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Abstract— Since TCP traffic is and may remain as the most
popular traffic type in the Internet, it is important to evaluate
the performance of TCP in networks employing optical burst
switching (OBS), a promising paradigm for the next generation
Optical Internet. This work is the first comprehensive study of
the TCP performance in OBS networks. Our results provide
valuable insights into the interactions between the TCP con-
gestion control mechanism and OBS-specific mechanisms such
as burst assembly/disassembly and buffer-less burst switching.
In particular, we identify various factors that result in TCP
throughput gains and penalties, and determine optimal burst
assembly times to be used in OBS networks. In addition, TCP
throughput models are developed for the three most popular
TCP implementations, i.e., SACK, Reno and New-Reno, and are
validated through simulations.

I. I NTRODUCTION

IP over Wavelength Division Multiplexing (WDM) network-
ing is a promising architecture to support the expected huge
bandwidth demand. Optical Burst Switching (OBS) integrates
IP and WDM by leveraging the intelligence and processing
capability of electronics as well as the virtually unlimited
capacity and low per-bit cost of optical communications (see
e.g., [1], [2], [3]). Since OBS combines the best of opti-
cal circuit switching (wavelength-routing) and optical packet
switching while avoiding their shortcomings, it has received
a lot of attention (see http://www.cse.buffalo.edu/ qiao/wobs
and http://www.obsforum.org for related links to activities and
publications).

In this paper, we study TCP performance in OBS networks,
motivated in part by the fact that TCP/IP [4] is a prevailing
mechanism for data transmission today and will likely remain
so in the next generation Optical Internet. Such a study will
also shed light on improvements that need to be made to the
current TCP/IP implementation in order to take full advantage
of high-speed optical networks (e.g., [5]).

In a TCP/IP over OBS network, the TCP sender/receiver
is connected to an OBS network through several IP routers,
which form two local IP access networks. The unique aspects
of the TCP/IP over OBS network that are relevant to this study
are as follows. Firstly, several IP packets from a TCP sender
are assembled into a “burst” at an ingress node of the OBS
network. Secondly, this burst is then switched (as a whole)
inside a bufferless OBS core (since no optical RAM exists
today, nor is it likely to appear in the near future). Thirdly,
the burst is disassembled into IP packets at an egress node
of the OBS network and forwarded to the corresponding TCP
receiver.

As a result, the performance of TCP in an OBS network
can differ from that in a packet switched network. This is
because, for example, the burst assembly mechanism in OBS
not only introduces an extra delay to incoming IP packets, but
also changes the incoming IP packet traffic processes and in
particular, enlarges the transmission unit from a packet to a
burst. As will be shown later, while assembly delay introduces
somepenalty to the TCP throughput, the combination of burst
assembly and the bufferless nature of the OBS core can also
delay the first packet loss event for a given TCP flow, thus
enabling its TCP congestion window to grow for a longer
period of time before being halved due to a packet loss indi-
cation. Such a delayed first loss (DFL) in turn results ingains
in the TCP throughput. In particular, with bufferless switching
inside an OBS network, data (burst) losses in an OBS network
occur randomly, mostly due to the short range burstiness of
the assembled burst traffic, as opposed to correlated packet
losses due to long range burstiness in the packet traffic and
buffer overflow in electronic packet switched networks.

So far, only a few papers have addressed TCP performance
in OBS networks, and none is thorough enough in analyzing
the impact (e.g., gains and penalties) of the burst assembly and
bufferless switching mechanisms in OBS networks on the TCP
throughput. For example, the authors in [6] studied the impact
of several burst assembly algorithms on the throughput of TCP
in OBS networks through simulations only. The authors in [7]
carried limited analysis of TCP Reno’s throughput in OBS
networks, but the analytical results therein are mostly confined
to the case with a single TCP flow whose access bandwidth
is either very low or very high relative to the assembly time.

In this paper, we conduct both analytical and simulation
studies of the interactions between the TCP’s congestion con-
trol mechanism and the unique burst assembly and bufferless
switching operations within the OBS network. We develop
closed form throughput models for the most common TCP
implementations such as SACK, Reno and New-Reno. Several
nonintuitive differences in the performance of these TCP
flavors and the sensitivity of their performance to the choice
of the burst assembly time are also discussed.

The rest of the paper is organized as follows. In Section
II, we first provide some background information including
the notations to be used, and the major differences among the
three common TCP implementations, i.e., SACK, Reno and
New-Reno. We analyze the TCP throughput and optimal burst
assembly time for SACK, Reno and New-Reno in Section III.
OBS-specific factors that result in TCP throughput gains and
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penalties are discussed in Section IV. Section V presents the
simulation results and discussions that validate the proposed
TCP throughput models. Finally, Section VI concludes this
paper.

II. BACKGROUND

In this study, we assume that each TCP segment is contained
in one IP packet as in [8] (but in our study, multiple TCP
segments may be contained in one burst). Further, a simple
timer-based burst assembly algorithm will be considered,
although much of the analysis and discussion will also be
applicable to other burst assembly algorithms. Using such an
assembly algorithm, a burst assembly timer is initialized at the
beginning of each assembly cycle at an OBS ingress node.
The packets which are destined to the same OBS egress node
and arrive before the timer expires are assembled into the
same burst. After a burst is assembled, it is then transmitted
as a basic unit through a bufferless OBS core (cloud) to the
destination OBS egress node, where the burst is disassembled
back into IP packets, which are then sent to TCP receivers.

When using the timer-based assembly algorithm, the maxi-
mum delay for any packet inside a burst to traverse the OBS
network is bounded by the assembly time and the propagation
delay from the ingress to the egress (which is known if a
label switched path is already chosen). In other words, there
is no additional, often unpredictable queueing delay inside the
OBS core. As a result, one may set the assembly timer to
an appropriate value for delay sensitive (but loss-insensitive)
real-time applications according to the propagation delay, the
available packet delay budget, and/or the packet arrival rate. A
typical value of the assemble time is between a few hundreds
of nanoseconds to a few hundreds of milliseconds, depending
on the applications.

Note that in the TCP/IP over OBS network, there may be
packet losses in the two local IP access networks that connect
TCP senders and receivers to the OBS edge nodes where
TCP segments are assembled and disassembled, respectively.
And the impact of such packet losses on the performance
of current TCP implementations has been studied in many
previous works such as [8], [9], [10].

On the other hand, inside the OBS network, there may be
burst losses. Typically, retransmission of the lost bursts is not
supported within the OBS network, and the lost TCP segments
will be retransmitted by their TCP senders according to the
congestion control mechanism employed by TCP. Accordingly,
such burst losses insider the OBS network may lead to more
significant loss of TCP segments than the packet losses inside
an conventional electronic packet-switched network mainly
due to the bufferless switching nature of the OBS network. In
this paper, we will focus on the impact of burst assembly and
burst losses within the OBS network on the TCP throughput.
To distinguish such an impact from that of the packet losses
in the access networks, we will assume that the IP access
networks are lossless while the OBS network has a burst loss
rate� (see Sec. III for more discussions).

