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Abstract

The visualization of relational information is concerned with the presentation of abstract

information about relationships between various entities. It has many applications in di-

verse domains such as software engineering, biology, civil engineering, and cartography.

Relational information is typically modeled by an abstract graph, where vertices are en-

tities and edges represent relationships between entities. The aim of graph drawing is to

automatically produce drawings of graphs which clearly reflect the inherent relational in-

formation.

This thesis is primarily concerned with problems related to the automatic generation of

area-efficient grid drawings of trees and outerplanar graphs, which are important categories

of graphs.

The main achievements of this thesis include:

1. An algorithm for producing planar straight-line grid drawings of binary trees with

optimal linear area and with user-defined arbitrary aspect ratio,
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2. An algorithm for producing planar straight-line grid drawings of degree-d trees with

n nodes, where d � O
�
nδ � and 0 � δ � 1 � 2 is a constant, with optimal linear area

and with user-defined arbitrary aspect ratio,

3. An algorithm which establishes the currently best known upper bound, namely

O
�
n logn � , on the area of order-preserving planar straight-line grid drawings of or-

dered trees,

4. An algorithm which establishes the currently best known upper bound, namely

O
�
n loglogn � , on the area of order-preserving planar straight-line grid drawings of

ordered binary trees,

5. An algorithm for producing order-preserving upward planar straight-line grid draw-

ings of ordered binary trees with optimal O
�
n logn � area,

6. An algorithm which establishes the trade-off between the area and aspect ratio of

order-preserving planar straight-line grid drawings of ordered binary trees, in the

case when the aspect ratio is arbitrarily defined by the user, and

7. An algorithm for producing planar straight-line grid drawings of outerplanar graphs

with n vertices and degree d in O
�
dn1 � 48 � area. This result shows for the first time

that a large category of outerplanar graphs, namely those with degree d � O
�
nδ � ,

where 0 � δ � 0 � 52 is a constant, can be drawn in sub-quadratic area.

All our algorithms are time-efficient. More specifically, algorithms 1 and 2 run in O
�
n logn �

time each, and algorithms 3, 4, 5, 6, and 7 run in O
�
n � time each.
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Chapter 1

Introduction

1.1 Graph Drawing

Graph drawing is concerned with the automatic generation of geometric representations

of relational information, often for visualization purposes. The typical data structure for

modeling relational information is a graph whose vertices represent entities and whose

edges correspond to relationships between entities. Visualizations of relational structures

are only useful to the degree that the associated diagrams effectively convey information

to the people that use them. A good diagram helps the reader understand the system, but a

poor diagram can be confusing (see Figure 1.1.1) [11].

The method for laying out data-flow diagrams due to Knuth [24] was one of the first graph

drawing algorithms used for visualization purposes [11]. Graph drawing has seen extensive

1



1.1. GRAPH DRAWING

(a) (b)

Figure 1.1.1: Two diagrams that represent a simple class hierarchy; vertices represent
classes of geometric shapes, and edges describe the is-a relation. Each vertex represents a
class, and a directed edge between two vertices represents the class-subclass relationship.
Diagram (a) is more difficult to follow than diagram (b).

research in the last few years. For more results see [11].

The automatic generation of drawings of graphs finds many applications, such as

� software engineering (data flow diagrams, subroutine-call graphs, program nesting

trees, object-oriented class hierarchies),

� databases (entity-relationship diagrams),

� information systems (organization charts),

� real-time systems (Petri nets, state-transition diagrams),

� decision support systems (PERT networks, activity trees),

� VLSI (circuit schematics),

� artificial intelligence (knowledge-representation diagrams),

2



1.1. GRAPH DRAWING

� logic programming (SLD-trees).

Further applications can be found in other science and engineering disciplines, such as

� medical science (concept lattices),

� biology (evolutionary trees),

� chemistry (molecular drawings),

� civil engineering (floor plan maps),

� cartography (map schematics).

The usefulness of a drawing of a graph depends on its readability, i.e. its capability of

conveying the information contained in the graph quickly and clearly.

Graph drawing algorithms are methods that produce graph drawings which are easy to read.

Algorithms for drawing graphs are typically based on some graph-theoretic insight into the

structure of the graph. The input to a graph drawing algorithm is a graph G that needs to

be drawn. The output is a drawing Γ which maps each vertex of G to a distinct point in the

2D space and each edge
�
u � v � of G to a simple Jordan curve with endpoints u and v.

3



1.2. GRAPH DRAWING CONVENTIONS

1.2 Graph Drawing Conventions

In this thesis we consider planar straight-line grid drawings. Now we explain the properties

of these drawings and the motivation behind using them.

(a) (b) (c)

Figure 1.2.1: Grid drawings of the same graph: (a) polyline; (b) planar; (c) straight-line.
In (a) we label each vertex and edge bend by their integer coordinates.

1.2.1 Grid Drawings

A grid drawing is one in which each vertex is placed at integer coordinates (see Fig-

ure 1.2.1(a)). Grid drawings guarantee at least unit distance separation between nodes,

and the integer coordinates of nodes allow such drawings to be rendered on displays, such

as computer screen, without any distortions due to truncation and round-off errors. We

assume that the plane is covered by horizontal and vertical channels, with unit distance be-

tween two consecutive channels. The meeting point of a horizontal and a vertical channel

is called a grid-point. The smallest rectangle with horizontal and vertical sides parallel to

the X and Y axis, that covers the entire grid drawing, is called the enclosing rectangle. The

area of a grid drawing is defined as the number of grid points contained in its enclosing

4



1.2. GRAPH DRAWING CONVENTIONS

rectangle. Drawings with small area can be drawn with greater resolution on a fixed-size

page. The aspect ratio of a grid drawing is defined as the ratio of the length of the longest

side to the length of the shortest side of its enclosing rectangle. Giving the users control

over the aspect ratio of a drawing allows them to display the drawing in different kinds of

displays surfaces with different aspect ratios.

The optimal use of the screen space is achieved by minimizing the area of the drawing and

by providing user-controlled aspect ratio.

1.2.2 Planar Drawings

A planar drawing is a drawing in which no two edges cross (see Figure 1.2.1(a)). Planar

drawings are normally easier to understand than non-planar drawings, i.e. drawings with

edge-crossings. Planarity is also an important graph theoretic concept, which has been

widely studied. Necessary and sufficient conditions for a graph to be planar have been given

in [25] and [45]. Linear time algorithms for recognizing planar graphs have been given

in [23] and [2]. It has also been shown that every planar graph admits a straight-line planar

drawing [44], [15], and [36]. Algorithms for planar straight-line grid drawings of planar

graphs with O
�
n2 � area have been developed independently in [9] and [33]. Extensive

research has been done on various kinds of planar drawings. For example, [5,12,13,16,27,

28, 31, 37, 39–41] provide important results. For more results on planar drawings see [10,

11].

5
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1.2.3 Straight-line Drawings

It is natural to draw each edge of a graph as a straight line between its end-vertices. The

so called straight-line graph drawings have each edge drawn as a straight line segment (see

Figure 1.2.1(c)). Straight-line drawings are easier to understand than polyline drawings,

i.e. drawings in which edges have bends (more than one line segment).

The experimental study of the human perception of graph drawings has concluded that

minimizing the number of edge crossings and minimizing the number of bends increases

the understandability of drawings of graphs [29, 30, 38]. Ideally, the drawings should have

no edge crossings, i.e. they should be planar drawings, and should have no edge-bends, i.e.

they should be straight-line drawings.

1.3 Contributions and Outline of This Thesis

As mentioned in Section 1.2, planar straight-line drawings are easier to understand than

non-planar polyline drawings (see Figure 1.1.1). In this thesis, we study the problem

of constructing area-efficient planar straight-line grid drawings of trees and outerplanar

graphs. We now outline the structure of this thesis and summarize the principal results

obtained: (Note that each chapter is self-contained)

� In Chapter 1 (this Chapter), we give an overview of graph drawing, providing the

motivation for the results presented in the reminder of this thesis.

6
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� In Chapter 2, we show that a binary tree admits a planar straight-line grid drawing

with optimal linear area and user-defined arbitrary aspect ratio.

� In Chapter 3, we extend the result in Chapter 2 by showing that a degree-d tree with

n nodes, where d � O
�
nδ � and 0 � δ � 1 � 2 is a constant, admits a planar straight-line

grid drawing with optimal linear area and user-defined arbitrary aspect ratio.

� An ordered tree T is one with a pre-specified counterclockwise ordering of the edges

incident on each node. Ordered trees arise commonly in practice. Examples of

ordered trees include binary search trees, arithmetic expression trees, BSP-trees,

B-trees, and range-trees. An order-preserving drawing of T is one in which the

counterclockwise ordering of the edges incident on a node is the same as their pre-

specified ordering in T . Ordered trees are generally drawn using order-preserving

planar straight-line grid drawings, as any undergraduate textbook on data-structures

will show. In Chapter 4, we develop several area-efficient algorithms for constructing

order-preserving planar straight-line grid drawings of ordered trees. In particular, we

show that:

– An ordered tree admits an order-preserving planar straight-line grid drawing

with O
�
n logn � area,

– An ordered binary tree admits an order-preserving planar straight-line grid

drawing with O
�
n log logn � area,

– An ordered binary tree admits an order-preserving upward planar straight-line

grid drawing with optimal O
�
n logn � area,

7
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– In the case when the aspect ratio is arbitrarily defined by the user, we estab-

lish the trade-off between the area and aspect ratio of order-preserving planar

straight-line grid drawings of ordered binary trees.

� An outerplanar graph is a planar graph for which there exists an embedding with all

vertices on the exterior face. In Chapter 5, we show that an outerplanar graph with n

vertices and degree d admits a planar straight-line grid drawing with O
�
dn1 � 48 � area.

This result implies that if d � O
�
nδ � , where 0 � δ � 0 � 52 is a constant, then the graph

can be drawn in sub-quadratic area.

� In Chapter 6, we summarize the main achievements of this thesis and identify several

open problems in grid drawing.

Note that all algorithms presented in this thesis are time-efficient. The algorithms presented

in Chapters 2, and 3 run in O
�
n logn � time and the algorithms presented in Chapters 4 and

5 run in O
�
n � time, where n is the number of vertices in the graph that needs to be drawn.

8



Chapter 2

Planar Straight-line Grid Drawings of

Binary Trees with Linear Area and

Arbitrary Aspect Ratio

2.1 Introduction

Trees are very common data-structures, which are used to model information in a variety

of applications such as Software Engineering (hierarchies of object-oriented programs),

Business Administration (organization charts), and Web-site Design (structure of a Web-

site). A drawing Γ of a tree T maps each node of T to a distinct point in the plane, and
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2.1. INTRODUCTION

each edge
�
u � v � of T to a simple Jordan curve with endpoints u and v. Γ is a straight-

line drawing (see Figure 2.1.1(a)), if each edge is drawn as a single line-segment. Γ is a

polyline drawing (see Figure 2.1.1(b)), if each edge is drawn as a connected sequence of

one or more line-segments, where the meeting point of consecutive line-segments is called

a bend. Γ is an orthogonal drawing (see Figure 2.1.1(c)), if each edge is drawn as a chain of

alternating horizontal and vertical segments. Γ is a grid drawing if all the nodes and edge-

bends have integer coordinates. Γ is a planar drawing if edges do not intersect each other

in the drawing (for example, all the drawings in Figure 2.1.1 are planar drawings). Γ is an

upward drawing (see Figure 2.1.1(a,b)), if the parent is always assigned either the same or

higher y-coordinate than its children. In this chapter, we concentrate on grid drawings. So,

we will assume that the plane is covered by a rectangular grid. Let R be a rectangle with

sides parallel to the X- and Y -axes. The width (height) of R is equal to the number of grid

points with the same y (x) coordinate contained within R. The area of R is equal to the

number of grid points contained within R. The aspect ratio of R is the ratio of its width and

height. R is the enclosing rectangle of Γ, if it is the smallest rectangle that covers the entire

drawing. The width, height, area, and aspect ratio of Γ is equal to the width, height, area,

and aspect ratio, respectively, of its enclosing rectangle. T is a binary tree if each node has

at most two children. We denote by T � v � , the subtree of T rooted at a node v of T . T � v �

consists of v and all the descendents of v. Γ has the subtree separation property [3] if, for

any two node-disjoint subtrees T � u � and T � v � of T , the enclosing rectangles of the drawings

of T � u � and T � v � do not overlap with each other. Drawings with subtree separation property

are more aesthetically pleasing than those without subtree separation property. The subtree

10



2.1. INTRODUCTION

(a) (b) (c)

Figure 2.1.1: Various kinds of drawings of the same tree: (a) straight-line, (b) polyline,
and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward
drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as
a shaded circle, whereas other nodes are shown as black circles.

separation property also allows for a focus+context style [32] rendering of the drawing,

so that if the tree has too many nodes to fit in the given drawing area, then the subtrees

closer to focus can be shown in detail, whereas those further away from the focus can be

contracted and simply shown as filled-in rectangles.

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline

drawings. Grid drawings guarantee at least unit distance separation between the nodes

of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings

to be displayed in a display surface, such as a computer screen, without any distortions

due to truncation and rounding-off errors. Giving users control over the aspect ratio of a

drawing allows them to display the drawing in different kinds of display surfaces with dif-

ferent aspect ratios. The subtree separation property makes it easier for the user to detect

the subtrees in the drawing, and also allows for a focus+context style [32] rendering of the

drawing. Finally, it is important to minimize the area of a drawing, so that the users can

display a tree in as small drawing area as possible.

11
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We, therefore, investigate the problem of constructing (non-upward) planar straight-line

grid drawings of binary trees with small area. Clearly, any planar grid drawing of a binary

tree with n nodes requires Ω
�
n � area. A long-standing fundamental question, therefore, has

been that whether this is a tight bound also, i.e., given a binary tree T with n nodes, can we

construct a planar straight-line grid drawing of T with area O
�
n � ?

In this chapter, we answer this question in affirmative, by giving an algorithm that con-

structs a planar straight-line grid drawing of a binary tree with n nodes with O
�
n � area in

O
�
n logn � time. Moreover, the drawing can be parameterized for its aspect ratio, i.e., for

any constant α, where 0 � α � 1, the algorithm can construct a drawing with any user-

specified aspect ratio in the range � n � α � nα � . Theorem 2.4.1 summarizes our overall result.

In particular, our result shows that optimal area (equal to O
�
n � ) and optimal aspect ratio

(equal to 1) is simultaneously achievable (see Corollary 2.4.1). It is also interesting to note

that the drawings constructed by our algorithm also exhibit the subtree separation property.

We have also implemented our algorithm, and experimentally evaluated its performance

for randomly-generated binary trees with up to 50,000 nodes, and for complete binary trees

with up to 65 � 535 � 216
� 1 nodes. Our experiments show that it constructs area-efficient

drawings in practice, with area at most 10 times the number of nodes in the tree.

An earlier version of this algorithm was presented in [18]. The algorithm presented here

(will appear in [21]) achieves a better area bound in practice then the version given in [18].

12
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2.2 Previous Results

Previously, the best-known upper bound on the area of a planar straight-line grid drawing

of an n-node binary tree was O
�
n log logn � , which was shown in [3] and [35]. This bound

is very close to O
�
n � , but still it does not settle the question whether an n-node binary tree

can be drawn in this fashion in optimal O
�
n � area. Thus, our result is significant from a the-

oretical view-point. In fact, we already know of one category of drawings, namely, planar

upward orthogonal polyline grid drawings, for which n loglogn is a tight bound [17], i.e.,

any binary tree can be drawn in this fashion in O
�
n loglogn � area, and there exists a family

of binary trees that requires Ω
�
n log logn � area in any such drawing. So, a natural question

arises, if n loglogn is a tight bound for planar straight-line grid drawings also. Of course,

our result implies that this is not the case. Besides, our drawing technique and proofs are

significantly different from those of [3] and [35]. Moreover, the drawing constructed by the

algorithms of [3] and [35] has a fixed aspect ratio, equal to θ
�
log2 n � �

n loglogn � � , whereas

the aspect ratio of the drawing constructed by our algorithm can be specified by the user.

