
0.U.
OB
oint.
0z

p.

PD

P.E.
P.I.D.
P.O.
p.r.n.
PEARL
ped
per
PERL
PM

po

po
pOSS.
post
post part
post.
prep.
pt

pX.

q

g.d.
g.h.
q.l.d.
g4h
(R)
R.
R.O.M.
R/O
reg.
rehab
RLQ
RUQ
RX
S.0.S.
sat.

oxygen

left eye

both eyes/ each eye
obsterics

ointment

ounce

pulse

police department
physical exam
pelvic inflammatory disease
telephone order
whenever necessary
pupils equal and reactive to light
pediatric

by

pupils equal/reactive to light
afternoon

by mouth/orally
orally/by mouth
possible
post-operative

post partum
posterior
preparation

patient

physical

every

every day

every hour

four times a day
every four hours
right

respiration
range of motion

rule out

regular
rehabilitation

right lower quadrant
right upper quadrant
prescription

once if necessary
saturated
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Sc.
seco
sep.
SNT
So.
sob
Sod
staph
stat.
strep
subl.
tab
TBA
tbsp.
temp
tid
TPR
tsp
TX
unr
V.O.
V.S.
vag.
vasc.
via
vol.
W.
WI/N/L
wkK.
WNL
wit.
x1
X2
X3
x4
ylo
yo
yrs

subcutaneous
second

separated
soft-not-tender
solution

short of breath
sodium
staphylococcus

at once (immediately)
streptococcus
sublingual

tablet

to be admitted
tablespoon
temperature

three times daily
temperature pulse respiration
teaspoon

transport
unremarkable

verbal order

vital signs

vaginal

vascular

by way of

volume

white

within normal limits
week

within normal limits
weight

once / applies to one
twice / applies to two
applies to three
applies to four

years old

years old

years

Table C.1: Handwriting abbreviations used on PCRs
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Appendix D

The EDGE Project [36]

In the past, it has taken up to 6 weeks to identify any form dboaak (e.g. whooping
cough, SARS) or bio-terrorist attack. As a result, the NewkYetate Department of Health
is critically seeking practical, alternative methods fatanating the data input of medical
information. This urgency, however, is seconded by themary goal of providing med-
ical care. One such technology developed was a tablet-bked which could store all
information digitally. This would, in theory, bypass theedefor paper forms; particularly
the NYS PCR. The EDGE device, developed by CUBRC, is one swgtluiment that has
been deployed as a beta project [36].

The EDGE (Electronic Data Gathering for EMS) [36], shown igufe D.1, is a
hand-held computer platform developed by the Center fongpartation Research. It is

designed for use by pre-hospital care providers (e.g., EMMY paramedics) with the ob-
jectives to:

e Improve the timeliness, quality and quantity of data chitaming the pre-hospital care

environment, particularly for cases associated with megticle crash-related trauma.
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Figure D.1: EDGE Device

¢ Provide EMS personnel with real-time support and infororaguch as treatment proto-

cols and prompts for required data.

¢ Provide a tool to improve pre-hospital care quality.

Western New York (WNY) has served as the beta test site for EB&elopment and
testing. As of this writing, EDGE units are being used by appnately thirty emergency

response agencies, including 14 commercial and 16 voluEMd& agencies. [36]

While in theory these devices were expected to perform weihe scientists believe
they will not be practically ready for at least another decdtimergency environments are
conducive to chemicals, extreme cold and heated tempegtsea and fire rescue, bodily
fluids, as well as complex physical movement such as exitatnass casualty incidents,
terrorist and biochemical attack. During these 18 montiesunits, while of excellent de-

sign and concept, have frustrated some health-care professand have, at times, broken
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down. Even one failure is unacceptable in the highly sttésstScue environment. There-

fore there are concerns regarding the current practicatitycost.
While to some this technology does not appear to be able taagepaper documents

yet, the need to capture real-time health data, which campatp four years behind, is

strongly desired due to its potential value in epidemiatagsystems.
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