A. Notations

To facilitate our presentation, the following notations will
be used for a TCP flow:

� � local access bandwidth to an OBS ingress

(in either segments per second or Bps)

�� � Burst assembly time (in seconds)

�� � TCP maximum window size (in segments)

� � Number of segments from one TCP flow

contained in one burst

� � TCP throughput (in segments per second)

��� � TCP Round Trip Time (in seconds)

��� � TCP Time Out Value (in seconds)

�	
 � Triple Duplicate Period, a period between

two triple duplicate ACK events

��	
�� � duration of the�th TDP or�	
� (in seconds)

�� � Number of segments sent in�	
�


� � Number of sending rounds in�	
 �

�� � Sending window size in the�th sending round

(in segments) in�	
�

��
 � Time Out Period

���
�� � duration of the�th TOP or��
� (in seconds)

�� � number of segments sent in��
�

Note that the number of TCP segments from one TCP flow
that are assembled in a burst,�, is at least 1 even when the
assembly time�� � �, and is at most equal to the maximal
window size��. That is,� � �������������. As to be
discussed, the TCP throughput in an OBS network will be a
function of� (��), RTT, and the burst loss rate�.

B. Reno, New-Reno, and SACK TCP Implementations

In this subsection, we briefly describe the main differences
between the three common TCP implementations: Reno, New-
Reno and SACK TCP. So far, only limited analysis of TCP
Reno in an OBS network was carried out in [7], as mentioned
earlier.

Reno TCP refers to TCP with Slow Start, Congestion
Avoidance, Fast Retransmit and Fast Recovery algorithms.
When Reno starts, it enters the Slow-Start phase first with
a congestion window of size one, and then exponentially
expands its sending window after all the packets transmitted
in the previous round are acknowledged. When the congestion
window reaches a certain threshold, Reno enters the Conges-
tion Avoidance phase during which the window expands by
one packet per round.

Reno distinguishes two types of losses, namely timeout
(TO) losses and triple duplicate (TD) losses. A TD loss
occurs when a Reno sender receives three duplicate ACKs
for the same packet, in which case the sender will not wait
for a TO before retransmitting the lost packet. During the
retransmission, the sender halves its congestion window in
response to the loss (or congestion) indication. The rationale
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behind this is that a TD loss only indicates light congestion.
On the other hand, a TO loss is treated as an indication of
heavy congestion, may occur if no more than 3 packets are
successfully transmitted before the timer expires. In such a
case, Reno enters the Slow Start phase (with a congestion
window of one packet), followed by the Congestion Avoidance
phase, to retransmit the lost packets as well as new packets.
Note that when multiple packets are lost in the same round,
e.g., when a burst containing a large number of packets is
lost, Reno will halve its congestion window every time it
successfully retransmits one lost packet and receives three
new duplicate ACKs for the next lost packet in the burst.
Eventually, its size may become less than 3 (e.g., this will be
the case if the congestion window at the time of the burst loss
is small enough). After that, since it is impossible to receive
three duplicate ACKs, an additional TO event may be triggered
for the remaining packets lost in the burst, which will cause
Reno to enter the Slow-Start phase.

New-Reno attempts to recover from multiple losses in a
round without halving the window each time when retransmit-
ting a lost packet. Even when multiple packets from a single
window of data are lost, New-Reno may recover without a
TO by retransmitting one lost packet per RTT upon receiving
each partial ACK (which acknowledges a packet with a
new but not the highest sequence number), without waiting
for three duplicate ACKs. It does not halve the congestion
window until all the lost packets from that window have been
retransmitted. With the above changes, New-Reno improves
the TCP throughput over Reno in a packet switched network.
However, in an OBS network, when a large burst is lost,
New-Reno can significantly prolong the retransmission period
during which no new packets can be sent, therefore its TCP
throughput may be worse than that of Reno.

The congestion control mechanisms used in SACK is a
conservative extension of Reno’s congestion control in that it
uses the same algorithms for increasing and decreasing the
congestion window. The difference is that the option field
in SACK contains a number of SACK blocks, where each
SACK block reports a non-contiguous set of data that has been
received and queued. With the block information in the ACKs,
the TCP sender will be able to send more than one lost packets
at a time, which helps in improving the TCP performance in
OBS networks.

III. T HROUGHPUTMODEL FORSACK, RENO AND

NEW-RENO

In this section, we develop the throughput models for
the three common TCP implementations: SACK, New-Reno
and Reno, in an OBS network. We assume that the OBS
network has a random loss probability�, which is insensitive
to the TCP transmission rate. Accordingly, for each TCP
implementation, we only need to consider a single TCP flow
as the results for this TCP flow will be representative of the
other TCP flows with the same TCP implememtation.

The throughput models to be developed are based on that
developed for an electronic packet switched network in [8]
where taking into consideration several fundamental differ-
ences caused by burst assembly and bufferless burst switching.

Note that, it was assumed in [8] that a packet may be lost
with probability �, but once a packet is lost, all subsequent
packets in the same round are also lost. This implies that
� is not exactly the actual packet loss probability. In this
paper, every burst is assumed to have a loss probability of
�. Accordingly, the actualpacket loss probability in an OBS
network may be different from that in an electronic packet-
switched network. Nevertheless, one may compare the TCP
throughput in an OBS network using our models with that in
a packet-switched network using the model in [8] by assuming
the same�. In addition, our models facilitate the comparison
between TCP throughput in an OBS network and that in an
optical packet-switched (OPS) network as in both the OBS and
OPS networks, there is no (optical) buffer at any intermediate
nodes, so the burst losses or packet losses will be random.
The only difference between the two networks, as far as the
TCP throughput is concerned, is that in OPS, there is no burst
assembly. Accordingly, for the purpose of evaluating the TCP
throughput, OPS may be treated as the special case of OBS
where the assembly time�� is set to 0.

As to be discussed later, the models developed below are
also useful in that an optimal assembly time�� that can
achieve the best TCP throughput in OBS networks for a given
� and access bandwidth� can be derived from these models.

A. SACK TCP

In SACK, a loss may be indicated by the missing block
information contained in ACKs if any burst in the middle of
a sending round is lost due to burst contention. Such a loss is
similar to a triple duplicate (TD) loss in Reno and thus will
be treated as a TD loss in the following discussion. A loss
can also be indicated by ”timeout” (TO) when there are no
segments delivered successfully in the last round. We obtain
the TCP throughput in an OBS network based on the model
in [8] with both “TD” and “TO” losses as follows:

���� ��� �
��� 	 ������ 	

����	
 �	 ��������
 �	 (1)

where� denotes the ratio between the probability of a��
loss and that of a�	 loss (which also equals to the probability
that the loss indication ending a TDP is a TO).��� 	 and��� 	
are the average number of segments transmitted in�	
 and
��
 , respectively, while����	
 �	 and�����
 �	 denote the
average duration of�	
 and��
 , respectively. In the rest
of this section, we will explain how to derive��� 	, ����	
 �	,
��� 	, �����
 �	 and�.