We now summarize some other known results on planar grid drawings of binary trees (for

more results, see [11]). Let T be an n-node binary tree. [17] presents an algorithm for con-

structing an upward polyline drawing of T with O
�
n � area, and any user-specified aspect ra-

tio in the range � n � α � nα � , where α is any constant, such that 0 � α � 1. [26] and [43] present

algorithms for constructing a (non-upward) orthogonal polyline drawing of T with O
�
n �

area. [3] gives an algorithm for constructing an upward orthogonal straight-line drawing of

T with O
�
n logn � area, and any user-specified aspect ratio in the range � logn � n � n � logn � .

13
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It also shows that n logn is also a tight bound for such drawings. [35] gives an algorithm

for constructing an upward straight-line drawing of T with O
�
n log logn � area. If T is a

Fibonacci tree, (AVL tree, complete binary tree), then [6, 42] ( [8], [6], respectively) give

algorithms for constructing an upward straight-line drawing of T with O
�
n � area.

Table 2.2.1 summarizes these results.

Tree Type Drawing Type Area Aspect Ratio Reference

Fibonacci Upward
Straight-line O

�
n � θ

�
1 � [6, 42]

AVL Upward
Straight-line O

�
n � θ

�
1 � [8]

Complete Upward
Binary Straight-line O

�
n � θ

�
1 � [6]

General Upward
Binary Orthogonal

Polyline O
�
n loglogn � θ

�
log2 n � �

n loglogn � � [17, 35]
(Non-upward)

Orthogonal
Polyline O

�
n � θ

�
1 � [26, 43]

Upward
Orthogonal
Straight-line O

�
n logn � � logn � n � n � logn � [3]

Upward
Polyline O

�
n � � n � α � nα � [17]

Upward
Straight-line O

�
n loglogn � θ

�
log2 n � �

n loglogn � � [35]
(Non-upward) O

�
n loglogn � θ

�
log2 n � �

n loglogn � � [3]
Straight-line O

�
n � � n � α � nα � this chapter

Table 2.2.1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings
of an n-node binary tree. Here, α is a constant, such that 0 � α � 1.
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2.3 Preliminaries

Throughout this chapter, by the term drawing, we will mean a planar straight-line grid

drawing. We will assume that the plane is covered by an infinite rectangular grid. A

horizontal channel (vertical channel) is an infinite line parallel to X- (Y -) axis, passing

through the grid-points.

Let T be a tree, with one distinguished node v, which has at most one child. v is called the

link node of T . Let n be the number of nodes in T . T is an ordered tree if the children of

each node are assigned a left-to-right order. A partial tree of T is a connected subgraph of

T . If T is an ordered tree, then the leftmost path p of T is the maximal path consisting of

nodes that are leftmost children, except the first one, which is the root of T . The last node

of p is called the leftmost node of T . Two nodes of T are siblings if they have the same

parent in T . T is an empty tree, i.e., T � φ, if it has zero nodes in it.

Let Γ be a drawing of T . By bottom (top, left, and right, respectively) boundary of Γ, we

will mean the bottom (top, left, and right, respectively) boundary of the enclosing rectangle

R
�
Γ � of Γ. Similarly, by top-left (top-right, bottom-left, and bottom-right, respectively)

corner of Γ, we mean the top-left (top-right, bottom-left, and bottom-right, respectively)

corner of R
�
Γ � .

Let R be a rectangle, such that Γ is entirely contained within R. R has a good aspect ratio,

if its aspect ratio is in the range � n � α � nα � , where 0 � α � 1 is a constant.
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Let r be the root of T . Let u
�

be the link node of T . Γ is a feasible drawing of T , if it has

the following three properties:

� Property 1: The root r is placed at the top-left corner of Γ.

� Property 2: If u
� �� r, then u

�
is placed at the bottom boundary of Γ. Moreover, we

can move u
�

downwards in its vertical channel by any distance without causing any

edge-crossings in Γ.

� Property 3: If u
� � r, then no other node or edge of T is placed on, or crosses the

vertical and horizontal channels occupied by r.

Theorem 2.3.1 (Separator Theorem [43]) Every n-node binary tree T contains an edge

e, called a separator edge, such that removing e from T splits T into two trees T1 and T2,

with n1 and n2 nodes, respectively, such that for some x, where 1 � 3 � x � 2 � 3, n1 � xn,

and n2 � �
1 � x � n. Moreover, e can be found in O

�
n � time.

Let v be a node of tree T located at grid point
�
i � j � in Γ. Let Γ be a drawing of T . Assume

that the root r of T is located at the grid point
�
0 � 0 � in Γ. We define the following operations

on Γ (see Figure 2.3.1):

� rotate operation: rotate Γ counterclockwise by δ degrees around the z-axis passing

through r. After a rotation by δ degrees of Γ, node v will get relocated to the point

�
icosδ � j sinδ � isinδ �

j cosδ � . In particular, after rotating Γ by 90 � , node v will get

relocated to the grid point
�

� j � i � .

16



2.4. BINARY TREE DRAWING ALGORITHM

Figure 2.3.1: Rotating a drawing Γ by 90 � , followed by flipping it vertically. Note that
initially node u

�
was located at the bottom boundary of Γ, but after the rotate operation, u

�

is on the right boundary of Γ.

� flip operation: flip Γ vertically or horizontally. After a horizontal flip of Γ, node v

will be located at grid point
�

� i � j � . After a vertical flip of Γ, node v will be located

at grid point
�
i � � j � .

2.4 Binary Tree Drawing Algorithm

Let T be a binary tree with a link node u
�
. Let n be the number of nodes in T . Let A and ε

be two numbers such that 0 � ε � 1, and A is in the range � n � ε � nε � . A is called the desirable

aspect ratio for T .

Our tree drawing algorithm, called DrawTree, takes ε, A, and T as input, and uses a simple

divide-and-conquer strategy to recursively construct a feasible drawing Γ of T , by perform-

ing the following actions at each recursive step (as we will prove later, Γ will fit inside a

rectangle with area O
�
n � and aspect ratio A):

� Split Tree: Split T into at most five partial trees by removing at most two nodes and

their incident edges from it. Each partial tree has at most
�
2 � 3 � n nodes. Based on

17
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.4.1: Drawing T in all the seven subcases of Case 1 (when the separator
�
u � v � is

not in the leftmost path of T ): (a) TA
�� /0, TC

�� /0, d
�� u

�
, (b) TA � /0, TC � /0, (c) TA

�� /0,
TC

�� /0, d � u
�
, (d) TA

�� /0, TC � /0, r
�� e, (e) TA

�� /0, TC � /0, r � e, (f) TA � /0, TC
�� /0,

d
�� u

�
, and (g) TA � /0, TC

�� /0, d � u
�
. For each subcase, we first show the structure of

T for that subcase, then its drawing when A � 1, and then its drawing when A � 1. Here,
x is the same as f if Tβ

�� φ and is the same as the root of Tα if Tβ � φ. In Subcases (a)
and (c), for simplicity, e is shown to be in the interior of ΓA, but actually, either it is the
same as r, or if A � 1 (A � 1), then it is placed on the bottom (right) boundary of ΓA.
For simplicity, we have shown ΓA, ΓB, and ΓC as identically sized boxes, but in actuality,
they may have different sizes.

the arrangement of these partial trees within T , we get two cases, which are shown

in Figures 2.4.1 and 2.4.2, and described later in Section 2.4.1.

� Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ak to each

partial tree Tk. The value of Ak is based on the value of A, and the number of nodes
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4.2: Drawing T in all the eight subcases of Case 2 (when the separator
�
u � v � is in

the leftmost path of T ): (a) TA
�� /0, TB

�� /0, v
�� u

�
, (b) TA � /0, TB � /0, v

�� u
�
, (c) TA � /0,

TB
�� /0, v

�� u
�
, (d) TA

�� /0, TB � /0, v
�� u

�
, (e) TA

�� /0, TB
�� /0, v � u

�
, (f) TA � /0, TB � /0,

v � u
�
, (g) TA � /0, TB

�� /0, v � u
�
, and (h) TA

�� /0, TB � /0, v � u
�
. For each subcase, we first

show the structure of T for that subcase, then its drawing when A � 1, and then its drawing
when A � 1. In Subcases (a), (d), (e), and (h), for simplicity, e is shown to be in the interior
of ΓA, but actually, either it is same as r, or if A � 1 (A � 1), then it is placed on the bottom
(right) boundary of ΓA. For simplicity, we have shown ΓA, ΓB, and ΓC as identically sized
boxes, but in actuality, they may have different sizes.

in Tk.

� Draw Partial Trees: Recursively construct a feasible drawing of each partial tree Tk

with Ak as its desirable aspect ratio.

� Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes

and edges, that were removed from T to split it, such that the drawing Γ of T thus
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obtained is a feasible drawing. Note that the arrangement of these drawings is done

based on the cases shown in Figures 2.4.1 and 2.4.2. In each case, if A � 1, then the

drawings of the partial trees are stacked one above the other, and if A � 1, then they

are placed side-by-side.

Figure 2.4.3: Drawing of the complete binary tree with 63 nodes constructed by Algorithm
DrawTree, with A � 1 and ε � 0 � 2.

Figure 2.4.3 shows a drawing of a complete binary tree with 63 nodes constructed by Al-

gorithm DrawTree, with A � 1 and ε � 0 � 2.

We now give the details of each action performed by Algorithm DrawTree:

2.4.1 Split Tree

The splitting of tree T into partial trees is done as follows:

� Order the children of each node such that u
�

becomes the leftmost node of T .
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� Using Theorem 2.3.1, find a separator edge
�
u � v � of T , where u is the parent of v.

� Based on whether, or not,
�
u � v � is in the leftmost path of T , we get two cases:

– Case 1: The separator edge
�
u � v � is not in the leftmost path of T . We get seven

subcases: (a) In the general case, T has the form as shown in Figure 2.4.1(a).

In this figure:

� r is the root of T ,

� T2 is the subtree of T rooted at v,

� c is the sibling of v, T1 is the subtree rooted at c,

� w is the parent of u,

� a is the last common node of the path r � v and the leftmost path of T ,

� f is the right child of a,

� if u
�� a then Tα is the subtree rooted at u, otherwise Tα � T2,

� Tβ is the maximal tree rooted at f that contains w but not u,

� TB is the tree consisting of the trees Tα and Tβ, and the edge
�
w � u � ,

� e is the parent of a, and d is the left child of a,

� TA is the maximal tree rooted at r that contains e but not a,

� TC is the tree rooted at d, and

� d
�� u

�
.

In addition to this general case, we get six special cases: (b) when TA � /0 and

TC � /0 (see Figure 2.4.1(b)), (c) TA
�� /0, TC

�� /0, d � u
�

(see Figure 2.4.1(c)),

(d) TA
�� /0, TC � /0, r

�� e (see Figure 2.4.1(d)), (e) TA
�� /0, TC � /0, r � e (see
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Figure 2.4.1(e)), (f) TA � /0, TC
�� /0, d

�� u
�

(see Figure 2.4.1(f)), and (g) TA � /0,

TC
�� /0, d � u

�
(see Figure 2.4.1(g)). (The reason we get these seven subcases

is as follows: T2 has at least n � 3 nodes in it because of Theorem 2.3.1. Hence

T2
�� φ, and so, TB

�� φ. Based on whether TA � φ or not, TC � φ or not, d � u
�

or

not, and r � e or not, we get totally sixteen cases. From these sixteen cases, we

obtain the above seven subcases, by grouping some of these cases together. For

example, the cases TA � φ, TC � φ, d
�� u

�
, r � u

�
, and TA � φ, TC � φ, d

�� u
�
,

r
�� u

�
are grouped together to give Case (a), i.e., TA � φ, TC � φ, d

�� u
�
.

So, Case (a) corresponds to 2 cases. Similarly, Cases (c), (d), (e), (f), and (g)

correspond to 2 cases each, and Case (b) corresponds to 4 cases.) In each case,

we remove nodes a and u, and their incident edges, to split T into at most five

partial trees TA, TC, Tβ, T1, and T2. We also designate e as the link node of TA,

w as the link node of Tβ, and u
�

as the link node of TC. We arbitrarily select any

node of T1 that has at most one child, and any node of T2 that has at most one

child, and designate them as the link nodes of T1 and T2, respectively.

– Case 2: The separator edge
�
u � v � is in the leftmost path of T . We get eight

subcases: (a) In the general case, T has the form as shown in Figure 2.4.2(a).

In this figure,

� r is the root of T ,

� c is the right child of u,

� TB is the subtree of T rooted at c,

� e is the parent of u,
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� TA is the maximal tree rooted at r that contains e but not u,

� TC is the tree rooted at v, and

� v
�� u

�
.

In addition to the general case, we get the following seven special cases: (b)

TA � /0, TB � /0, v
�� u

�
(see Figure 2.4.2(b)), (c) TA � /0, TB

�� /0, v
�� u

�
(see Fig-

ure 2.4.2(c)), (d) TA
�� /0, TB � /0, v

�� u
�

(see Figure 2.4.2(d)), (e) TA
�� /0, TB

�� /0,

v � u
�

(see Figure 2.4.2(e)), (f) TA � /0, TB � /0, v � u
�

(see Figure 2.4.2(f)), (g)

TA � /0, TB
�� /0, v � u

�
(see Figure 2.4.2(g)), and (h) TA

�� /0, TB � /0, v � u
�

(see Figure 2.4.2(h)). (The reason we get these eight subcases is as follows: TC

has at least n � 3 nodes in it because of Theorem 2.3.1. Hence, TC
�� φ. Based

on whether TA � φ or not, TB � φ or not, and v � u
�

or not, we get the eight

subcases given above.) In each case, we remove node u, and its incident edges,

to split T into at most three partial trees TA, TB, and TC. We also designate e

as the link node of TA, and u
�

as the link node of TC. We arbitrarily select any

node of TB that has at most one child and designate it as the link node of TB.

2.4.2 Assign Aspect Ratios

Let Tk be a partial tree of T , where for Case 1, Tk is either TA, TC, Tβ, T1, or T2, and for

Case 2, Tk is either TA, TB, or TC. Let nk be number of nodes in Tk.

Definition: Tk is a large partial tree of T if:
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� A � 1 and nk �
�
n � A � 1

���
1

� ε � , or

� A � 1 and nk �
�
An � 1

���
1

� ε � ,

and is a small partial tree of T otherwise.

In Step Assign Aspect Ratios, we assign a desirable aspect ratio Ak to each nonempty Tk as

follows: Let xk � nk � n.

� If A � 1: If Tk is a large partial tree of T , then Ak � xkA, otherwise (i.e., if Tk is a

small partial tree of T ) Ak � n
� ε
k .

� If A � 1: If Tk is a large partial tree of T , then Ak � A � xk, otherwise (i.e., if Tk is a

small partial tree of T ) Ak � nε
k.

Intuitively, this assignment strategy ensures that each partial tree gets a good desirable

aspect ratio, and so, the drawing of each partial tree constructed recursively by Algorithm

DrawTree will fit inside a rectangle with linear area and good aspect ratio.