1) A TD Loss: Suppose that the (�� � �)th burst in�	
�
is the first burst lost in�	
�, whose first segment is the
(�����th segment in�	
�. Suppose also that
� is the round
where the first loss occurs, and��� is the window size at the
end of�	
�. After burst���� is sent and lost,�� additional
segments will be sent in the same round. Then after receiving
three duplicate ACKs, the TCP sender will retransmit all the
segments contained in the lost burst in the following round
according to the information contained in the ACKs. In the
retransmission round,��� �� new segments can be sent out
as shown in Figure 1.
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Fig. 1. TCP SACK Retransmission over OBS networks

After the lost burst is successfully retransmitted,�	
���

starts with a sending window size of����
. The total number
of transmitted segments in�	
� is thus�� � ����������
� according to the above analysis. Since� � �� � ��, we
can approximate����	 by ���� 	�
 and thus have

��� 	 � ���	 �
�



���� 	� � (2)

Since the burst losses in an OBS network are independent
events, the probability of successfully transmitting� � bursts
before a loss happens is


 ��� � �	 � ��� ����� � = 1, 2, ... (3)

Given that�� � ���, we have:

���	 � ����	 � �
��
�

��� ����� � ��� (4)

Note that in a packet switched network,���	 � ��� [8], which
is smaller than��� for � � �. This increase in the number of
segments that can be sent in a TDP before the first loss results
in the Delayed First Loss (DFL) gain in TCP throughput as
mentioned eariler.

Substituting (4) in (2) yields:

��� 	 �
�



���� 	 �

�� �

�
� (5)

Next, we further distinguish two subcases with a TD loss.
The first is when the maximum window limitation�� is
relatively large such that�� is rarely reached, or in other
words,�� � �� most of the time. In the second subcase,
� or �� is relatively small such that�� � �� in most
rounds. We will discuss these two subcases in the following
subsections.

i). When �� � ��

Let � denote the number of ACKed rounds before the
sending window size is increased [8], we have:

��� �
�����



�


�

�
(6)

from which we get:

��
 	 �
�



���� 	 (7)

Since we can also express�� by summing the number of
segments sent out in all the previous
� rounds, and that in
the additional� rounds, which is��� � �, we have:

�� �

�������
���

�
�����



� ������� � �

�

�



�
�����



���� � �� ���� � �

Therefore, we get:

��� 	 �
������ 	�

�
� ��� �



����� 	� � (8)

Note that in the above equation, we have assumed
 � to
be independent of����� . Such an assumption is in general
acceptable especially because the burst losses occur randomly
without a large variance in the length of the interval between
two consecutive losses [11].

Combining equations (8) and (5) yields:

��

�
���� 	� � �� �



���� 	� �

�
� � (9)

Solving the above equation for���� 	, we have:

���� 	 �

��� ��

��
�

�
�

�� 


��
�� �

��

���
(10)

By substituting (10) into (5), we obtain the following expres-
sion of��� 	:

��� 	 �
�� �

�
� �

�� �

�
�

�
�
�� �

�
�� �


�

��
(11)

In addition, by substituting (10) into (7), we obtain

��
 	 �
�



���� 	 �

�� �

�
�

�
�
�� �

�
�� �


��

��
(12)

To derive ����	
 �	, we consider again�	
�. Define
��� to be the duration (round trip time) of the�th round of
�	
�. Then the duration of�	
� is ��	
�� �

�����
��� ��� .

Therefore,
����	
 �	 � ���
 	 � �����	 (13)

where���	 � ��� . From both (12) and (13), we get the
expression of����	
 �	 as follows:

����	
 �	 � ��� �
�� �

�
�

�
�
�� �

�
�� �


��

��
� (14)

Note that, for a small loss rate�, ����	
 �	 can be approxi-
mated by:

����	
 �	 � ���

�

��

��
(15)

ii). When �� � ��

In this subcase, we can no longer estimate the number of
transmission rounds as in (6). As the congestion window size
is saturated at��, we can obtain��� 	 by plugging���� 	 �
�� in (5) to obtain

��� 	 �
�



�� �

�� �

�
� (16)
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Since there are a total of��� segments successfully trans-
mitted before a TD loss happens, and during each TDP, the
window size starts at���
 and ends at��, we have the
following relationship:

�
��



�����
 ����
 � ��



�� �� �

�

�
(17)

from which E[X] is calculated as follows:

��
 	 � �
�

�
�

� �
�

�
���� �

�



�

�

���
�

��

�
�

�



(18)

and the expected length of�	
 can be calculated by substi-
tuting (18) into (13) as follows:

����	
 �	 � ��� �
�

���
�

��

�
�

�



� (19)

2) A TO Loss: Since only one segment is retransmitted after
each�� event, the probability that the�� event occurs� �

times, and only after the last occurrence of the�� event, a
segment is transmitted successfully, is


 ��� � �	 � ������� �� (20)

Accordingly, we can compute���	 as follows:

���	 �

��
���

�
 �� � �	 �
�

�� �
(21)

And the average number of segments transmitted in�� is

��� 	 � ���	� � � ����� �� (22)

Since the length of the first six timeout intervals in one��

are 
��� � ���, where � � �� ���� 
, respectively, and the
length of all the subsequent timeouts is
�����, the duration
of a sequence with� timeouts is

�� �

�
�
� � ����� for � � 

�
� � 
��� � 
����� for � � 


(23)

Accordingly, we obtain the expected length of the duration of
��
 , which is denoted by�����
 �	, as follows:

�����
 �	
�

��
��� ��
 �� � �	

� ��� ���������������������	���

���
� ��� 	
��

��� (24)

where

 ��� � � � �� 
�� � ��	 � ��� � �
�� � �
��

Note that in an OBS network, the TO events occur in a pattern
that can be quite different from that in a packet-switched IP
network. This is because in the latter, packet loss at IP routers
is usually due to buffer overflow [8] and thus one packet loss
is often followed by the loss of all subsequent packets sent
during the same round. Accordingly, the probability for a TO
event to occur can be approximated with the probability that
fewer than three packets are successfully delivered in the last
round. On the other hand, in an OBS network, if� � is large
enough such that each burst contains at least three segments
(i.e., � � �), a TO event occursif and only if all the bursts

in the last round are lost. In addition, since there is no buffer
at any OBS core node, the correlation between burst losses
is small. Accordingly, after a burst is lost, it is difficult to
determine how many additional rounds there will be before the
TO event happens since subsequent burst loss(es) may happen
during additional rounds.