2.4.3 Draw Partial Trees

First, we change the desirable aspect ratios assigned to TA and Tβ in some cases as follows:

Suppose TA and Tβ get assigned desirable aspect ratios equal to m and p, respectively,

where m and p are some positive numbers. In Subcase (d) of Case 1, and if A � 1, then in

Subcases (a) and (c) of Case 1, and Subcases (a), (d), (e), and (h) of Case 2, we change the
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value of the desirable aspect ratio of TA to 1 � m. In Case 1, if A � 1, we change the value of

the desirable aspect ratio of Tβ to 1 � p. We make these changes because, as explained later

in Section 2.4.4, in these cases, we need to rotate the drawings of TA and Tβ by 90 � during

the Compose Drawings step. Drawing TA and Tβ with desirable aspect ratios 1 � m and 1 � p,

respectively, compensates for this rotation, and ensures that the drawings of TA and Tβ used

to draw T have the desirable aspect ratios, m and p, respectively.

Next we draw recursively each nonempty partial tree Tk with Ak as its desirable aspect

ratio, where the value of Ak is the one computed in the previous step. The base case for the

recursion happens when Tk contains exactly one node, in which case, the drawing of Tk is

simply the one consisting of exactly one node.

2.4.4 Compose Drawings

Let Γk denote the drawing of a partial tree Tk constructed in Step Draw Partial Trees. We

now describe the construction of a feasible drawing Γ of T from the drawings of its partial

trees in both Cases 1 and 2.

In Case 1, we first construct a feasible drawing Γα of the partial tree Tα by composing Γ1

and Γ2 as shown in Figure 2.4.4, then construct a feasible drawing ΓB of TB by composing

Γα and Γβ as shown in Figure 2.4.5, and finally construct Γ by composing ΓA, ΓB and ΓC

as shown in Figure 2.4.1.

Γα is constructed as follows (see Figure 2.4.4): (Recall that if u
�� a then Tα is the subtree
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of T rooted at u, otherwise Tα � T2)

� If u
�� a, and T1

�� /0 (see Figure 2.4.4(a)), then, if A � 1, place Γ1 above Γ2 such that

the left boundary of Γ1 is one unit to the right of the left boundary of Γ2. Place u

in the same vertical channel as v and in the same horizontal channel as c. If A � 1,

place Γ1 one unit to the left of Γ2, such that the top boundary of Γ1 is one unit below

the top boundary of Γ2. Place u in the same vertical channel as c and in the same

horizontal channel as v. Draw edges
�
u � c � and

�
u � v � .

� If u
�� a, and T1 � /0 (see Figure 2.4.4(b)), then, if A � 1, place u in the same horizontal

channel and at one unit to the left of v; otherwise (i.e. A � 1), place u in the same

vertical channel and at one unit above v. Draw edge
�
u � v � .

� Otherwise (i.e., if u � a), Γα is the same as Γ2 (see Figure 2.4.4(c)).

ΓB is constructed as follows (see Figure 2.4.5): Let y be the root of Tα. Note that y � u if

u
�� a, and y � v otherwise.

� if Tβ
�� /0 (see Figure 2.4.5(a)) then, if A � 1, then place Γβ one unit above Γα such

that the left boundaries of Γβ and Γα are aligned; otherwise (i.e., if A � 1), first rotate

Γβ by 90 � and then flip it vertically, then place Γβ one unit to the left of Γα such that

the top boundaries of Γβ and Γα are aligned. Draw edge
�
w � y � .

� Otherwise (i.e., if Tβ � /0), ΓB is same as Γα (see Figure 2.4.5(b)).
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Γ is constructed from ΓA, ΓB, and ΓC as follows (see Figure 2.4.1): Let x be the root of TB.

Note that x � f if Tβ
�� /0, and x � y otherwise.

� In Subcase (a), as shown in Figure 2.4.1(a), if A � 1, stack ΓA, ΓB, and ΓC one above

the other, such that they are separated by unit vertical distance from each other, and

the left boundaries of ΓA and ΓC are aligned with each other and are placed at unit

horizontal distance to the left of the left boundary of ΓB. If A � 1, then first rotate

ΓA by 90 � , and then flip it vertically. Then, place ΓA, ΓC, and ΓB from left-to-right

in that order, separated by unit horizontal distances, such that the top boundaries of

ΓA and ΓB are aligned, and are at unit vertical distance above the top boundary of

ΓC. Then, move ΓC down until u
�

becomes the lowest node of Γ. Place node a in the

same vertical channel as d and in the same horizontal channel as r and x. Draw edges

�
e � a � ,

�
a � x � , and

�
a � d � .

� In Subcase (b), for both A � 1 and A � 1, place node r one unit above and left of the

top boundary of ΓB (see Figure 2.4.1(b)). Draw edge
�
r� x � .

� The drawing procedure for Subcase (c) is similar to the one in Subcase (a), except

that we also flip ΓC vertically (see Figure 2.4.1(c)).

� In Subcase (d), as shown in Figure 2.4.1(d), if A � 1, first flip ΓB vertically, and then

flip it horizontally, so that its root x gets placed at its lower-right corner. Then, first

rotate ΓA by 90 � , and then flip it vertically. Next, place ΓA above ΓB with unit vertical

separation, such that their left boundaries are aligned, next move node e (which is the

link node of TA) to the right until it is either to the right of, or aligned with the right
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boundary of ΓB (since ΓA is a feasible drawing of TA, by Property 2, as given in

Section 2.3, moving e will not create any edge-crossings), and then place u
�

in the

same horizontal channel as x and one unit to the right of e. If A � 1, first rotate ΓA

by 90 � , and then flip it vertically. Then flip ΓB vertically. Then, place ΓA, u
�
, and

ΓB left-to-right in that order separated by unit horizontal distances, such that the top

boundaries of ΓA and ΓB are aligned, and u
�

is placed in the same horizontal channel

with the bottom boundary of the drawing among ΓA and ΓB with greater height. Draw

edges
�
u

� � e � and
�
u

� � x � .

� In Subcase (e), as shown in Figure 2.4.1(e), if A � 1, first flip ΓB vertically, then

place ΓA and ΓB one above the other with unit vertical separation, such that the left

boundary of ΓA is at unit horizontal distance to the left of the left boundary of ΓB.

If A � 1, then first flip ΓB vertically, place ΓA to the left of ΓB at unit horizontal

distance, such that their top boundaries are aligned. Next, move ΓB down until its

bottom boundary is at least one unit below the bottom boundary of ΓA. Place u
�

in

the same vertical channel as r and in the same horizontal channel as x. Draw edges

�
r� u

� � and
�
u

�
� x � . Note that, since ΓA is a feasible drawing of TA, by Property 3 (see

Section 2.3), drawing
�
u

� � r � will not create any edge-crossings.

� The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that

we do not have ΓA here (see Figure 2.4.1(f)).

� The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that

we also flip ΓC vertically (see Figure 2.4.1(g).
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In Case 2, we construct Γ by composing ΓA, ΓB, and ΓC, as follows (see Figure 2.4.2):

� The drawing procedures in Subcases (a) and (c) are similar to those in Subcases (a)

and (f), respectively, of Case 1 (see Figures 2.4.2(a,c)).

� The drawing procedure in Subcase (b) is similar to that in Case (b) of drawing Tα

(see Figure 2.4.4(b)).

� In Subcase (d), as shown in Figure 2.4.2(d), if A � 1, we place ΓA above ΓC, separated

by unit vertical distance such that the left boundary of ΓC is one unit to the right of

the left boundary of ΓA. Place u in the same vertical channel as r and in the same

horizontal channel as v. If A � 1, then first rotate ΓA by 90 � , and then flip it vertically.

Then, place ΓA to the left of ΓC, separated by unit horizontal distance, such that the

top boundary of ΓC is one unit below the top boundary of ΓA. Then, move ΓC down

until u
�

becomes the lowest node of Γ. Place u in the same vertical channel as v and

in the same horizontal channel as r. Draw edges
�
u � v � and

�
u � e � .

� The drawing procedures in Subcases (e), (f), (g), and (h) are similar to those in Sub-

cases (a), (b), (c), and (d), respectively, (see Figures 2.4.2(e,f,g,h)), except that we

also flip ΓC vertically.

2.4.5 Proof of Correctness

Lemma 2.4.1 (Planarity) Given a binary tree T with a link node u
�
, Algorithm DrawTree

will construct a feasible drawing Γ of T .
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(a) (b) (c)

Figure 2.4.4: Drawing Tα, when: (a) u
�� a and T1

�� /0, (b) u
�� a and T1 � /0, and (c) u � a.

For each case, we first show the structure of Tα for that case, then its drawing when A � 1,
and then its drawing when A � 1. For simplicity, we have shown Γ1 and Γ2 as identically
sized boxes, but in actuality, their sizes may be different.

(a) (b)

Figure 2.4.5: Drawing TB when: (a) Tβ
�� /0, and (b) Tβ � /0. Node y shown here is either

node u or v. For each case, we first show the structure of TB for that case, then its drawing
when A � 1, and then its drawing when A � 1. In Case (a), for simplicity, w is shown to be
in the interior of Γβ, but actually, it is either same as f , or if A � 1 (A � 1), then is placed on
the bottom (right) boundary of Γβ. For simplicity, we have shown Γβ and Γα as identically
sized boxes, but in actuality, their sizes may be different.

Proof: We can easily prove using induction over the number of nodes n in T that Γ is a

feasible drawing:

Base Case (n � 1): Γ consists of exactly one node and is trivially a feasible drawing.

Induction (n � 1): Consider Case 1. By the inductive hypothesis, the drawing constructed

of each partial tree of T is a feasible drawing.

Hence, from Figure 2.4.4, it can be easily seen that the drawing Γα of Tα is also a feasible

drawing.

From Figure 2.4.5, it can be easily seen that the drawing ΓB of TB is also a feasible drawing.

Note that because Γβ is a feasible drawing of Tβ and w is its link node, w is either at the
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bottom of Γβ (from Property 2, see Section 2.3), or at the top-left corner of Γβ and no other

edge or node of Tβ is placed on, or crosses the vertical channel occupied by it (Properties 1

and 3, see Section 2.3). Hence, in Figure 2.4.5(a), in the case A � 1, drawing edge
�
w � x �

will not cause any edge crossings. Also, in Figure 2.4.5(a), in the case A � 1, drawing

edge
�
w � x � will not cause any edge crossings because after rotating Γβ by 90 � and flipping

it vertically, w will either be at the right boundary of Γβ (see Property 2), or at the top-left

corner of Γβ and no other edge or node of Tβ will be placed on, or cross the horizontal

channel occupied by it (see Properties 1 and 3).

Finally, by considering each of the seven subcases shown in Figure 2.4.1 one-by-one, we

can show that Γ is also a feasible drawing of T :

� Subcase (a): See Figure 2.4.1(a). ΓA is a feasible drawing of TA and e is the link node

of TA. Hence, e is either at the bottom of ΓA (from Property 2), or is at the top-left

corner of ΓA, and no other edge or node of TA is placed on, or crosses the horizontal

and vertical channels occupied by it (from Properties 1 and 3). Hence, in the case

A � 1, drawing edge
�
e � a � will not create any edge-crossings, and Γ will also be a

feasible drawing of T . In the case A � 1 also, drawing edge
�
e � a � will not create any

edge-crossings because after rotating ΓA by 90 � and flipping it vertically, e will either

be at the right boundary of ΓA (see Property 2), or at the top-left corner of Γβ and no

other edge or node of TA will be placed on, or cross the horizontal channel occupied

by it (see Properties 1 and 3). Thus, for the case A � 1 also, Γ will also be a feasible

drawing of T .
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� Subcase (b): See Figure 2.4.1(b). Because ΓB is a feasible drawing of TB, it is

straightforward to see that Γ is also a feasible drawing of T for both the cases when

A � 1 and A � 1.

� Subcase (c): See Figure 2.4.1(c). The proof is similar to the one for Subcase (a).

� Subcase (d): See Figure 2.4.1(d). ΓA is a feasible drawing of TA, e is the link node of

TA, and e
�� r. Hence, from Property 2, e is located at the bottom of ΓA. Rotating ΓA

by 90 � and flipping it vertically will move e to the right boundary of ΓA. Moving e to

the right until it is either to the right of, or aligned with the right boundary of ΓB will

not cause any edge-crossings because of Property 2. It can be easily seen that in both

the cases, A � 1 and A � 1, drawing edge
�
e � u

� � does not create any edge-crossings,

and Γ is a feasible drawing of T .

� Subcase (e): See Figure 2.4.1(e). ΓA is a feasible drawing of TA, e is the link node of

TA, and e � r. Hence, from Properties 1 and 3, e is at the top-left corner of ΓA, and no

other edge or node of TA is placed on, or crosses the horizontal and vertical channels

occupied by it. Hence, in both the cases, A � 1 and A � 1, drawing edge
�
e � u � � will

not create any edge-crossings, and Γ is a feasible drawing of T .

� Subcase (f): See Figure 2.4.1(f). It is straightforward to see that Γ is a feasible

drawing of T for both the cases when A � 1 and A � 1.

� Subcase (g): See Figure 2.4.1(g). ΓC is a feasible drawing of TC, u
�

is the link node

of TC, and u
�

is also the root of TC. Hence, from Properties 1 and 3, u
�

is at the

top-left corner of ΓC, and no other edge or node of TC is placed on, or crosses the
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horizontal and vertical channels occupied by it. Flipping ΓC vertically will move u
�

to the bottom-left corner of ΓC and no other edge or node of TC will be on or crosses

the vertical channel occupied by it. Hence, drawing edge
�
r� u

� � will not create any

edge-crossings, and Γ will be a feasible drawing of T .

Using a similar reasoning, we can show that in Case 2 also, Γ is a feasible drawing of T . �

Lemma 2.4.2 (Time) Given an n-node binary tree T with a link node u
�
, Algorithm

DrawTree will construct a drawing Γ of T in O
�
n logn � time.

Proof: From Theorem 2.3.1, each partial tree into which Algorithm DrawTree would split

T will have at most
�
2 � 3 � n nodes in it. Hence, it follows that the depth of the recursion

for Algorithm DrawTree is O
�
logn � . At the first recursive level, the algorithm will split T

into partial trees, assign aspect ratios to the partial trees and compose the drawings of the

partial trees to construct a drawing of T . At the next recursive level, it will split all of these

partial trees into smaller partial trees, assign aspect ratios to these smaller partial trees, and

compose the drawings of these smaller partial trees to construct the drawings of all the

partial trees. This process will continue until the bottommost recursive level is reached. At

each recursive level, the algorithm takes O
�
m � time to split a tree with m nodes into partial

trees, assign aspect ratios to the partial trees, and compose the drawings of partial trees to

construct a drawing of the tree. At each recursive level, the total number of nodes in all

the trees that the algorithm considers for drawing is at most n. Hence, at each recursive

level, the algorithm totally spends O
�
n � time. Hence, the running time of the algorithm is
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O
�
n ��� O �

logn � � O
�
n logn � . �

In Lemma 2.4.4 given below, we prove that the algorithm will draw the tree in O
�
n � area.

Note that the proof given below is different from the one given in [18], which used Theo-

rem 6 of [43]. We believe that the proof given below is more straight-forward, and easier

to understand.

Lemma 2.4.3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the

width and height, respectively, of R. Then, W � �
AD and H �

�
D � A.

Proof: By the definition of aspect ratio, A � W � H. D � W H � W
�
W � A � � W 2 � A. Hence,

W � �
AD. H � W � A � �

AD � A �
�

D � A. �

Lemma 2.4.4 (Area) Let T be a binary tree with a link node u
�
. Let n be the number of

nodes in T . Let ε and A be two numbers such that 0 � ε � 1, and A is in the range � n � ε � nε � .