Instead of assuming that once a packet is lost, all subsequent
packets in the same round are also lost as in [8], here, we
assume that no subsequent burst losses in additional rounds
after a TD loss. In other words, a TO event only occurs when
all the bursts in the last round (
�) of a TDP are lost, whose
probability is


 ��� � � �
��
�
��

Since a TDP will be followed by either a TOP (with proba-
bility 
 ��� �) or a TDP (with probability�� 
 ����), and
a TOP will always be followed by a TDP, the expected TO
versus TD loss ratio is:

������ 	� � ��
 ����	 � ���
��
�
��	 � �

���� �

�
�� (25)

3) Throughput Estimation: For the case�� � ��, by
substituting (11), (14), (22), (24) and (25) in (1), we obtain
the SACK TCP throughput as follows :

���� ��� �


� ���



� ��

��



���� ����



� ��

���� ��

�
����� �

� � ���
�
���



� ��� �

���

��� 
�


� ������



� �����
 �	�
��� �
(26)

If � is small, the�� event probability� will be very small,
and the second term in both the numerator and denominator
in (1) can be ignored, and (26) can be simplified to:

���� ��� �

�
�

��� �
�

���
	� � ��

� !�
�	
�
�

�
�

���� � 
��

�
��


��
� !�

�	
�
� (27)

where���� is the TCP round trip time value without burst
assembly. And��� � ���� � 
�� because both data
segments and ACKs experience an assembly delay of��.

For the case where�� � ��, the throughput model is
obtained by plugging (16), (19), (22), (24) and (25) in (1):

���� ��� �

	
�

� � ���
� � ������� �

���
��� � �

�
�
� 
�

� � 	
� � ���������� 	
����� �

(28)
For a small loss rate�, (28) can be approximated by:

���� ��� �
��

���
(29)

Note that during the lifetine of a TCP connection, both cases
discussed above two cases can occur, and hence,the expected
throughput will be inbetween the results from (26) and (28).

Note also that the above throughput models can work well
for all values of�� and the access bandwidth�. For example,
if the product� � �� is so small that� � � , which is
the case referred to as having a “slow” TCP flow in [7], the
above models simplify to the same model in packet switched
networks as Eq. (31) in [8].
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4) Optimal Assembly Time ��: In this subsection, we
consider a practical case in an TCP over OBS network where
the maximum number of segments contained in a burst is
� � � � ����� � ��, and hence the larger the��, the larger
the �. In such a case, both the numerator and denominator
of (27) contain��. The �� in the numerator represents the
DFL gain (in the form of

	
�) in the TCP throughput, in

that the TCP throughput increases with the assembly time��.
On the other hand, the�� in the denominator represents the
delay penalty from the burst assembly process, in that the TCP
throughput decreases with the assembly time. Since both the
DFL gain and delay penalty are present, there may exist an
optimal assembly time that maximizes the TCP throughput.

Note that for both (27) and (29), even though the numerator
scales sub-linearly with�� while the denominator scales
linearly with��, an optimal�� exists when the constant factor
���� in the denominator is large.

More specifically, for the case�� � ��, by computing
the root of the following equation, we get the optimal� �
���� � that maximizes� in (27) as follows:

���������� 
 ����
	
����

���� � 
��
� 


���� �
�����
�	

� 

	
��
� � ����	

��
� 

�

��

� ���
� �

����



(30)

And the optimal throughput is:

����� � �

�����

�
������

��
(31)

For the case�� � ��, we obtain� ���
� by maximizing�

in (28) as follows:

���������� 
 ���� ���

����� � 
����
�

�
�
� 
�

� � 	
� �
�


 ���� �

��
��
�

�
����


��
� � �

� �

� � �
����
�� � ����

�
�
�
�

� 
�� � ��������� �
��

�
�

�



��

� ���
� �

�
���


�
����� �

��

�
�

�



� (32)

And the optimal throughput is:

����� � �

�

�����
�� � �����


�
�

�
��
�����

��
� � �

� �

�
�

(33)

Note that if the access bandwidth is so low or high that
� � � or � � ��, the DFL gain

	
� is fixed (which is 1

or
	
��). But the delay penalty (in RTT) increases with��.

Therefore, TCP throughput decreases monotonically with� �.

B. New-Reno TCP

The major difference between New-Reno and SACK is that
after each burst loss, New Reno retransmits only one lost
packet in the lost burst after each partial ACK is received.
During the fast retransmission phase, with only a partial ACK
the number of unacknowledged outstanding packets will soon
exceed the sending window and few new packets can be sent.
Accordingly, we may ignore the number of new packets sent
in the retransmission phase in our analysis as shown in Figure
2.

1    2    3    ……   Xi        1    2   … 
 TDPi        S         TDPi+1 

X 
X 
X 

R 

R R 

 

X 
R 

 ACKed Segment 

 lost Segment 

 retransmitted Segment 
 

Rounds 
 

 Segments sent 

 

… 

 

Fig. 2. TCP New-Reno Retransmission over OBS networks

The total packets transmitted in a TDP is the same as
SACK but the TDP in New-Reno contains� additional rounds.
Similar to (27), when�� � ��, the throughput of New-
Reno can be calculated as follows (assuming� is small):

���� ��� �

�
�

��� �
�

���
	� � ��

� !�
�	
�
� (34)

which is smaller than the throughput of SACK in (27).
However, if the average window size is much larger than the

burst length, i.e.,���� 	 �� � or equivalently
�

���
	� �� �,

� can be ignored in the denominator and (34) is the same as
(27), or in other words, New-Reno and SACK have the same
throughput. If�� � ��,

�
���
	� �� � for a small�, and

thus the throughput of New-Reno is the same as (29).

C. Reno TCP

It is noted that the retransmission mechanism in Reno is
more complicated than in SACK and New-Reno as Reno only
uses triple duplicate ACKs to indicate a TD loss. As a result,
the retransmission phase could be different for different burst
lengths�. More specifically, we discuss two different loss
patterns in a TDP, i.e., a TD loss only and mixed TD and TO
losses, respectively, in the following subsections.

1) A TD loss only: When the lost burst length� is
small, Reno can recover from fast retransmission phase by
retransmitting multiple lost packets in each round. This is
illustrated in Figure 3.