Given T , ε, and A as input, Algorithm DrawTree will construct a drawing Γ of T that can

fit inside a rectangle R with O
�
n � area and aspect ratio A.

Proof: Let D
�
n � be the area of R. We will prove, using induction over n, that D

�
n � � O

�
n � .

More specifically, we will prove that D
�
n � � c1n � c2nβ for all n � n0, where n0 � c1 � c2 � β

are some positive constants and β � 1.

We now give the proof for the case when A � 1 (the proof for the case A � 1 is sym-

metrical). Algorithm DrawTree will split T into at most 5 partial trees. Let Tk be a
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non-empty partial tree of T , where Tk is one of TA � Tβ � T1 � T2 � TC in Case 1, and is one of

TA � TB � TC in Case 2. Let nk be the number of nodes in Tk, and let xk � nk � n. Let Pk �

c1n � c2nβ � x1 � β
k . From Theorem 2.3.1, it follows that nk � �

2 � 3 � n, and hence, xk � 2 � 3.

Hence, Pk � c1n � c2nβ � �
2 � 3 � 1 � β � c1n � c2nβ �

3 � 2 � 1 � β. Let P
� � c1n � c2nβ �

3 � 2 � 1 � β.

Thus, Pk � P
�

.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing Γk of Tk that

can fit inside a rectangle Rk with aspect ratio Ak and area D
�
nk

� , where Ak is as defined in

Section 2.4.2, and D
�
nk

� � c1nk � c2nβ
k . Since xk � nk � n, D

�
nk

� � c1nk � c2nβ
k � c1xkn �

c2
�
xkn � β � xk

�
c1n � c2nβ � x1 � β

k
� � xkPk � xkP

�

.

Let Wk and Hk be the width and height, respectively, of Rk. We now compute the values of

Wk and Hk in terms of A, P
�

, xk, n, and ε. We have two cases:

� Tk is a small partial tree of T : Then, nk � �
n � A � 1

���
1

� ε � , and also, as ex-

plained in Section 2.4.2, Ak � 1 � nε
k. From Lemma 2.4.3, Wk �

�
AkD

�
nk

� �
� �

1 � nε
k

� �
xkP

� � � � �
1 � nε

k
� �

nk � n � P
� ��� n1 � ε

k P
� � n. Since nk � �

n � A � 1
���

1
� ε � , Wk �

� �
n � A � � 1 � ε � ��� 1 � ε � P

� � n � � �
1 � A

�
1 � ε � ��� 1 � ε � � P

� � n2ε
���

1
� ε � � � P

� � n2ε
���

1
� ε � since

A � 1.

From Lemma 2.4.3, Hk �
�

D
�
nk

� � Ak � �
xkP

� � �
1 � nε

k
� � � �

nk � n � P
�

nε
k �

� n1
� ε

k P
� � n. Since nk � �

n � A � 1
���

1
� ε � , Hk � � �

n � A � � 1 � ε � ��� 1 � ε � P
� � n �

� �
n � A � P

� � n �
�

P
� � A.

� Tk is a large partial tree of T : Then, as explained in Section 2.4.2, Ak � xkA. From
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Lemma 2.4.3, Wk �
�

AkD
�
nk

� � �
xkAxkP

� � xk

�
AP

�

.

From Lemma 2.4.3, Hk �
�

D
�
nk

� � Ak �
�

xkP
� � �

xkA � �
�

P
� � A.

In Step Compose Drawings, we use at most two additional horizontal channels and at most

one additional vertical channel while combining the drawings of the partial trees to con-

struct a drawing Γ of T . Hence, Γ can fit inside a rectangle R
�

with width W
�

and height H
�

,

respectively, where,

H
� � max

Tk is a partial tree o f T � Hk � �
2 �

�
P

� � A
�

2 �

and

W
� � ∑

Tk is a large partial tree

Wk
� ∑

Tk is a small partial tree

Wk
�

1

� ∑
Tk is a large partial tree

xk

�
AP

� � ∑
Tk is a small partial tree

� P
� � n2ε

���
1

� ε � �
1

�
�

AP
� �

5 � P
� � n2ε

���
1

� ε � �
1

(because ∑Tk is a large partial tree xk � 1 , and T has at most 5 partial trees)

R
�

does not have aspect ratio equal to A, but it is contained within a rectangle R with aspect

ratio A, area D
�
n � , width W , and height H, where

W �
�

AP
� �

5 � P
� � n2ε

���
1

� ε � �
1

�
2A �

and

H �
�

P
� � A

�
2

� �
5 � A � � P

� � n2ε
���

1
� ε � �

1 � A
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Hence, D
�
n � � WH � � �

AP
� �

5 � P
� � n2ε

���
1

� ε � �
1

�
2A � � �

P
� � A

�
2

�

�
5 � A � � P

� � n2ε
���

1
� ε � �

1 � A � � P
� �

c3P
� �

�
An2ε

���
1

� ε � �
c4

�
AP

� �
c5P

� � �
An2ε

���
1

� ε � � �

c6 � P
� � n2ε

���
1

� ε � �
c7A

�
c8

�
c9 � A

�
c10

�
P

� � A
�

c11 � P
� � n2ε

���
1

� ε � � A, where

c3 � c4 � � � � � c11 are some constants.

Since, 1 � A � nε, we have that

D
�
n � � P

� �
c3P

� �
�

n2ε
���

1
� ε � �

c4

�
nεP

� �
c5P

� � n2ε
���

1
� ε � �

c6 � P
� � n2ε

���
1

� ε � �
c7nε

�
c8

�
c9

�
c10

�
P

� �
c11 � P

� � n2ε
���

1
� ε �

Since P
� � c1n,

D
�
n � � P

� �
c3c1n �

�
n2ε

���
1

� ε � �
c4

�
nεc1n

�
c5c1n � n2ε

���
1

� ε � �
c6 � c1n � n2ε

���
1

� ε �

�
c7nε �

c8
�

c9
�

c10
�

c1n1
�
2 �

c11 � c1n � n2ε
���

1
� ε �

� P
� �

c3c1n1
���

1
� ε � �

c4
�

c1n
�
1

� ε � � 2 �
c5c1n

�
1 � ε � ��� 1 � ε � �

c6
�

c1n
�
1 � ε � ��� 2 � 1 � ε � �

�
c7nε �

c8
�

c9
�

c10
�

c1n1
�
2 �

c11
�

c1n
�
1 � ε � ��� 2 � 1 � ε � �

� P
� �

c12n1
���

1
� ε � �

c13n
�
1

� ε � � 2

where c12 and c13 are some constants (because, since 0 � ε � 1,
�
1 � ε � � �

2
�
1

� ε � � �
�
1 � ε � � �

1
� ε � � 1 � �

1
� ε � , ε � �

1
� ε � � 2, and 1 � 2 � �

1
� ε � � 2).

P
� � c1n � c2nβ �

3 � 2 � 1 � β � c1n � c2nβ �
1

�
c14

� , where c14 is a constant such that 1
�

c14 �
�
3 � 2 � 1 � β.

Hence, D
�
n � � c1n � c2nβ �

1
�

c14
� �

c12n1
���

1
� ε � �

c13n
�
1

� ε � � 2 � c1n � c2nβ
�

�
c14nβ

�

c12n1
���

1
� ε �

� c13n
�
1

� ε � � 2 � . Thus, for a large enough constant n0, and large enough β, where

37



2.4. BINARY TREE DRAWING ALGORITHM

1 � β � max � 1 � �
1

� ε � �
�
1

� ε � � 2 � , for all n � n0, c14nβ
� c12n1

���
1

� ε �
� c13n

�
1

� ε � � 2 � 0,

and hence D
�
n � � c1n � c2nβ.

The proof for the case A � 1 uses the same reasoning as for the case A � 1. With Tk, Rk,

Wk, Hk, R
�

, W
�

, H
�

, R, W , and H defined as above, and Ak as defined in Section 2.4.2, we

get the following values for Wk, Hk, W
�

, H
�

, W , H, and D
�
n � :

Wk �
�

AP
�

Hk � � P
� � n2ε

���
1

� ε � if Tk is a small partial tree

� xk

�
P

� � A if Tk is a large partial tree

W
� �

�
AP

� �
2

H
� �

�
P

� � A
�

5 � P
� � n2ε

���
1

� ε � �
1

W �
�

AP
� �

2
�

5A � P
� � n2ε

���
1

� ε � �
A

H �
�

P
� � A

�
5 � P

� � n2ε
���

1
� ε � �

1
�

2 � A

D
�
n � � P

� �
c12n1

���
1

� ε � �
c13n

�
1

� ε � � 2

where c12 and c13 are the same constants as in the case A � 1. Therefore, D
�
n � � c1n � c2nβ

for A � 1 too. (Notice that in the values that we get above for Wk, Hk, W
�

, H
�

, W , and H,

if we replace A by 1 � A, exchange Wk with Hk, exchange W
�

with H
�

, and exchange W with

H, we will get the same values for Wk, Hk, W
�

, H
�

, W , and H as in the case A � 1. This

basically reflects the fact that the cases A � 1 and A � 1 are symmetrical to each other.) �

Theorem 2.4.1 (Main Theorem) Let T be a binary tree with n nodes. Given any num-

ber A, where n
� α � A � nα, for some constant α, where 0 � α � 1, we can construct in
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O
�
n logn � time, a planar straight-line grid drawing of T with O

�
n � area, and aspect ratio

A.

Proof: Let ε be a constant such that n
� ε � A � nε and 0 � ε � 1. Designate any node of

T that has at most one child as its link node. Construct a drawing Γ of T in R by calling

Algorithm DrawTree with T , A and ε as input. From Lemmas 2.4.1, 2.4.2, and 2.4.4, Γ will

be a planar straight-line grid drawing of T contained entirely within a rectangle with O
�
n �

area, and aspect ratio A. �

Corollary 2.4.1 Let T be a binary tree with n nodes. We can construct in O
�
n logn � time,

a planar straight-line grid drawing of T with optimal (equal to O
�
n � ) area, and optimal

aspect ratio (equal to 1).

Proof: Immediate from Theorem 2.4.1, with A � 1. �

2.5 Experimental Results

We have implemented the algorithm using C++. The implementation consists of about

2,100 lines of code. We have also experimentally evaluated the algorithm on two types of

binary trees, namely, randomly-generated, consisting of up to 50,000 nodes, and complete,

consisting of up to 65 � 535 � 216
� 1 nodes.

Each randomly-generated tree Tn with n nodes is generated by constructing a sequence of
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trees T0 � T1 � � � � � Tn, where T0 is the empty tree, and Ti
�

1 is generated from Ti by inserting a

new node in it, using the Algorithm InsertRandomly:

Algorithm InsertRandomly(u � T ): � u is a new node to be inserted in tree T �

1. If T is the empty tree then

� Set u as its root.

2. Else, randomly choose to perform one of the following two pairs of steps (a � b or

c � d):

(a) If T � left is NULL, then T � left = u.

(b) Else InsertRandomly(u, T � left).

(c) If T � right is NULL, then T � right = u.

(d) Else InsertRandomly(u, T � right).

(in our implementation, a tree T is stored as a pointer to its root, and T � left and T �

right represent pointers to the left and right children of the root of T , respectively)

Recall that the algorithm takes three values as input: a binary tree T with n nodes, a number

ε, where 0 � ε � 1, and a number A in the range � n � ε � nε � .

The performance criteria we have used to evaluate the algorithm is the ratio c of the area

of the drawing constructed of a tree T , and the number of nodes in T . Recall that the area
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and aspect ratio of a drawing is defined as the area and aspect ratio, respectively, of its

enclosing rectangle.

To evaluate the algorithm, we varied n to up to 50 � 000, for randomly-generated trees, and

to up to 65 � 535 � 216
� 1, for complete trees. For each n, we used five different values for ε,

namely, 0 � 1, 0 � 25, 0 � 5, 0 � 75, and 0 � 9. For each
�
n � ε � pair, we used 20 different values of A

uniformly distributed in the range � 1 � nε � . The performance of the algorithm is symmetrical

for A � 1 and A � 1. Hence, we varied A only from 1 through nε, not from n
� ε through

nε (the only difference between A � 1 and A � 1 is that for A � 1 the algorithm constructs

drawings with longer height than width, whereas for A � 1, it constructs drawings with

longer width than height). Hence, in the rest of the section, we will assume that A � 1.

For each type of tree (randomly-generated and complete), and for each triplet
�
n � A � ε � ,

we generated three trees of that type. We constructed a drawing of each tree using the

algorithm, and computed the value of c. Next, we averaged the values of c obtained for the

three trees to get a single value for each triplet
�
n � A � ε � for each tree-type.

Our experiments show that the value of c is generally small, and varies between 3 and

10. More specifically, it varies between 3 and 10 for randomly-generated, and 3 and 8 for

complete trees. Figures 2.5.1 and 2.5.2 show how c varies with n, A, and ε for randomly-

generated and complete trees, respectively.

We also discovered that c increases with A for a given n and ε. However, the rate of increase

is very small. Consequently, for a given n and ε, the range for c over all the values of A is

small (see Figure 2.5.1(b,d,f,h,j) and Figure 2.5.2(b,d,f,h,j)). For example, for n � 10 � 000,
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and ε � 0 � 5, the range for c is � 4 � 2 � 5 � 2 � . Similarly, for a given n and A, c increases with ε.

Finally, we would like to comment that the aspect ratio of the drawing constructed is, in

general, different from the input aspect ratio A. This is so because of two reasons. First,

while large partial trees get an aspect ratio that is proportional to their sizes, small partial

trees get an aspect ratio that is larger than what they would have got had they been assigned

aspect ratios proportional to their sizes. Second, the algorithm adds some horizontal and

vertical channels to place vertices a and u.

We computed the ratio r of the aspect ratio of the drawing constructed by the algorithm

and input aspect ratio A. We discovered that r is close to 1 for A � 1, generally decreases

as we increase A, and can get as low as 0 � 1 for A � nε. However, we also discovered that

for a large range of values for A, namely, � 1 � min � nε � n � log2 n � � , r stays within the range

� 0 � 8 � 1 � 2 � , and so is close to 1. Hence, even in applications, that require the drawing to be

of exactly the same aspect ratio as A, we can obtain a drawing with small area and aspect

ratio exactly equal to A by adding enough “white space” to the drawing constructed by

our drawing algorithm. Adding the white space will increase the area of the drawing by a

factor of at most 1 � 0 � 8 � 1 � 25 (assuming that A is in the above-mentioned range). Hence,

the area of the drawing will still be relatively small, namely, at most 10 � 1 � 25 � 12 � 5 times

the number of nodes in the tree.
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Figure 2.5.1: Performance of the algorithm, as given by the value of c, for drawing a
randomly-generated binary tree T with different values of A and ε, where c=area of draw-
ing/number of nodes n in T : (a) ε � 0 � 9, (c) ε � 0 � 75, (e) ε � 0 � 5, (g) ε � 0 � 25, and (i)
ε � 0 � 1. Figures (b), (d), (f), (h), and (j) contain the projections on the XZ-plane of the
plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the
ranges for the values of c for different values of A for each n.
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Figure 2.5.2: Performance of the algorithm, as given by the value of c, for drawing a
complete binary tree T with different values of A and ε, where c=area of drawing/number
of nodes n in T : (a) ε � 0 � 9, (c) ε � 0 � 75, (e) ε � 0 � 5, (g) ε � 0 � 25, and (i) ε � 0 � 1. Figures
(b), (d), (f), (h), and (j) contain the projections on the XZ-plane of the plots shown in
Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the ranges for the values
of c for different values of A for each n.
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Chapter 3

Planar Straight-line Grid Drawings of

General Trees with Linear Area and

Arbitrary Aspect Ratio

3.1 Introduction

Trees are very common data-structures, which are used to model information in a variety

of applications. such as Software Engineering (hierarchies of object-oriented programs),

Business Administration (organization charts), and Web-site Design (structure of a Web-

site). A drawing Γ of a tree T maps each node of T to a distinct point in the plane, and

each edge
�
u � v � of T to a simple Jordan curve with endpoints u and v. Γ is a straight-line
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drawing (see Figure 3.1.1(a)), if each edge is drawn as a single line-segment. Γ is a polyline

drawing (see Figure 3.1.1(b)), if each edge is drawn as a connected sequence of one or more

line-segments, where the meeting point of consecutive line-segments is called a bend. Γ is

an orthogonal drawing (see Figure 3.1.1(c)), if each edge is drawn as a chain of alternating

horizontal and vertical segments. Γ is a grid drawing if all the nodes and edge-bends

have integer coordinates. Γ is a planar drawing if edges do not intersect each other in the

drawing (for example, all the drawings in Figure 3.1.1 are planar drawings). Γ is an upward

drawing (see Figure 3.1.1(a,b)), if the parent is always assigned either the same or higher

y-coordinate than its children. In this chapter, we concentrate on grid drawings. So, we

will assume that the plane is covered by a rectangular grid. Let R be a rectangle with sides

parallel to the X- and Y -axes. The width (height) of R is equal to the number of grid points

with the same y (x) coordinate contained within R. The area of R is equal to the number of

grid points contained within R. The aspect ratio of R is the ratio of its width and height. R

is the enclosing rectangle of Γ, if it is the smallest rectangle that covers the entire drawing.

The width, height, area, and aspect ratio of Γ is equal to the width, height, area, and aspect

ratio, respectively, of its enclosing rectangle. The degree of a node of T is the number of

edges incident on it. The degree of T is the maximum degree of any node in it. T is a binary

tree if it has degree 3. We denote by T � v � , the subtree of T rooted at a node v of T . T � v �

consists of v and all the descendents of v. Γ has the subtree separation property [3] if, for

any two node-disjoint subtrees T � u � and T � v � of T , the enclosing rectangles of the drawings

of T � u � and T � v � do not overlap with each other. Drawings with subtree separation property

are more aesthetically pleasing than those without subtree separation property. The subtree
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(a) (b) (c)

Figure 3.1.1: Various kinds of drawings of the same tree: (a) straight-line, (b) polyline,
and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward
drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as
a shaded circle, whereas other nodes are shown as black circles.

separation property also allows for a focus+context style [32] rendering of the drawing,

so that if the tree has too many nodes to fit in the given drawing area, then the subtrees

closer to focus can be shown in detail, whereas those further away from the focus can be

contracted and simply shown as filled-in rectangles.

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline

drawings. Grid drawings guarantee at least unit distance separation between the nodes

of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings

to be displayed in a display surface, such as a computer screen, without any distortions

due to truncation and rounding-off errors. Giving users control over the aspect ratio of a

drawing allows them to display the drawing in different kinds of display surfaces with dif-

ferent aspect ratios. The subtree separation property makes it easier for the user to detect

the subtrees in the drawing, and also allows for a focus+context style [32] rendering of the

drawing. Finally, it is important to minimize the area of a drawing, so that the users can

display a tree in as small drawing area as possible.
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We, therefore, investigate the problem of constructing (non-upward) planar straight-line

grid drawings of trees with small area. Clearly, any planar grid drawing of a tree with n

nodes requires Ω
�
n � area. A long-standing fundamental question, therefore, has been that

whether this is a tight bound also, i.e., given a tree T with n nodes, can we construct a

planar straight-line grid drawing of T with area O
�
n � ?

In Chapter 2 we showed that a binary tree can be drawn in this fashion in O
�
n � area.

However, trees with degree greater than 3 appear quite commonly in practical applications.

Hence, an important natural question arises, if this result can be generalized to higher

degree trees also. In this chapter, we partially answer this question in affirmative, by giving

an algorithm that constructs a planar straight-line grid drawing of a degree-d tree with n

nodes, where d � O
�
nδ � is a positive integer and 0 � δ � 1 � 2 is a constant, with O

�
n �

area in O
�
n logn � time. Moreover, the drawing can be parameterized for its aspect ratio,

i.e., for any constant α, where 0 � α � 1, the algorithm can construct a drawing with any

user-specified aspect ratio in the range � n � α � nα � . Theorem 3.4.1 summarizes our overall

result. In particular, our result shows that optimal area (equal to O
�
n � ) and optimal aspect

ratio (equal to 1) is simultaneously achievable (see Corollary 3.4.1). It is also interesting

to note that the drawings constructed by our algorithm also exhibit the subtree separation

property.
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3.2 Previous Results

Previously, the best-known bound on area of planar straight-line grid drawings of general

trees was O
�
n logn � , which can be achieved by a simple modification of the HV-drawing

algorithm of [6].

Most of the research on drawing trees has dealt with binary trees. In Chapter 2 we present

an algorithm for constructing a planar straight-line grid drawing of a binary tree with area

O
�
n � .

We now summarize some other known results on planar grid drawings of binary trees (for

more results, see [11]). Let T be an n-node binary tree. [17] presents an algorithm for con-

structing an upward polyline drawing of T with O
�
n � area, and any user-specified aspect ra-

tio in the range � n � α � nα � , where α is any constant, such that 0 � α � 1. [26] and [43] present

algorithms for constructing a (non-upward) orthogonal polyline drawing of T with O
�
n �

area. [3] gives an algorithm for constructing an upward orthogonal straight-line drawing of

T with O
�
n logn � area, and any user-specified aspect ratio in the range � logn � n � n � logn � .

It also shows that n logn is also a tight bound for such drawings. [35] gives an algorithm

for constructing an upward straight-line drawing of T with O
�
n log logn � area. If T is a

Fibonacci tree, (AVL tree, complete binary tree), then [6, 42] ( [8], [6], respectively) give

algorithms for constructing an upward straight-line drawing of T with O
�
n � area.

Table 3.2.1 summarizes these results.

51



3.3. PRELIMINARIES

Tree Type Drawing Type Area Aspect Ratio Reference

Fibonacci Upward
Straight-line O

�
n � θ

�
1 � [6, 42]

AVL Upward
Straight-line O

�
n � θ

�
1 � [8]

Complete Upward
Binary Straight-line O

�
n � θ

�
1 � [6]

General Upward
Binary Orthogonal

Polyline O
�
n log logn � θ

�
log2 n � �

n loglogn � � [17, 35]
(Non-upward)

Orthogonal
Polyline O

�
n � θ

�
1 � [26, 43]

Upward
Orthogonal
Straight-line O

�
n logn � � logn � n � n � logn � [3]

Upward
Polyline O

�
n � � n � α � nα � [17]

Upward
Straight-line O

�
n log logn � θ

�
log2 n � �

n loglogn � � [35]
(Non-upward) O

�
n log logn � θ

�
log2 n � �

n loglogn � � [3]
Straight-line O

�
n � � n � α � nα � [18]

Degree-O
�
nδ � (Non-upward)

0 � δ � 1 � 2 Straight-line O
�
n � � n � α � nα � this chapter

Table 3.2.1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings
of an n-node tree. Here, α is a constant, such that 0 � α � 1.

The paper based on this Chapter has been presented in [22].

3.3 Preliminaries

Throughout this chapter, by the term drawing, we will mean a planar straight-line grid

drawing. We will assume that the plane is covered by an infinite rectangular grid. A

horizontal channel (vertical channel) is an infinite line parallel to X- (Y -) axis, passing
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through the grid-points.

Let T be a degree-d tree, with one distinguished node v, which has at most d � 1 children.

v is called the link node of T . Let n be the number of nodes in T . T is an ordered tree if the

children of each node are assigned a left-to-right order. A partial tree of T is a connected

subgraph of T . If T is an ordered tree, then the leftmost path p of T is the maximal path

consisting of nodes that are leftmost children, except the first one, which is the root of T .

The last node of p is called the leftmost node of T . Two nodes of T are siblings if they have

the same parent in T . T is an empty tree, i.e., T � φ, if it has zero nodes in it.

Let Γ be a drawing of T . By bottom (top, left, and right, respectively) boundary of Γ, we

will mean the bottom (top, left, and right, respectively) boundary of the enclosing rectangle

R
�
Γ � of Γ. Similarly, by top-left (top-right, bottom-left, and bottom-right, respectively)

corner of Γ, we mean the top-left (top-right, bottom-left, and bottom-right, respectively)

corner of R
�
Γ � .

Let R be a rectangle, such that Γ is entirely contained within R. R has a good aspect ratio,

if its aspect ratio is in the range � n � α � nα � , where 0 � α � 1 is a constant.

Let r be the root of T . Let u
�

be the link node of T . Γ is a feasible drawing of T , if it has

the following three properties:

� Property 1: The root r is placed at the top-left corner of Γ.

� Property 2: If u
� �� r, then u

�
is placed at the bottom boundary of Γ. Moreover, we
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can move u
�

downwards in its vertical channel by any distance without causing any

edge-crossings in Γ.

� Property 3: If u
� � r, then no other node or edge of T is placed on, or crosses the

vertical and horizontal channels occupied by r.

Theorem 3.3.1 In any degree-d tree T , there is a node u, such that removing u and its

incident edges splits T into at most d trees, where each tree has at most n � 2 nodes in it,

and n � 2 is the number of nodes in T . Node u is called a separator node of T . Moreover,

u can be found in O
�
n � time.

Proof: To obtain u, we invoke Algorithm FindSeparator with the root of T as its input.

Also, as a pre-process step, before invoking Algorithm FindSeparator, we first compute

the number of nodes n
�
v � in the subtree rooted at each node v of T . We store the value of

n
�
v � in each node v. We now describe Algorithm FindSeparator.

Algorithm FindSeparator(u): � u is a node of T �

1. Let s1 � � � � � s j be the children of u.

2. Let si be the child of u such that n
�
si

� � max � n
�
s1

� � � � � � n
�
s j

� � .

3. If n
�
si

� � n � 2, then Return FindSeparator(si).

4. Else Return u.

The algorithm clearly runs in O
�
n � time.
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Let u be the node of T returned on calling Algorithm FindSeparator(r), where r is the root

of T . We will prove that u is a separator node of T . It is easy to see from the description of

the algorithm that n
�
u � � n � 2 and n

�
s � � n � 2, for each child s of u. Let T

�

be the partial tree

of T obtained by removing the subtree rooted at u from T . Since n
�
u � � n � 2, the number

of nodes in T
�

is less than n � n � 2 � n � 2. Also recall that n
�
s � � n � 2, for each child s of u.

Hence, removing u and its incident edges will split T into at most d trees, each containing

at most n � 2 nodes. Hence, u is indeed a separator node of T . �

Let v be a node of tree T located at grid point
�
i � j � in Γ. Let Γ be a drawing of T . Assume

that the root r of T is located at the grid point
�
0 � 0 � in Γ. We define the following operations

on Γ (see Figure 3.3.1):

� rotate operation: rotate Γ counterclockwise by δ degrees around the z-axis passing

through r. After a rotation by δ degrees of Γ, node v will get relocated to the point

�
icosδ � j sinδ � isinδ �

j cosδ � . In particular, after rotating Γ by 90 � , node v will get

relocated to the grid point
�

� j � i � .

� flip operation: flip Γ vertically or horizontally. After a horizontal flip of Γ, node v

will be located at grid point
�

� i � j � . After a vertical flip of Γ, node v will be located

at grid point
�
i � � j � .
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Figure 3.3.1: Rotating a drawing Γ by 90 � , followed by flipping it vertically. Note that
initially node u

�
was located at the bottom boundary of Γ, but after the rotate operation, u

�

is on the right boundary of Γ.

3.4 Tree Drawing Algorithm

Let T be a degree-d tree with a link node u
�
, where d � O

�
nδ � is a positive integer, 0 � δ �

1 � 2 is a constant, and n is the number of nodes in T . Let A and ε be two numbers such that

δ � �
1 � δ � � ε � 1, and A is in the range � n � ε � nε � . A is called the desirable aspect ratio for

T .

Our tree drawing algorithm, called DrawTree, takes ε, A, and T as input, and uses a simple

divide-and-conquer strategy to recursively construct a feasible drawing Γ of T , by perform-

ing the following actions at each recursive step (as we will prove later, Γ will fit inside a

rectangle with area O
�
n � and aspect ratio A):

� Split Tree: Split T into at most 2d � 1 partial trees by removing at most two nodes

and their incident edges from it. Each partial tree has at most n � 2 nodes. Based on

the arrangement of these partial trees within T , we get two cases, which are shown

in Figures 3.4.1 and 3.4.2, and described later in Section 3.4.1.

� Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ak to each
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.4.1: Drawing T in all the seven subcases of Case 1 (when the separator node u
is not in the leftmost path of T ): (a) TA

�� /0, TC
�� /0, g

�� u
�
, 0 � i � d � 3, (b) TA � /0,

TC � /0, 0 � i � d � 3, (c) TA
�� /0, TC

�� /0, g � u
�
, 0 � i � d � 3, (d) TA

�� /0, TC � /0,
r

�� e, 0 � i � d � 3, (e) TA
�� /0, TC � /0, r � e, 0 � i � d � 3, (f) TA � /0, TC

�� /0, g
�� u

�
,

0 � i � d � 3, and (g) TA � /0, TC
�� /0, g � u

�
, 0 � i � d � 3. For each subcase, we first show

the structure of T for that subcase, then its drawing when A � 1, and then its drawing when
A � 1. Here, x is the same as f if Tβ

�� φ, and is the same as the root of Tα if Tβ � φ. In
Subcases (a) and (c), for simplicity, e is shown to be in the interior of ΓA, but actually, either
it is the same as r, or if A � 1 (A � 1), then it is placed on the bottom (right) boundary of ΓA.
For simplicity, we have shown ΓA, ΓB, and ΓC as identically sized boxes, but in actuality,
they may have different sizes.

partial tree Tk. The value of Ak is based on the value of A, and the number of nodes

in Tk.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4.2: Drawing T in all the eight subcases of Case 2 (when the separator node u is
in the leftmost path of T ): (a) TA

�� /0 � TC
�� /0, v

�� u
�
, 1 � j � d � 2, (b) TA � /0 � TC

�� /0,
v

�� u
�
, j � 0, (c) TA � /0 � TC

�� /0, v
�� u

�
, 1 � j � d � 2, (d) TA

�� /0 � TC
�� /0, v

�� u
�
, j � 0,

(e) TA
�� /0, TB

�� /0, v � u
�
, 1 � j � d � 2, (f) TA � /0, TB � /0, v � u

�
, j � 0, (g) TA � /0,

TB
�� /0, v � u

�
, 1 � j � d � 2, and (h) TA

�� /0, TB � /0, v � u
�
, j � 0. For each subcase,

we first show the structure of T for that subcase, then its drawing when A � 1, and then its
drawing when A � 1. In Subcases (a) and (d), for simplicity, e is shown to be in the interior
of ΓA, but actually, either it is same as r, or if A � 1 (A � 1), then it is placed on the bottom
(right) boundary of ΓA. For simplicity, we have shown ΓA, ΓB, and ΓC as identically sized
boxes, but in actuality, they may have different sizes.

� Draw Partial Trees: Recursively construct a feasible drawing of each partial tree Tk

with Ak as its desirable aspect ratio.

� Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes

and edges, that were removed from T to split it, such that the drawing Γ of T thus
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Figure 3.4.3: Drawing of the complete binary tree with 63 nodes constructed by Algorithm
DrawTree, with A � 1 and ε � 0 � 2.

obtained is a feasible drawing. Note that the arrangement of these drawings is done

based on the cases shown in Figures 3.4.1 and 3.4.2. In each case, if A � 1, then the

drawings of the partial trees are stacked one above the other, and if A � 1, then they

are placed side-by-side.