While the model in SACK ignored the retransmission period
following a TDP, here we need to analyze the case with
� retransmissions as follows. The first retransmission will
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Fig. 3. TCP Reno Retransmission over OBS networks

occur at the end of the 1st additional round, and after each
subsequent round, the sender will reduce its window size by
half as illustrated in Figure 3. In the TD loss only case,
Reno always maintains a congestion window larger than�
such that duplicate ACKs can be received after each segment
retransmission in the lost burst. Suppose that the loss rate�
is small and only one burst is lost in the round
 �, the total
number of new segments�� sent in the additional sending
rounds following
� will be

�� �

����
���

�


�
��� � � � �
� �


���
���� � �

After a new ACK arrives,�	
��� starts with a sending
window size of����


�. The total number of transmitted
segments in�	
� is thus�� � �� � �� � ��, and similar
to the calculation for SACK, we have

��� 	 �
�� �

�
� � �

�



� �


���
����� 	 (35)

Also, the sending window size should be calculated as:

��� � �"#��� �����


�
�� 
�

�
(36)

For the TD loss only case, the congestion window can be
halved multiple times but must still remain larger than 3
before all the� segments are successfully retransmitted, i.e.,
$!%�� � �, and the start window of the next TDP is always
larger than 1. Therefore,

��� �
�����


�
�


�

�
(37)

from which we get:

��
 	 � ����� 	� ����� 	


�
(38)

Since we can also express�� by summing the number of
segments sent out in all the previous
� rounds and in the

� additional rounds, we have:

�� �

�������
���

�
�����


�
� ����

���� � � �

����
���

�


�
��� � �	

�

������


�
�


�



�

�

�
� �� �

�
� �


���
���� � 
�

as long as� is reasonably large such that��� 
 �. In addition,
by taking the expectation of both sides of the above equation,
and applying (38) to it, we get:

��� 	 �
��
 	�


�
�

��
 	



� 
���� 	� 
�

�
������ 	� ���


�
�

����� 	� �



� 
���� 	� 
�

�
����� 	�



� ����� 	� �



� 
� (39)

Combining equations (39) and (35), we have:

�



���� 	� � �� �



���� 	� � � �

�
� � � (40)

Solving the above equation, we get:

���� 	 �
�



�

�


�
�

�
�
�



�

�


�
�� �


�

��
(41)

By plugging (41) in (35), we get the expression of��� 	 as
follows:

��� 	 �
�



���� 	 �

�

�
� � (42)

�
�

�
�

�

��
�

�
�
�

�
�

�

��
�� �

���

��
�

�� �

�
�

In addition, by plugging (41) in (38), we obtain��
 	 as
follows:

��
 	 � ����� 	� � � � �



�

�



�

�
�
�



�

�



�� �


��

�
(43)

And similarly, we get the expression of����	
 �	 as follows:

����	
 �	 � ��� �� �



�

�



���

�
�
�



�

�



�� �


��

�
� (44)

With a small loss rate�, ����	
 �	 can be approximated by:

����	
 �	 � ��� �

�

��

�
� (45)
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2) Mixed TD and TO Losses in Reno: When the lost burst
length� is large, retransmission of multiple lost packets may
result in a TO event. Such a loss situation in Reno where a
TO event is caused by consecutive TD losses is illustrated in
Figure 4. Since after each TD loss, the congestion window will
be cut in half, with several consecutive cuts, the congestion
window will be reduced to 1 and no duplicated ACKs can
be received before all the lost segments can be retransmitted.
Therefore, Reno’s sending window is stalled, and eventually
the timer expires and a timeout retransmission is triggered.
Note that such a loss situation was not considered in [8] since
it ignored the retransmission following a TDP. This mixed TD

1    2    3    ……   Xi                 1    2   … 
 TDPi                       TDPi+1 
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X 
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R 

 

X 
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 ACKed Segment 

 lost Segment 

 retransmitted Segment 
 

Rounds 
 

 Segments sent 

 

… 
Timeout 
 

 

Fig. 4. TCP Reno Retransmission over OBS networks

and TO loss scenario happens when the congestion window
is reduced to be less than 3 before all the lost segments are
retransmitted, i.e.,$!%�� � �. In this case, a TDP is followed
by $!%�� � � retransmissions and a TOP. And the next TDP
will start from 1. The total number of segments sent during
the TDP and following TOP are��� �	 � ��� 	���� 	, with
the duration being����	
 ��	 � ����	
 �	 ������
 �	.

To estimate��� 	, we still follow the same method used for
the case with a TD loss only, but change (35) to:

��� 	 � �
�



� �


���
�
����� 	� $!%�� �

�

�
(46)

and (38) to:

��
 	 � ����� 	 (47)

assuming that the slow start threshold is 1.
Similarly to the TD loss only case, we obtain��� 	 in the

same way as (41) and have

��� 	 �
�



���� 	 �

�

�
� $!%�� � �

�
(48)

and

����	
 �	 � ���
 	�$!%������ � ��� �

�

��

�
�$!%���

(49)
And therefore,

��� �	 � ��� 	 ���� 	 � �

�
�

�

�� �
� �

�
(50)

and thus we have

����	
 ��	 � ����	
 �	 ������
 �	

� ��� �

�

��

�
� $!%��� �����

 ���

�� �
�

� ��� �

�

��

�
� $!%

�

�

��
� ���� (51)

3) Throughput Estimation: For the case where$!%�� �

�, or $!%
�

��
�� � �, by plugging (42), (44), (22), (24) and

(25) in (1), we can obtain the throughput in TCP Reno for a
small � as follows:

���� ��� �

�
�

��� �
�

���
� � ��

� !�
�	
�
� (52)

For the case where$!%�� � �, or $!%
�

��
�� � �, by

plugging (50), (51), (22), (24) and (25) in (1), and with a small
� as well, we can obtain the TCP throughput as follows:

���� ��� �

�
�

��� �
�

���
� � $!%

�
��
�� � ����

�!�
�	
�
� (53)

It is noted that for the first case where$!%
�

��
�� � �, Reno

always has a smaller throughput than New-Reno as they have
the same number of retransmission rounds while Reno receives
more retransmission penalty by halving the next TDP start

window multiple times. For the second case where$!%
�

��
�� �

�, there are tradeoffs in Reno and New-Reno’s throughput as
we can see from (34) and (53).

Comparing to (52), the denominator of (53) is enlarged
by one more factor���, where the TCP throughput is
degraded by the timeout retransmission following multiple TD
retransmissions. When� is small and� is large such that

��� $!%
�

���
� �� ���, (53) approaches (52).

In addition, if ���� 	 is sufficiently large such that
���� 	 �� ������ $!%��� and��� � ���� 	 �� ���,
then both (52) and (53) (as well as (34)) can be further
simplified to:

���� ��� �

�
�

���
�

���
�

� !�
�	
�
�

�
�

���� � 
��

�
�


��
� !�

�	
�
� (54)

IV. T HROUGHPUTGAINS AND PENALTIES IN OBS
NETWORKS

Armed with the TCP throughput models developed above,
we can now quantify the gains and penalties in the throughput
of TCP flows in OBS networks. In this section, besides the de-
lay penalty and delayed first loss (DFL) gain described above,
we also identify what we call the loss penalty, and TCP Reno
and New-Reno’s retransmission penalty that affect the TCP
throughput in OBS networks. In the following subsections, we
consider gains and penalties by fixing all other factors except
the one under consideration.
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A. Loss Penalty

The Loss Penalty (LP) is the reduction in throughput due to
burst loss (whose rate is�). Intuitively, the larger the burst loss
rate, the smaller the TCP throughput. The LPratio is defined
as:

LP Ratio �
��with no loss�

��with a burst loss rate��

�

�

���

�
���

�
	�
���

� ��

�

��

��
(55)

for a small loss rate�.