Figure 3.4.3 shows a drawing of a complete binary tree with 63 nodes constructed by Al-

gorithm DrawTree, with A � 1 and ε � 0 � 2.

We now give the details of each action performed by Algorithm DrawTree:

3.4.1 Split Tree

The splitting of tree T into partial trees is done as follows:

� Order the children of each node such that u
�

becomes the leftmost node of T .
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� Using Theorem 3.3.1, find a separator node u of T .

� Based on whether, or not, u is in the leftmost path of T , we get two cases:

– Case 1: The separator node u is not in the leftmost path of T . We get seven

subcases:

(a) In the general case, T has the form as shown in Figure 3.4.1(a). In this

figure:

� r is the root of T ,

� c1 � � � � � c j are the children of u, 0 � j � d � 1,

� T1 � � � � � Tj are the trees rooted at c1 � � � � � c j respectively, 0 � j � d � 1,

� Tα is the subtree rooted at u,

� w is the parent of u,

� a is the last common node of the path r � v and the leftmost path of T ,

� f is the child of a that is contained in the path r � v,

� Tβ is the maximal tree rooted at f that contains w but not u,

� TB is the tree consisting of the trees Tα and Tβ, and the edge
�
w � u � ,

� e is the parent of a,

� g is the leftmost child of a,

� TA is the maximal tree rooted at r that contains e but not a,

� TC is the tree rooted at g,

� b1 � � � � � bi are the siblings of f and g,

� T
�

1 � � � � � T
�

i are the trees rooted at b1 � � � � � bi respectively, 0 � i � d � 3, and
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� g
�� u

�
.

In addition to this general case, we get six special cases: (b) TA � /0, TC � /0,

0 � i � d � 3 (see Figure 3.4.1(b)), (c) TA
�� /0, TC

�� /0, g � u
�
, 0 � i � d � 3 (see

Figure 3.4.1(c)), (d) TA
�� /0, TC � /0, r

�� e, 0 � i � d � 3 (see Figure 3.4.1(d)),

(e) TA
�� /0, TC � /0, r � e, 0 � i � d � 3 (see Figure 3.4.1(e)), (f) TA � /0, TC

�� /0,

g
�� u

�
, 0 � i � d � 3 (see Figure 3.4.1(f)), and (g) TA � /0, TC

�� /0, g � u
�
,

0 � i � d � 3 (see Figure 3.4.1(g)). (The reason we get these seven subcases

is as follows: Tα has at least n � 2 nodes in it because of Theorem 3.3.1. Hence

Tα
�� φ, and so, TB

�� φ. Based on whether TA � φ or not, TC � φ or not, g � u
�

or

not, and r � e or not, we get totally sixteen cases. From these sixteen cases, we

obtain the above seven subcases, by grouping some of these cases together. For

example, the cases TA � φ, TC � φ, d
�� u

�
, r � u

�
, and TA � φ, TC � φ, d

�� u
�
,

r
�� u

�
are grouped together to give Case (a), i.e., TA � φ, TC � φ, d

�� u
�
.

So, Case (a) corresponds to 2 cases. Similarly, Cases (c), (d), (e), (f), and (g)

correspond to 2 cases each, and Case (b) corresponds to 4 cases.) In each case,

we remove nodes a and u, and their incident edges, to split T into at most 2d � 1

partial trees TA, TC, Tβ, T
�

1 � � � � � T
�

i , 0 � i � d � 3, and T1 � � � � � Tj, 0 � j � d � 1.

We also designate e as the link node of TA, w as the link node of Tβ, and u
�

as

the link node of TC. We arbitrarily select a leaf ei of T
�

i , 0 � i � d � 3, and a

leaf e j of Tj, 0 � j � d � 1, and designate them as the link nodes of T
�

i and Tj,

respectively.

– Case 2: The separator node u is in the leftmost path of T . We get eight subcases:
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(a) In the general case, T has the form as shown in Figure 3.4.2(a). In this figure,

� r is the root of T ,

� v is the leftmost child of u,

� c1 � � � � � c j are the siblings of v, 1 � j � d � 2,

� T1 � � � � � Tj are the trees rooted at c1 � � � � � c j respectively, 1 � j � d � 2,

� e is the parent of u,

� TA is the maximal tree rooted at r that contains e but not u,

� TC is the subtree of T rooted at v,

� FB is the forest composed by trees T1 � � � � � Tj, 1 � j � d � 2, and

� v
�� u

�
.

In addition to the general case, we get the following seven special cases: (b)

TA � /0, j � 0, v
�� u

�
(see Figure 3.4.2(b)), (c) TA � /0, 1 � j � d � 2, v

�� u
�

(see Figure 3.4.2(c)), (d) TA
�� /0, j � 0, v

�� u
�

(see Figure 3.4.2(d)), (e) TA
�� /0,

1 � j � d � 2, v � u
�

(see Figure 3.4.2(e)), (f) TA � /0, j � 0, v � u
�

(see

Figure 3.4.2(f)), (g) TA � /0, 1 � j � d � 2, v � u
�

(see Figure 3.4.2(g)), and

(h) TA
�� /0, j � 0, v � u

�
(see Figure 3.4.2(h)). (The reason we get these eight

subcases is as follows: TC has at least n � 2 nodes in it because of Theorem 3.3.1.

Hence, TC
�� φ. Based on whether TA � φ or not, FB � φ or not, and v � u

�
or not,

we get the eight subcases given above.) In each case, we remove node u, and

its incident edges, to split T into at most d partial trees TA, TC, and T1 � � � � � Tj,

0 � j � d � 2. We also designate e as the link node of TA, and u
�

as the link

node of TC. We randomly select a leaf e j of Tj and designate it as the link node
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of Tj, 0 � j � d � 2.

3.4.2 Assign Aspect Ratios

Let Tk be a partial tree of T , where for Case 1, Tk is either TA, TC, Tβ, T
�

1 � � � � � T
�

i ,

0 � i � d � 3, or T1 � � � � � Tj, 0 � j � d � 1, and for Case 2, Tk is either TA, TC, or T1 � � � � � Tj,

0 � j � d � 2. Let nk be number of nodes in Tk.

Definition: Tk is a large partial tree of T if:

� A � 1 and nk �
�
n � A � 1

���
1

� ε � , or

� A � 1 and nk �
�
An � 1

���
1

� ε � ,

and is a small partial tree of T otherwise.

In Step Assign Aspect Ratios, we assign a desirable aspect ratio Ak to each nonempty Tk as

follows: Let xk � nk � n.

� If A � 1: If Tk is a large partial tree of T , then Ak � xkA, otherwise (i.e., if Tk is a

small partial tree of T ) Ak � n
� ε
k .

� If A � 1: If Tk is a large partial tree of T , then Ak � A � xk, otherwise (i.e., if Tk is a

small partial tree of T ) Ak � nε
k.
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Intuitively, this assignment strategy ensures that each partial tree gets a good desirable

aspect ratio, and so, the drawing of each partial tree constructed recursively by Algorithm

DrawTree will fit inside a rectangle with linear area and good aspect ratio.

3.4.3 Draw Partial Trees

First, we change the desirable aspect ratios assigned to TA and Tβ in some cases as follows:

Suppose TA and Tβ get assigned desirable aspect ratios equal to m and p, respectively,

where m and p are some positive numbers. In Subcase (d) of Case 1, and if A � 1, then in

Subcases (a) and (c) of Case 1, and Subcases (a), (d), (e), and (h) of Case 2, we change the

value of the desirable aspect ratio of TA to 1 � m. In Case 1, if A � 1, we change the value of

the desirable aspect ratio of Tβ to 1 � p. We make these changes because, as explained later

in Section 3.4.4, in these cases, we need to rotate the drawings of TA and Tβ by 90 � during

the Compose Drawings step. Drawing TA and Tβ with desirable aspect ratios 1 � m and 1 � p,

respectively, compensates for this rotation, and ensures that the drawings of TA and Tβ used

to draw T have the desirable aspect ratios, m and p, respectively.

Next we draw recursively each nonempty partial tree Tk with Ak as its desirable aspect

ratio, where the value of Ak is the one computed in the previous step. The base case for the

recursion happens when Tk contains exactly one node, in which case, the drawing of Tk is

simply the one consisting of exactly one node.
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3.4.4 Compose Drawings

Let Γk denote the drawing of a partial tree Tk constructed in Step Draw Partial Trees. We

now describe the construction of a feasible drawing Γ of T from the drawings of its partial

trees in both Cases 1 and 2.

In Case 1, we first construct a feasible drawing Γα of the partial tree Tα by composing

Γ1 � � � � � Γ j, 0 � j � d � 1, as shown in Figure 3.4.4, then construct a feasible drawing ΓB of

TB by composing Γα and Γβ as shown in Figure 3.4.5, and finally construct Γ by composing

ΓA, ΓB, ΓC, Γ
�

1 � � � � � Γ
�

i, 0 � i � d � 3, as shown in Figure 3.4.1.

Γα is constructed as follows (see Figure 3.4.4): If A � 1, place Γ j � � � � � Γ2 � Γ1, 1 � j � d � 1,

one above the other, in this order, separated by unit vertical distance, such that the left

boundaries of Γ j � � � � � Γ2 are aligned, and one unit to the right of the left boundary of Γ1.

Place u in the same vertical channel as c1 and in the same horizontal channel as c j. If A � 1,

place Γ1 � Γ2 � � � � � Γ j, 1 � j � d � 1 in a left-to-right order, separated by unit horizontal

distance, such that the top boundaries of Γ1 � Γ2 � � � � � Γ j � 1 are aligned, and one unit below

the top boundary of Γ j. Place u in the same vertical channel as c1 and in the same horizontal

channel as c j.

ΓB is constructed as follows (see Figure 3.4.5):

� if Tβ
�� /0 (see Figure 3.4.5(a)) then, if A � 1, then place Γβ one unit above Γα such

that the left boundaries of Γβ and Γα are aligned; otherwise (i.e., if A � 1), first rotate
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Γβ by 90 � and then flip it vertically, then place Γβ one unit to the left of Γα such that

the top boundaries of Γβ and Γα are aligned. Draw edge
�
w � y � .

� Otherwise (i.e., if Tβ � /0), ΓB is same as Γα (see Figure 3.4.5(b)).

Γ is constructed from ΓA, ΓB, ΓC, Γ
�

1 � � � � � Γ
�

i, 0 � i � d � 3, as follows (see Figure 3.4.1):

Let x be the root of TB. Note that x � f if Tβ
�� /0, and x � u otherwise.

� In Subcase (a), as shown in Figure 3.4.1(a), if A � 1, stack ΓA, Γ
�

i � � � � � Γ
�

1, ΓB, ΓC one

above the other, in this order, such that they are separated by unit vertical distance

from each other, and the left boundaries of Γ
�

i � 1 � � � � � Γ
�

1 � ΓB are aligned with each

other and are placed at unit horizontal distance to the right of the left boundaries

of ΓA and ΓC. Place node a in the same vertical channel as r and g and in the same

horizontal channel as bi. If A � 1, then first rotate ΓA by 90 � , and then flip it vertically.

Then, place ΓA, ΓC, Γ
�

1 � � � � � Γ
�

i, ΓB from left-to-right in this order, separated by unit

horizontal distances, such that the top boundaries of ΓC, Γ
�

1 � � � � � Γ
�

i, are aligned, and

are at unit vertical distance below the top boundaries of ΓA and ΓB. Then, move

ΓC down until u
�

becomes the lowest node of Γ. Place node a in the same vertical

channel as g and in the same horizontal channel as r and x. Draw edges
�
a � e � ,

�
a � x � ,

�
a � g � ,

�
a � b1

� � � � � �
�
a � bi

� .

� In Subcase (b), as shown in Figure 3.4.1(b), if A � 1, stack Γ
�

i � � � � � Γ
�

1, ΓB, one above

the other, such that they are separated by unit vertical distance from each other, and

their left boundaries are aligned. Place node r one unit above and left of the top

66



3.4. TREE DRAWING ALGORITHM

boundary of Γ
�

i. If A � 1, place Γ
�

1 � � � � � Γ
�

i, ΓB in a left-to-right order such that they

are separated by unit horizontal distance from each other, and their top boundaries

are aligned. Place node r one unit above and left of the top boundary of Γ
�

1. Draw

edges
�
r� b1

� � � � � �
�
r� bi

� ,
�
r� x � .

� The drawing procedure for Subcase (c) is similar to the one in Subcase (a), except

that we also flip ΓC vertically (see Figure 3.4.1(c)).

� In Subcase (d), as shown in Figure 3.4.1(d), if A � 1, flip Γ
�

i � � � � � Γ
�

1, ΓB first verti-

cally, and then horizontally, so that their roots get placed at their lower-right corners.

Then, first rotate ΓA by 90 � , and then flip it vertically. Next, place ΓA, Γ
�

i � � � � � Γ
�

1,

ΓB one above the other, in this order, with unit vertical separation, such that their

left boundaries are aligned, next move node e (which is the link node of TA) to the

right until it is either to the right of, or aligned with the rightmost boundary among

Γ
�

i � � � � � Γ
�

1, ΓB (since ΓA is a feasible drawing, by Property 2, as given in Section 3.3,

moving e will not create any edge-crossings), and then place u
�

in the same horizon-

tal channel as x and one unit to the right of e. If A � 1, first rotate ΓA by 90 � , and then

flip it vertically. Then flip Γ
�

i � � � � � Γ
�

1 � ΓB vertically. Then, place ΓA, u
�
, Γ

�

1 � � � � � Γ
�

i, ΓB

left-to-right in this order, separated by unit horizontal distances, such that the bottom

boundaries of Γ
�

1 � � � � � Γ
�

i, are aligned, and are at unit vertical distance above the bot-

tom boundary of ΓB. Move ΓB down until its bottom boundary is either aligned with

or below the bottom boundary of ΓA. Also, u
�

is in the same horizontal channel with

x. Draw edges
�
u

�
� e � ,

�
u

�
� b1

� � � � � �
�
u

�
� bi

� ,
�
u

�
� x � .
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� In Subcase (e), as shown in Figure 3.4.1(e), if A � 1, first flip Γ
�

i � � � � � Γ
�

1, ΓB, ver-

tically, then place ΓA, Γ
�

i � � � � � Γ
�

1, ΓB one above the other, in this order, with unit

vertical separation, such that the left boundaries of Γ
�

i � � � � � Γ
�

1, ΓB are aligned, and the

left boundary of ΓA is at unit horizontal distance to the left of the left boundary of

ΓB. Place u
�

in the same vertical channel with r and in the same horizontal channel

with x . If A � 1, then first flip Γ
�

1 � � � � � Γ
�

i, ΓB vertically, next place ΓA, Γ
�

1 � � � � � Γ
�

i,

ΓB in a left-to-right order at unit horizontal distance, such that the top boundaries

ΓA, Γ
�

1 � � � � � Γ
�

i are aligned, and the bottom boundary of ΓB is one unit below the bot-

tom boundary of the drawing among ΓA, Γ
�

1 � � � � � Γ
�

i with greater height. Then, place

u
�

in the same vertical channel as r and in the same horizontal channel as r. Draw

edges
�
u

� � r � ,
�
u

� � b1
� � � � � �

�
u

� � bi
� ,

�
u

� � x � . Note that, since ΓA is a feasible drawing,

by Property 3 (see Section 3.3), drawing
�
u

� � r � will not create any edge-crossings.

� The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that

we do not have ΓA here (see Figure 3.4.1(f)).