B. Delay Penalty

As mentioned earlier, the Delay Penalty (DP) is mainly
caused by the burst assembly process, which increases the
TCP round trip time and decreases the TCP throughput. In
particular, the larger the��, the larger the DP. Below, we
quantify the DP ratio by fixing everything including the time of
the first packet loss (thereby excluding any DFL gain) except
RTT which increases with��:

DP Ratio�
��with original �����

����� prolonged due to burst assembly�

� ���� � 
��
����

(56)

C. Retransmission Penalty

Retransmission Penalty (RP) is the penalty from prolonged
retransmission period that is caused by multiple retransmission
rounds, during which fewer new packets can be sent. Since
SACK TCP can always retransmit all the packets in the lost
burst in one (or a few) round (as the missing block information
is contained in the received ACKs), there is no RP in that
the number of retransmissions is approximately the same
regardless of whether a burst or a packet is lost. For New-
Reno TCP, however, multiple retransmission rounds (�) are
needed for� packets contained in a lost burst before the next
TDP starts. From (27) and (34), we can calculate the RP ratio
(�
�) as follows:

RPR(New-Reno)�
��one retransmission�
��� retransmissions�

� � �
� � ��
��
	�� � �

� � �

�
���


�

(57)

for a small � and large�. Note that (57) increases with
�. For Reno TCP, the retransmission not only prolongs the
TDP duration as in New-Reno, but also decreases the start
window of the next TDP by halving the congestion window
size multiple times during retransmission. For the case where

$!%
�

��
�� � �, we can calculate the�
� using the model in

(52) as follows:

RPR(Reno)�
��one retransmission�
��� retransmissions�

�
	
��� �

�
��


�
� (58)

for a small�.
And for the case where$!%

�
��
�� � �, we can calculate the

�
� using the model in (53) as follows:

RPR(Reno)�
	
��� � �

���

���
� ���

�

�

��
��
�

�


��
	 (59)

for a small�.
We note that for the case where$!%

�
��
�� � �,

RPR(Reno)�RPR(New-Reno), and thus New-Reno always
exhibits a higher throughput than Reno. In the second case

where $!%
�

��
�� � �, if � �

�
	��
�� �

	
��� � ������� �

$!%
�

��
�� � �

�
�

��� 	, New-Reno exhibits a higher throughput,
otherwise, Reno has a better throughput.

D. DFL Gain

If we compare (27) which is the TCP SACK throughput
model in an OBS network with the throughput model below
from [8] without burst assembly (and without considering the
�� limitation)

���� �
�

����

�
�


��
� !�

�	
�
� (60)

and ignore the difference in RTT, we can see that the larger
the� in (27), the larger the throughput and the larger the DFL
gain, whose ratio can be quantified as follows (note that, as
before, we should ignore the delay penalty when considering
only DFL gain):

DFL Gain Ratio �
��the first loss is delayed�
��the first loss not delayed�

�
	
� (for a fixed small loss�) (61)

Note that the combination of DFL gain and retransmission
penalty is equivalent to what is termed “Correlation Gain” in
[7], which did not analyze any of the three TCP implementa-
tions in detail.

E. Impact of Multiple Gains and Penalties on TCP

Since the gain and the penalties can affect TCP throughput
at the same time, we define the following special ranges in
order to quantify the impact of the assembly or the burst loss
rate on the TCP throughput.

1) Assembly Time Optimal (ATO) range: For a TCP flow
with high access bandwidth and a given loss rate�, there may
exist a range of assembly times where the DFL gain is larger
than the delay and retransmission penalties as follows:

ATO Range =
�

�� �
DFL Gain
DP� RP

� �

which we call the “assembly time optimal” (ATO) range.
In this ATO range, the TCP flow usually achieves a higher
throughput in an OBS network than in a packet switched net-
work (especially an optical packet switched network) without
burst assembly (note that both incur the same loss penalty). In
such an ATO range, the best throughput in an OBS network
can be achieved with the following optimal assembly time:

� ���
� � ������

�	
�DFL Gain

RP� DP
�
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2) Assembly Time Insensitive (ATI) range: For a TCP flow
with a low access bandwidth, there could exist a range of
assembly times for which the DFL gain is compatible to all
the delay and retransmission penalties as defined below:

ATI Range�
�

�� �
DFL Gain
RP� DP

� �

which we call a “assembly time insensitive” (ATI) range. In
this range, the throughput of the TCP flow is almost indepen-
dent of��, and hence, an OBS network has an approximately
the same throughput as a packet switched network without
burst assembly.

3) Loss Rate Insensitive (LRI) range: If we take into
account all gains and penalties (including the constant delay
penalty for a fixed��), there will be a “loss rate insensitive”
(LRI) range (defined as follows), where the TCP throughput
is almost independent of the burst loss rate�.

LRI Range�
�

� �
DFL Gain

DP� RP� LP
� �

The simulation results to be presented next validate the
above analysis and in particular, the existence of the ATO,
ATI and LRI ranges.

V. NUMERICAL RESULTS

In this section, we present the numerical results from both
NS-2 simulations and the above analysis. In our simulations,
each segment has the same unit size (as assumed in the
analysis), whose default value is 1KB. The maximum window
limitation �� varies from 20 to 200 (segments), and the
throughput is obtained over a period of approximately�� �s.

When simulating the performance of a single TCP flow in
an OBS network, it is sufficient to model the OBS network
with two edge nodes, and two core codes which form a path of
four nodes using three fiber links. Each of the three fiber links
has 10ms delay in this simulation and 10GBps bandwidth,
with a given loss probability�. The effect of� on the TCP
throughput is studied by varying it from���� to ����. In
addition, the TCP sender and receiver connect to the OBS
edge nodes via a lossless link with 10ms propagation delay,
and a constant access bandwidth that varies from 1.25KBps
to 125MBps. Therefore, the round trip time (RTT) excluding
the assembly time, transmission time as well as any queuing
delay is
� ���& or 0.1s.

A. Throughput of a TCP SACK Flow

In this subsection, we illustrate the impact of the assembly
time and burst loss rate on the TCP throughput using SACK
as an example. We will compare the throughput results for
SACK, Reno and New-Reno later.

In the simulation, we assume�� � ��, and consider
the cases with a high, low and medium access bandwidth
� (relative to the given��). To simulate the case with a
high access bandwidth,� is set to be 125MBps. The round
trip time measured in simulation is approximately��� �
����� � 
�� seconds1. With such a high access bandwidth,

1which includes the propagation delay, transmission delay, assembly delay
and queuing delay in the access networks. Note that the queuing delay is
negligible for a high access bandwidth, but could has a large variance for a
low access bandwidth.

the maximum assembly time needed to assemble all the
TCP segments in a sending round is much smaller than
����, the round trip time without burst assembly. That is,
���� � ��'���
�(��& � ������& �� �����&. The
actual assembly time chosen by the OBS assembly node could
be either less than, equal to or larger than 0.0004s, resulting
in a different TCP throughput.