� The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that

we also flip ΓC vertically (see Figure 3.4.1(g).

In Case 2, we construct Γ by composing ΓA, Γ1 � � � � � Γ j, ΓC as follows (see Figure 3.4.2):

� The drawing procedures in Subcases (a) and (c) are similar to those in Subcases (a)

and (f), respectively, of Case 1 (see Figures 3.4.2(a,c)).

� In Subcase (b) as shown in Figure 3.4.4(b), if A � 1, place u in the same horizontal
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channel and at one unit to the left of v; otherwise (i.e. A � 1), place u in the same

vertical channel and at one unit above v. Draw edge
�
r� v � .

� In Subcase (d), as shown in Figure 3.4.2(d), if A � 1, we place ΓA above ΓC, separated

by unit vertical distance such that the left boundary of ΓC is one unit to the right of

the left boundary of ΓA. Place u in the same vertical channel as r and in the same

horizontal channel as v. If A � 1, then first rotate ΓA by 90 � , and then flip it vertically.

Then, place ΓA to the left of ΓC, separated by unit horizontal distance, such that the

top boundary of ΓC is one unit below the top boundary of ΓA. Then, move ΓC down

until u
�

becomes the lowest node of Γ. Place u in the same vertical channel as v and

in the same horizontal channel as r. Draw edges
�
u � v � and

�
u � e � .

� The drawing procedures in Subcases (e), (f), (g), and (h) are similar to those in Sub-

cases (a), (b), (c), and (d), respectively, (see Figures 3.4.2(e,f,g,h)), except that we

also flip ΓC vertically.

Figure 3.4.4: Drawing Tα. Here, we first show the structure of Tα, then its drawing when
A � 1, and then its drawing when A � 1. For simplicity, we have shown Γ1 � � � � � Γ j as
identically sized boxes, but in actuality, their sizes may be different.
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(a) (b)

Figure 3.4.5: Drawing TB when: (a) Tβ
�� /0, and (b) Tβ � /0. For each case, we first show

the structure of TB for that case, then its drawing when A � 1, and then its drawing when
A � 1. In Case (a), for simplicity, w is shown to be in the interior of Γβ, but actually, it
is either same as f , or if A � 1 (A � 1), then is placed on the bottom (right) boundary of
Γβ. For simplicity, we have shown Γβ and Γα as identically sized boxes, but in actuality,
their sizes may be different.

3.4.5 Proof of Correctness

Lemma 3.4.1 (Planarity) Given an n-node degree-d tree T , where d � O
�
nδ � is a positive

integer and 0 � δ � 1, with a link node u
�
, Algorithm DrawTree will construct a feasible

drawing Γ of T .

Proof: We can easily prove using induction over the number of nodes n in T that Γ is a

feasible drawing:

Base Case (n � 1): Γ consists of exactly one node and is trivially a feasible drawing.

Induction (n � 1): Consider Case 1. By the inductive hypothesis, the drawing constructed

of each partial tree of T is a feasible drawing.

Hence, from Figure 3.4.4, it can be easily seen that the drawing Γα of Tα is also a feasible

drawing.

From Figure 3.4.5, it can be easily seen that the drawing ΓB of TB is also a feasible drawing.

Note that because Γβ is a feasible drawing of Tβ and w is its link node, w is either at the
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bottom of Γβ (from Property 2, see Section 3.3), or at the top-left corner of Γβ and no other

edge or node of Tβ is placed on, or crosses the vertical channel occupied by it (Properties 1

and 3, see Section 3.3). Hence, in Figure 3.4.5(a), in the case A � 1, drawing edge
�
w � x �

will not cause any edge crossings. Also, in Figure 3.4.5(a), in the case A � 1, drawing

edge
�
w � x � will not cause any edge crossings because after rotating Γβ by 90 � and flipping

it vertically, w will either be at the right boundary of Γβ (see Property 2), or at the top-left

corner of Γβ and no other edge or node of Tβ will be placed on, or cross the horizontal

channel occupied by it (see Properties 1 and 3).

Finally, by considering each of the seven subcases shown in Figure 3.4.1 one-by-one, we

can show that Γ is also a feasible drawing of T :

� Subcase (a): See Figure 3.4.1(a). ΓA is a feasible drawing of TA and e is the link node

of TA. Hence, e is either at the bottom of ΓA (from Property 2), or is at the top-left

corner of ΓA, and no other edge or node of TA is placed on, or crosses the horizontal

and vertical channels occupied by it (from Properties 1 and 3). Hence, in the case

A � 1, drawing edge
�
e � a � will not create any edge-crossings, and Γ will also be a

feasible drawing of T . In the case A � 1 also, drawing edge
�
e � a � will not create any

edge-crossings because after rotating ΓA by 90 � and flipping it vertically, e will either

be at the right boundary of ΓA (see Property 2), or at the top-left corner of Γβ and no

other edge or node of TA will be placed on, or cross the horizontal channel occupied

by it (see Properties 1 and 3). Thus, for the case A � 1 also, Γ will also be a feasible

drawing of T .
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� Subcase (b): See Figure 3.4.1(b). Because Γ
�

1 � � � � � Γ
�

i, ΓB are feasible drawings of

T
�

1 � � � � � T
�

i , TB respectively, it is straightforward to see that Γ is also a feasible drawing

of T for both the cases when A � 1 and A � 1.

� Subcase (c): See Figure 3.4.1(c). The proof is similar to the one for Subcase (a).

� Subcase (d): See Figure 3.4.1(d). ΓA is a feasible drawing of TA, e is the link node of

TA, and e
�� r. Hence, from Property 2, e is located at the bottom of ΓA. Rotating ΓA

by 90 � and flipping it vertically will move e to the right boundary of ΓA. Moving e to

the right until it is either to the right of, or aligned with the right boundary of ΓB will

not cause any edge-crossings because of Property 2. It can be easily seen that in both

the cases, A � 1 and A � 1, drawing edge
�
e � u

� � does not create any edge-crossings,

and Γ is a feasible drawing of T .

� Subcase (e): See Figure 3.4.1(e). ΓA is a feasible drawing of TA, e is the link node of

TA, and e � r. Hence, from Properties 1 and 3, e is at the top-left corner of ΓA, and no

other edge or node of TA is placed on, or crosses the horizontal and vertical channels

occupied by it. Hence, in both the cases, A � 1 and A � 1, drawing edge
�
e � u � � will

not create any edge-crossings, and Γ is a feasible drawing of T .

� Subcase (f): See Figure 3.4.1(f). It is straightforward to see that Γ is a feasible

drawing of T for both the cases when A � 1 and A � 1.

� Subcase (g): See Figure 3.4.1(g). ΓC is a feasible drawing of TC, u
�

is the link node

of TC, and u
�

is also the root of TC. Hence, from Properties 1 and 3, u
�

is at the

top-left corner of ΓC, and no other edge or node of TC is placed on, or crosses the
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horizontal and vertical channels occupied by it. Flipping ΓC vertically will move u
�

to the bottom-left corner of ΓC and no other edge or node of TC will be on or crosses

the vertical channel occupied by it. Hence, drawing edge
�
r� u

� � will not create any

edge-crossings, and Γ will be a feasible drawing of T .

Using a similar reasoning, we can show that in Case 2 also, Γ is a feasible drawing of T . �

Lemma 3.4.2 (Time) Given an n-node degree-d tree T , where d � O
�
nδ � is a positive

integer and 0 � δ � 1, with a link node u
�
, Algorithm DrawTree will construct a drawing

Γ of T in O
�
n logn � time.

Proof: From Theorem 3.3.1, each partial tree into which Algorithm DrawTree would split

T will have at most n � 2 nodes in it. Hence, it follows that the depth of the recursion for

Algorithm DrawTree is O
�
logn � . At the first recursive level, the algorithm will split T

into partial trees, assign aspect ratios to the partial trees and compose the drawings of the

partial trees to construct a drawing of T . At the next recursive level, it will split all of these

partial trees into smaller partial trees, assign aspect ratios to these smaller partial trees, and

compose the drawings of these smaller partial trees to construct the drawings of all the

partial trees. This process will continue until the bottommost recursive level is reached. At

each recursive level, the algorithm takes O
�
m � time to split a tree with m nodes into partial

trees, assign aspect ratios to the partial trees, and compose the drawings of partial trees to

construct a drawing of the tree. At each recursive level, the total number of nodes in all

the trees that the algorithm considers for drawing is at most n. Hence, at each recursive
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level, the algorithm totally spends O
�
n � time. Hence, the running time of the algorithm is

O
�
n ��� O �

logn � � O
�
n logn � .

�

In Lemma 3.4.4 given below, we prove that the algorithm will draw a degree-d tree, where

d � O
�
nδ � is a positive integer and 0 � δ � 1, in O

�
n � area.

Lemma 3.4.3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the

width and height, respectively, of R. Then, W �
�

AD and H �
�

D � A.

Proof: By the definition of aspect ratio, A � W � H. D � W H � W
�
W � A � � W 2 � A. Hence,

W � �
AD. H � W � A � �

AD � A �
�

D � A. �

Lemma 3.4.4 (Area) Let T be an n-node degree-d tree, where d � O
�
nδ � is a positive

integer and 0 � δ � 1, with a link node u
�
. Let ε and A be two numbers such that δ � �

1 � δ � �

ε � 1, and A is in the range � n � ε � nε � . Given T , ε, and A as input, Algorithm DrawTree will

construct a drawing Γ of T that can fit inside a rectangle R with O
�
n � area and aspect ratio

A.

Proof: Let D
�
n � be the area of R. We will prove, using induction over n, that D

�
n � � O

�
n � .

More specifically, we will prove that D
�
n � � c1n � c2nβ for all n � n0, where n0 � c1 � c2 � β

are some positive constants and β � 1.
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We now give the proof for the case when A � 1 (the proof for the case A � 1 is symmetrical).

Algorithm DrawTree will split T into at most 2d � 1 partial trees. Let Tk be a non-empty

partial tree of T , where Tk is one of TA � TC � Tβ � T
�

1 � � � � � T
�

i , 0 � i � d � 3, T1 � � � � � Tj, 0 � j �

d � 1, in Case 1, and is one of TA � TC � T1 � � � � � Tj, 0 � j � d � 2, in Case 2. Let nk be the

number of nodes in Tk, and let xk � nk � n. Let Pk � c1n � c2nβ � x1 � β
k . From Theorem 3.3.1,

it follows that nk � n � 2, and hence, xk � 1 � 2. Hence, Pk � c1n � c2nβ � �
1 � 2 � 1 � β � c1n �

c2nβ21 � β. Let P
� � c1n � c2nβ21 � β. Thus, Pk � P

�

.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing Γk of Tk that

can fit inside a rectangle Rk with aspect ratio Ak and area D
�
nk

� , where Ak is as defined in

Section 3.4.2, and D
�
nk

� � c1nk � c2nβ
k . Since xk � nk � n, D

�
nk

� � c1nk � c2nβ
k � c1xkn �

c2
�
xkn � β � xk

�
c1n � c2nβ � x1 � β

k
� � xkPk � xkP

�

.

Let Wk and Hk be the width and height, respectively, of Rk. We now compute the values of

Wk and Hk in terms of A, P
�

, xk, n, and ε. We have two cases:

� Tk is a small partial tree of T : Then, nk � �
n � A � 1

���
1

� ε � , and also, as ex-

plained in Section 3.4.2, Ak � 1 � nε
k. From Lemma 3.4.3, Wk �

�
AkD

�
nk

� �
� �

1 � nε
k

� �
xkP

� � � � �
1 � nε

k
� �

nk � n � P
� � � n1 � ε

k P
� � n. Since nk � �

n � A � 1
���

1
� ε � , Wk �

� �
n � A � � 1 � ε � ��� 1 � ε � P

� � n � � �
1 � A

�
1 � ε � ��� 1 � ε � � P

� � n2ε
���

1
� ε � � � P

� � n2ε
���

1
� ε � since

A � 1.

From Lemma 3.4.3, Hk �
�

D
�
nk

� � Ak � �
xkP

� � �
1 � nε

k
� � � �

nk � n � P
�

nε
k �

� n1
� ε

k P
� � n. Since nk � �

n � A � 1
���

1
� ε � , Hk � � �

n � A � � 1 � ε � ��� 1 � ε � P
� � n �

� �
n � A � P

� � n �
�

P
� � A.
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� Tk is a large partial tree of T : Then, as explained in Section 3.4.2, Ak � xkA. From

Lemma 3.4.3, Wk �
�

AkD
�
nk

� � �
xkAxkP

� � xk

�
AP

�

.

From Lemma 3.4.3, Hk �
�

D
�
nk

� � Ak �
�

xkP
� � �

xkA � �
�

P
� � A.

In Step Compose Drawings, we use at most two additional horizontal channels and at most

one additional vertical channels while combining the drawings of the partial trees to con-

struct a drawing Γ of T . Hence, Γ can fit inside a rectangle R
�

with width W
�

and height H
�

,

respectively, where,

H
� � max

Tk is a partial tree o f T � Hk � �
2 �

�
P

� � A
�

2 �

and

W
� � ∑

Tk is a large partial tree

Wk
� ∑

Tk is a small partial tree

Wk
�

1

� ∑
Tk is a large partial tree

xk

�
AP

� � ∑
Tk is a small partial tree

� P
� � n2ε

���
1

� ε � �
1

�
�

AP
� � �

2d � 1 � � P
� � n2ε

���
1

� ε � �
1

(because ∑Tk is a large partial tree xk � 1, and T is split into at most 2d � 1 partial trees)

R
�

does not have aspect ratio equal to A, but it is contained within a rectangle R with aspect

ratio A, area D
�
n � , width W , and height H, where

W �
�

AP
� � �

2d � 1 � � P
� � n2ε

���
1

� ε � �
1

�
2A �

and

H �
�

P
� � A

�
2

� � �
2d � 1 � � A � � P

� � n2ε
���

1
� ε � �

1 � A
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Hence, D
�
n � � W H � � �

AP
� � �

2d � 1 � � P
� � n2ε

���
1

� ε � �
1

�
2A � � �

P
� � A

�
2

�

� �
2d � 1 � � A � � P

� � n2ε
���

1
� ε � �

1 � A � � P
� �

2
�
2d � 1 � P

� �
�

An2ε
���

1
� ε � �

4
�

AP
� � �

2d �

1 � 2P
� � �

An2ε
���

1
� ε � � �

4
�
2d � 1 � � P

� � n2ε
���

1
� ε � �

4A
�

4
�

1 � A
�

2
�

P
� � A

�
2

�
2d �

1 � � P
� � n2ε

���
1

� ε � � A.

Since, 1 � A � nε, we have that

D
�
n � � P

� �
c3dP

� �
�

n2ε
���

1
� ε � �

c4

�
nεP

� �
c5d2P

� � n2ε
���

1
� ε � �

c6P
� � n2ε

���
1

� ε �

�
c7d � P

� � n2ε
���

1
� ε � �

c8nε �
c9

�
c10

�
P

�

where c3 � c4 � � � � � c10 are some constants.