To simulate the case with a low access bandwidth,� is set
to be 1.25KBps, and the round trip time for a given loss rate
� (from 0.003 to 0.1) varies from���
��(s) to ����
��(s).
With such a low access bandwidth, the maximum assembly
time is much larger than���� (which varies from 5.4s to
18s). For the case with a medium access bandwidth,� is
set to be 500KBps, and the round trip time is approximately
����� � 
��(s), where the maximum assembly time is 0.1s.
As mentioned earlier, a large assembly time on the order of
a hudnred of milliseconds or longer may not be practical for
some real-time applications. Nonetheless, in the simualtion, we
show the entire range of assembly times as a way to explain
the gains and penalties in the TCP throughput that have been
analyzed in the previous sections.

The throughput of a TCP SACK flow with high, medium
or low access bandwidth as a function of the burst loss
rate and assembly time is shown in Figure 5(a), 6(a) and
7(a), respectively. Figure 5(b), 6(b) and 7(b) show the results
obtained from the analytic model in (26) and (28) which
approximately match their corresponding simulation results.

From Figure 5, one can see that there indeed exists an
optical assembly time with a high access bandwidth. More
specifically, the throughput reaches its peak in an ATO range
centered around an optimal assembly time�� � ��
 � ��
seconds or��& when the burst loss rate� � ���� � ����.
(Note that, according to Eq. 32,���� � ��& but due to the log
scale used which does not collect a sample at�� � ��&, the
closest point is�� � ��&). With the high access bandwidth,
the penalty due to the delay introduced by burst assembly is
insignificant as the assembly time is much smaller compared
to the round trip time without burst assembly. Thus,� ���

�

is where the DFL gain reaches maximum. In addition, one
can also see that there is no obvious LRI range, and usually
the smaller the�, the larger the throughput (for a given� �)
as shown in Figure 5(a). The throughput obtained from the
simulation also matches with that from our analysis.

Figure 6 shows the throughput results for a TCP flow
with a medium access bandwidth. Similar to the case with
a high access bandwidth, the optimal assembly time and the
throughput obtained from our simulations match well with
those from our analysis.

For the case with a low access bandwidth, there is no
obvious ATO range since the assembly time is relatively large
compared to the TCP round trip time without burst assembly,
and therefore the delay penalty significantly offsets the DFL
gain. Instead, there is an ATI range due to the offsetting effect.
And the lower the loss rate, the larger the the ATI range. Note
that here the optimal� ���

� calculated from (30) is applicable
(since��� � ��), which is ���
 � �& for a small loss rate
(e.g.,� � �����) and����
 � 
��& for a large loss rate (e.g.
� � ���). We can see that these� ���

� are at the edge of the
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(b) Matched Mixed Model from (26) and (28)

Fig. 5. Throughput of a TCP SACK flow with a high access bandwidth (125MBps) channel
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(b) Matched Mixed Model from (26) and (28)

Fig. 6. Throughput of a TCP SACK flow with a medium access bandwidth (500KBps) channel
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Fig. 7. Throughput of a TCP SACK flow with with a low access bandwidth (1.25KBps) channel)
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ATI range as shown in Figure 7(a). In addition, there is a LRI
range for the TCP flow when�� � ����� seconds as shown
in Figure 7(a). This is because with a low access bandwidth,
when�� is small, the DFL gain is also relatively small and is
more easily offset by the loss penalty.

B. Comparison Between Three TCP Implementations

In this section, we compare the performance of Reno,
New-Reno and SACK in OBS networks. Previous work has
evaluated the performance of these TCP implementations with
only a few packet losses within a sending round, but not as
many packet losses as what occurs in an OBS network with
a burst loss.

Generally speaking, all three TCP implementations have the
same Slow Start and Congestion Avoidance algorithms, and
the DFL gain and delay penalty mentioned earlier will be the
same as long as the assembly time or burst size is kept the
same. The differences between the three TCP implementations
come from the fast retransmission and fast recovery mech-
anisms, and their interactions with burst assembly in OBS
networks, which are the focus of this section. Accordingly, in
the rest of the study, we will ignore the case where� � � (i.e.,
with a low access bandwidth and a short assembly time) as
this is not much different from the case without burst assembly
(i.e., the case with packet-switching). We will also ignore the
case where� � �� (i.e., with a high access bandwidth and
a long assembly time) as any burst loss will always trigger a
timeout (TO) event, and hence, the three TCP implementations
will all apply the same TO retransmission mechanism (i.e.,
Slow Start). In other words, we will only focus on the case
where� � � � ��.

To explain the performance differences between the three
TCP implementations and validate some of the analysis pre-
sented earlier, we first examine the packet traces collected
from our simulations where a single burst is dropped. We then
examine the packet traces corresponding to multiple (random)
burst losses. Finally, we present the throughput of the three
TCP implementations.

1) Packet Traces with One Burst Loss: In this set of
simulations, we first assume that the access bandwidth is
125KBps (low). For each graph showing the packet traces,
the X-axis shows the bursts’ departure time in seconds, and
the Y-axis shows the packets’ number mod 60.

Figure 8 illustrates the impact of the congestion window
size at the time of a TD loss event in Reno, when the length
of the lost burst is� � � packets. As we can see from Figure 8
(a), if the congestion window2 is small, i.e.,� � 
� packets,
at the time when the burst is lost (i.e., 3 seconds into the
trace), the window size will be reduced to less than 3 after
three retransmission rounds but before all the 5 packets lost
in a burst can be retransmitted. Therefore, without being able
to receive three duplicate ACKs any longer, a TO occurs at
time 3.8 and a Slow Start phase begins. However, in Figure
8(b) where the congestion window size has already grown to
reach the maximal limit of 200 packets by the time the burst

2Note here with a relatively small��� , TCP packets are pipelined and
congestion window cannot be represented in the graph
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Fig. 8. Packet traces with one burst loss occurred at (a)� � �� and (b)
� � ��� for a Reno TCP flow (� � �)

loss occurs, Reno can recover from the fast retransmission
stage and re-enter the congestion avoidance phase without a
TO event.

Figure 9(a) illustrates the packet traces of the three different
TCP implementations upon one burst loss when both� and�
are small (5 and 40 in the simulation, respectively). It can be
seen that SACK has the best performance because the ACK
can indicate the block of packets lost, and then the sender
sends out the all the lost packet again upon receiving the ACK.
In addition, New-Reno generally performs better than Reno
because New-Reno detects the loss of subsequent packets upon
receiving a partial ACK, without waiting for 3 duplicate ACKs
or a TO (while Reno will have a TO as discussed earlier). In
addition, New-Reno’s congestion window will only be halved
once (i.e.,� � ���
 � 
�) after a TD loss, which enables
New-Reno to recover quickly from the loss of a small burst.

Figure 9(b) shows that when the lost burst is large, (� � 
�
in the simulation) while� is still relatively small (e.g., 40)
when the burst loss occurs, New-Reno performs worse than
Reno. This is because New-Reno only retransmits one lost
packet in one round, and hence needs a long time to finish
all the 25 retransmissions during which no new packets can
be sent. Reno, on the other hand, will have a TO as before,
but new packets may be transmitted before the TO and in
addition, the�� value is much smaller than 25��� in
the New Reno’s fast retransmission phase. Moreover, Reno’s
transmissions after TO is much more efficient because it
exponentially increases the sending window size. Also from
Figure 9(b), we can see that in this case, SACK has a
much better performance than Reno and New-Reno due to
its selective acknowledgements.

We note that if� is small but� is relatively large at the
time that the burst loss occurs as in Fig. 8 (b), Reno will not
have a TO, and hence its performance will be comparable to
that of New-Reno.

2) Packet Traces with Multiple Burst Losses: In this sub-
section, we compare the packet traces of the three TCP
implementations with multiple (random) burst losses.

Figure 10(a) illustrates the packet traces of the three differ-
ent TCP implementations with a medium-high burst loss rate.



13

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) Reno TCP

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) New−Reno TCP

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) SACK TCP

(a) � � �

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) Reno TCP

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) New−Reno TCP

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

P
ac

ke
t n

um
be

r 
(m

od
 6

0) SACK TCP

(b) � � ��

Fig. 9. Packet traces with one burst loss (� � �� when a burst is lost)

When the burst losses are scattered before time 12, the three
TCP implementations have very different performances due
to different TD retransmission mechanisms. However, when
consecutive burst losses occur one after another, the three
TCP implementations have the same performance as such
multiple back to back burst losses will easily trigger a TO
event (after which, all three TCP implementations perform
the same timeout retransmissions). This can be seen from the
packet traces shown in Figure 10(a) (after time 28 in Reno,
after time 21 in New-Reno and after time 16 in SACK). On the
other hand, with a medium-low loss rate, Figure 10(b) shows
that SACK always has the best performance as most, if not
all, losses are TD losses.

3) Throughput of SACK, Reno and New-Reno: Due to space
limitation, we omit the throughput obtained from our analysis
for Reno and New Reno since they match well with the
throughput obtained from simulations as in the case for SACK
discussed earlier. Tables I and II show the throughput ratio of
New-Reno over Reno and that of SACK over Reno, obtained
from our simulations where the burst loss rate varies from low
to high.

In general, for a low or high loss rate, all the three
TCP implementations tend to have the similar performance.
This is because the performance difference between different
TCP implementations comes from TD retransmissions only.
Accordingly, a high burst loss rate usually leads to a higher
probability of TO retransmissions in which there is no differ-
ence in the three TCP implementations. On the other hand, a
low burst loss rate leads a low TO probability but also a low
TD loss probability.

However, with a medium-low to medium-high loss rate, the
probability of a TD event can be relatively high (compared to
a TO event), and the performance difference among different
TCP implementations will be more obvious, as shown in the
middle two columns of Tables I and II.

Tables I and II also show the effect of the burst length
� (or assembly time��) on the performance ratios of New-

TABLE I

THROUGHPUT RATIO OFNEW-RENO AND SACK OVER RENO, � � �

������ -3 -2.5 -2 -1.5 -1 -0.5
	
��
��
�
�� 1.0 1.1 1.29 1.19 1.03 0.93
����
�
�� 1.0 1.07 1.58 1.4 1.33 1.07

TABLE II

THROUGHPUT RATIO OFNEW-RENO AND SACK OVER RENO, � � ��

������ -3 -2.5 -2 -1.5 -1 -0.5
	
��
��
�
�� 1.0 0.94 0.9 0.76 0.93 1.06
����
�
�� 1.0 1.03 1.02 1.1 1.0 1.0

Reno over Reno, and SACK over Reno, respectively, It is
interesting to note that New-Reno has a better performance
with a smaller burst (up to 5 packets), while Reno has a
better performance than New-Reno with a larger burst (up
to 25 packets) as illustrated in Tables I and II, respectively.
In general, their relative performances depend on the TCP’s
timeout value��� and round trip time��� as well as
the number of packets contained in the lost burst�. More
specifically, when��� is much larger than����� , New-
Reno has a better performance than Reno, otherwise Reno has
a better performance because the interval between the time of
the previous burst lost and the time to retransmit the next new
packet is approximately��� for Reno and� � ��� for
New-Reno. Since��� and ��� stablize after TCP starts
for some time,� usually decides the relative performances of
Reno and New-Reno. Also note that, when� (or ��) increases,
SACK is still better than Reno but its advantage is smaller due
to the fact that a TO event can happen more likely.

Figure 11 illustrates the throughput of the three TCP
implementations as a function of the assembly time with a
loss rate� � ���� and a high access bandwidth 125MBps.
It can be seen that all three TCP implementations perform
the same when the assembly time is larger than 1ms (this
is because� � ��). When the assembly time is below
1ms, SACK always has the highest throughput. New-Reno
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Fig. 10. Packet traces with multiple burst losses for a medium-rate TCP flow

outperforms Reno when the assembly time is relatively small,
i.e., between�����ms and����ms, while Reno outperforms
New-Reno when the assembly time is relatively large, i.e.,
between 0.1ms and 1ms.
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Fig. 11. Throughput comparison between Reno, NewReno and SACK TCP

VI. CONCLUDING REMARKS

The TCP throughput in OBS networks is complex to analyze
because it is affected by multiple gains and penalties due to
the interaction between TCP’s congestion control mechanisms
and OBS’s burst assembly/disassembly and bufferless switch-
ing. This work represents the first comprehensive study of
the throughput of the three common TCP implementations:
SACK, Reno and New-Reno in OBS networks without over-
simplifying the assumptions.

Our analytical (as well as simulation) results have shown
that burst assembly can sometime increase the TCP throughput
due to the delayed first loss (DFL) gain which allows a TCP
sender to grow its sending window for a longer period of time
before one or more TCP segment losses occur. In addition,
there exists an optimal burst assembly time with which the

TCP throughput will be maximized. Accordingly, assembling
multiple TCP segments into a burst is a way to improve the
TCP performance without having to change the existing TCP
implementations

On the other hand, our studies have also shown that none
of the three TCP implementations is particularly effective in
dealing with burst losses when a burst contains a large number
of TCP segments. This is due to the delay penalty introduced
by the burst assembly process, and more importantly, the
time-out (TO) events triggered by one or more burst losses.
In this regard, sending a “jumbo” segment or increasing the
Maximum Segment Size (MSS) size [12] may improve the
TCP throughput more than assembling multiple “small” TCP
segments into one burst. This is because when the former
technique is used, there is a gain in the TCP throughput
similar to the DFL gain but on the other hand, losing a jumbo
packet will not likely to trigger a TO event. Nonetheless, the
former technique requires modifications to the existing TCP
implementations, and moreover, if/when such modifications
are made, assembling these jumbo packets into a burst may
still provide a further throughput improvement.

As a part of our future work, we will also extend our work
to new congestion control schemes, such as HighSpeed TCP
[13] and FAST [14], which are proposed specifically for high
bandwidth networks.
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