Since P
� � c1n,

D
�
n � � P

� �
c3dc1n �

�
n2ε

���
1

� ε � �
c4

�
nεc1n

�
c5d2c1n � n2ε

���
1

� ε � �
c6c1n � n2ε

���
1

� ε �

�
c7d � c1n � n2ε

���
1

� ε � �
c8nε �

c9
�

c10
�

c1n1
�
2

� P
� �

c3dc1n1
���

1
� ε � �

c4
�

c1n
�
1

� ε � � 2 �
c5d2c1n

�
1 � ε � ��� 1 � ε � �

c6c1n
�
1 � ε � ��� 1 � ε �

�
c7d

�
c1n

�
1 � ε � ��� 2 � 1 � ε � � �

c8nε �
c9

�
c10

�
c1n1

�
2

� P
� �

c11n
�
1

� ε � � 2 �
c12dn1

���
1

� ε � �
c13d2n

�
1 � ε � ��� 1 � ε �

where c11, c12, and c13 are large enough constants (because, since 0 � δ � �
1 � δ � � ε � 1,

�
1 � ε � � �

2
�
1

� ε � � � �
1 � ε � � �

1
� ε � � 1 � �

1
� ε � , ε � �

1
� ε � � 2, and 1 � 2 � �

1
� ε � � 2).
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Because d � O
�
nδ � , for a large enough constant n0, there exist constants c14 and c15 such

that for all n � n0, D
�
n � � P

� �
c11n

�
1

� ε � � 2 �
c14nδ �

1
���

1
� ε � �

c15n2δ � �
1 � ε � ��� 1 � ε � .

P
� � c1n � c2nβ21 � β � c1n � c2nβ �

1
�

c16
� , where c16 is a constant such that 1

�
c16 � 21 � β.

Hence, D
�
n � � c1n � c2nβ �

1
�

c16
� �

c11n
�
1

� ε � � 2 �
c14nδ �

1
���

1
� ε � �

c15n2δ � �
1 � ε � ��� 1 � ε � �

c1n � c2nβ
�

�
c16nβ

� c11n
�
1

� ε � � 2
� c14nδ �

1
���

1
� ε �

� c15n2δ � �
1 � ε � ��� 1 � ε � � . Thus, for a large

enough constant n0, and large enough β, where 1 � β � max �
�
1

� ε � � 2 � δ �
1 � �

1
� ε � � 2δ �

�
1 � ε � � �

1
� ε � � , for all n � n0, c16nβ

� c11n
�
1

� ε � � 2
� c14nδ �

1
���

1
� ε �

� c15n2δ � �
1 � ε � ��� 1 � ε � �

0, and hence D
�
n � � c1n � c2nβ. Note that because ε � δ � �

1 � δ � , δ �
1 � �

1
� ε � � 1 and

2δ � �
1 � ε � � �

1
� ε � � 1, and because ε � 1,

�
1

� ε � � 2 � 1.

The proof for the case A � 1 uses the same reasoning as for the case A � 1. With Tk, Rk,

Wk, Hk, R
�

, W
�

, H
�

, R, W , and H defined as above, and Ak as defined in Section 3.4.2, we

get the following values for Wk, Hk, W
�

, H
�

, W , H, and D
�
n � :

Wk �
�

AP
�

Hk � � P
� � n2ε

���
1

� ε � if Tk is a small partial tree

� xk

�
P

� � A if Tk is a large partial tree

W
� �

�
AP

� �
2

H
� �

�
P

� � A
� �

2d � 1 � � P
� � n2ε

���
1

� ε � �
1

W �
�

AP
� �

2
� �

2d � 1 � A � P
� � n2ε

���
1

� ε � �
A

H �
�

P
� � A

� �
2d � 1 � � P

� � n2ε
���

1
� ε � �

1
�

2 � A

D
�
n � � P

� �
c11n

�
1

� ε � � 2 �
c14nδ �

1
���

1
� ε � �

c15n2δ � �
1 � ε � ��� 1 � ε �
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where c11, c14, and c15 are the same constants as in the case A � 1. Therefore, D
�
n � �

c1n � c2nβ for A � 1 too. (Notice that in the values that we get above for Wk, Hk, W
�

,

H
�

, W , and H, if we replace A by 1 � A, exchange Wk with Hk, exchange W
�

with H
�

, and

exchange W with H, we will get the same values for Wk, Hk, W
�

, H
�

, W , and H as in the

case A � 1. This basically reflects the fact that the cases A � 1 and A � 1 are symmetrical

to each other.) �

Theorem 3.4.1 (Main Theorem) Let T be an n-node degree-d tree, where d � O
�
nδ � is

a positive integer and 0 � δ � 1 � 2 is a constant. Given any number A, where n
� α � A �

nα, for some constant α, where 0 � α � 1, we can construct in O
�
n logn � time, a planar

straight-line grid drawing of T with O
�
n � area, and aspect ratio A.

Proof: Let ε be a constant such that n
� ε � A � nε and δ � �

1 � δ � � ε � 1. Designate any leaf

of T as its link node. Construct a drawing Γ of T in R by calling Algorithm DrawTree with

T , A and ε as input. From Lemmas 3.4.1, 3.4.2, and 3.4.4, Γ will be a planar straight-line

grid drawing of T contained entirely within a rectangle with O
�
n � area, and aspect ratio A.

�

Corollary 3.4.1 Let T be an n-node degree-d tree, where d � O
�
nδ � is a positive integer

and 0 � δ � 1 � 2 is a constant.. We can construct in O
�
n logn � time, a planar straight-line

grid drawing of T with optimal (equal to O
�
n � ) area, and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 3.4.1, with A � 1. �
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Chapter 4

Area-Efficient Order-Preserving Planar

Straight-line Grid Drawings of Ordered

Trees

4.1 Introduction

An ordered tree T is one with a prespecified counterclockwise ordering of the edges inci-

dent on each node. Ordered trees arise commonly in practice. Examples of ordered trees

include binary search trees, arithmetic expression trees, BSP-trees, B-trees, and range-trees.

An order-preserving drawing of T is one in which the counterclockwise ordering of the

edges incident on a node is the same as their prespecified ordering in T . A planar drawing
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of T is one with no edge-crossings. An upward drawing of T is one, where each node is

placed either at the same y-coordinate as, or at a higher y-coordinate than the y-coordinates

of its children. A straight-line drawing of T is one, where each edge is drawn as a single

line-segment. A grid drawing of T is one, where each node is assigned integer x- and

y-coordinates. For example, the drawing in Figure 4.1.1(b) is an order-preserving upward

straight-line grid drawing of the tree in Figure 4.1.1(a).

(a) (b)

Figure 4.1.1: (a) A binary tree T . (b) An order-preserving upward planar straight-line grid
drawing Γ of T . Here, the circle-shaped node is the root of T , the square-shaped nodes are
left children of their respective parents, and the triangle-shaped nodes are right children of
their respective parents.

Ordered trees are generally drawn using order-preserving planar straight-line grid draw-

ings, as any undergraduate textbook on data-structures will show. An upward drawing is

desirable because it makes it easier for the user to determine the parent-child relationships

between the nodes.

We investigate the area-requirement of the order-preserving planar straight-line grid draw-

ings of ordered trees, and present several results: Let T be an ordered tree with n nodes.
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4.1. INTRODUCTION

Result 1: We show that T admits an order-preserving planar straight-line grid drawing with

O
�
n logn � area, O

�
n � height, and O

�
logn � width, which can be constructed in O

�
n �

time.

Result 2: If T is a binary tree, then we show stronger results:

Result 2a: T admits an order-preserving planar straight-line grid drawing with

O
�
n log logn � area, O

� �
n � logn � log logn � height, and O

�
logn � width, which can

be constructed in O
�
n � time.

Result 2b: T admits an order-preserving upward planar straight-line grid drawing

with optimal O
�
n logn � area, O

�
n � height, and O

�
logn � width, which can be

constructed in O
�
n � time.

An important issue is that of the aspect ratio of a drawing D. Let E be the smallest rectan-

gle, with sides parallel to x and y-axis, respectively, enclosing D. The aspect ratio of D is

defined as the ratio of the larger and smaller dimensions of E , i.e., if h and w are the height

and width, respectively, of E , then the aspect ratio of D is equal to max � h � w � � min � h � w � .

It is important to give the user control over the aspect ratio of a drawing because this will

allow her to fit the drawing in an arbitrarily-shaped window defined by her application. It

also allows the drawing to fit within display-surfaces with predefined aspect ratios, such as

a computer-screen and a sheet of paper. We consider the problem of drawing binary trees

with arbitrary aspect ratio, and prove the following result:

Result 3: Let T be a binary tree with n nodes. Let 2 � A � n be any user-specified number.
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T admits an order-preserving planar straight-line grid drawing Γ with width O
�
A

�

logn � , height O
� �

n � A � logA � , and area O
� �

A
�

logn � �
n � A � logA � � O

�
n logn � , which

can be constructed in O
�
n � time.

Also note that [17] shows an n-node binary tree that requires Ω
�
n � height and Ω

�
logn �

width in any order-preserving upward planar grid drawing. Hence, the O
�
n � height and

O
�
logn � width achieved by Result 2b is optimal in the worst case.

4.2 Previous Results

Throughout this section, n denotes the number of nodes in a tree. The degree of a tree is

equal to the maximum number of edges incident on a node.

In spite of the natural appeal of order-preserving drawings, quite surprisingly, little work

has been done on optimizing the area of such drawings. The previous best upper bound on

the area-requirement of an order-preserving planar upward straight-line grid drawing of a

tree was O
�
n1

� ε � , where ε � 0 is any user-defined constant, which was shown in [4]. [34]

has shown that a special class of balanced binary trees, which includes k-balanced, red-

black, BB � α � , and
�
a � b � trees, admits order-preserving planar upward straight-line grid

drawings with area O
�
n

�
log logn � 2 � . [6], [7], and [42] give order-preserving planar upward

straight-line grid drawings of complete binary trees, logarithmic, and Fibonacci trees, re-

spectively, with area O
�
n � . [17] has given an upper bound of O

�
n logn � on order-preserving

planar upward polyline grid drawings. (A polyline drawing is one, where each edge is
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drawn as a connected sequence of one or more line-segments.)

As for the lower bound on the area-requirement of order-preserving drawings, [17] has

shown a lower bound of Ω
�
n logn � for order-preserving planar upward grid drawings.

There is no known lower bound for non-upward order-preserving planar grid drawings

other than the trivial Ω
�
n � bound.

We are not aware of any non-trivial results on order-preserving drawings of trees with

user-defined arbitrary aspect-ratios. However, a few results are available on non-order-

preserving drawings. [17] shows that any tree with degree d admits a non-order-preserving

planar upward polyline grid drawing with height h � O
�
n1 � α � and area O

�
n

�
dh logn � ,

where 0 � α � 1 is any user-specified constant. This result implies that any tree with degree

O
�
nβ � , where 0 � β � 1 is any constant, can be drawn in this fashion in O

�
n � area with

aspect ratio O
�
nγ � , where γ is any user-defined constant, such that max � 0 � 2β � 1 � � γ � 1.

[3] shows that any binary tree admits a non-order-preserving upward planar straight-line

orthogonal (each edge drawn as a horizontal or vertical line-segment) grid drawing with

area O
�
n logn � , and any user-specified aspect ratio in the range � 1 � n � logn � . They also prove

that the O
�
n logn � bound on area is also optimal for such drawings by showing that for any

n and a number 2 � A � n, there exists a binary tree with n nodes that requires Ω
�
n logn �

area in any upward planar straight-line orthogonal grid drawing with aspect ratio in the

range � 1 � n � logn � . [3] and [34] show that any binary tree admits a non-order-preserving

non-upward planar straight-line orthogonal grid drawing with height O
�
n � A � logA, width

O
�
A

�
logn � , where 2 � A � n is any user-specified number. This result also implies that
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we can draw any binary tree in this fashion in area O
�
n log logn � (by setting A � logn).

[18] shows that any binary tree admits a non-order-preserving planar non-upward straight-

line drawing with area O
�
n � , and any user-specified aspect ratio in the range � 1 � nα � , where

0 � α � 1 is any constant. [22] extends this result to trees with degree O
�
nδ � , where 0 �

δ � 1 � 2 is any constant.

As for other kinds of drawings (non-order-preserving and with fixed aspect ratio), a variety

of results are available. See [11] for a survey on these results.

Table 4.2.1 compares our results with the previously known results.

Tree Type Drawing Type Area Aspect Ratio Reference

Special Balanced Upward
Trees such as Order-preserving O

�
n
�
loglogn � 2 � n � log2 n [35]

Red-black
Binary Upward O

�
n loglogn � �

n log logn ��� log2 n [35]
Non-order-preserving O

�
n logn � � 1 � n � logn � [3]

Upward O
�
n1 � ε � n1 � ε [4]

Order-preserving O
�
n logn � n � logn this chapter

Non-upward
Non-order-preserving O

�
n � � 1 � nα � [18]

Non-upward O
�
n1 � ε � n1 � ε [4]

Order-preserving O
�
n logn � � 1 � n � logn � this chapter

O
�
n loglogn � �

n log logn �	� log2 n this chapter
General Non-upward O

�
n1 � ε � n1 � ε [4]

Order-preserving O
�
n logn � n � logn this chapter

Table 4.2.1: Bounds on the areas and aspect ratios of various kinds of planar straight-
line grid drawings of an n-node tree. Here, α and ε are user-defined constants, such that
0 � α � 1 and 0 � ε � 1. � a � b � denotes the range a � � � b.

The paper based on this Chapter has been presented in [19].
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4.3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an

infinite rectangular grid, consisting of horizontal and vertical channels.

A left-corner drawing of an ordered tree T is one, where no node of T is to the left of,

or above the root of T . The mirror-image of T is the ordered tree obtained by reversing

the counterclockwise order of edges around each node. Let R be a rectangle with sides

parallel to the x- and y-axis, respectively. The height (width) of R is equal to the number

of grid-points with the same x-coordinate (y-coordinate) contained within R. The area of

R is equal to the number of grid-points contained within R. The enclosing rectangle E of

a drawing D is the smallest rectangle with sides parallel to the x- and y-axis covering the

entire drawing. The height h, width w, and area of D is equal to the height, width, and area,

respectively, of E . The aspect ratio of D is equal to max � h � w � � min � h � w � .

A subtree rooted at a node v of an ordered tree T is the maximal tree consisting of v and all

its descendents. A partial tree of T is a connected subgraph of T . A spine of T is a path

v0v1v2 � � � vm, where v0 � v1 � v2 � � � � � vm are nodes of T , that is defined recursively as follows

(see Figure 4.3.1):

� v0 is the same as the root of T ;

� vi
�

1 is the child of vi, such that the subtree rooted at vi
�

1 has the maximum number

of nodes among all the subtrees that are rooted at the children of vi.
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(a) (b)

Figure 4.3.1: (a) A binary tree T with spine v0v1 � � � v13. (b) The order-preserving planar
upward straight-line grid drawing of T constructed by Algorithm BT-Ordered-Draw.

The concept of a spine has been used implicitly by several tree drawing algorithms, in-

cluding those of [3, 4, 17]. In particular, [4] uses it to construct order-preserving drawings.

However, our algorithms typically draw the spine as a more zig-zagging path than the al-

gorithms of [4]. (In fact, some algorithms of [4] draw the spine completely straight as a

single line-segment.) This enables our algorithms to draw a tree more compactly than the

algorithms of [4].
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4.4 Drawing Binary Trees

We now give our drawing algorithm for constructing order-preserving planar upward

straight-line grid drawings of binary trees. In an ordered binary tree, each node has at

most two children, called its left and right children, respectively.

Our drawing algorithm, which we call Algorithm BT-Ordered-Draw, uses the divide-and-

conquer paradigm to draw an ordered binary tree T . In each recursive step, it breaks T

into several subtrees, draws each subtree recursively, and then combines their drawings to

obtain an upward left-corner drawing D
�
T � of T . We now give the details of the actions

performed by the algorithm to construct D
�
T � . Note that during its working, the algorithm

will designate some nodes of T as either left-knee, right-knee, ordinary-left, ordinary-right,

switch-left or switch-right nodes (for an example, see Figure 4.4.1):

1. Let P � v0v1v2 � � � vm be a spine of T . Define a non-spine node of T to be one that is

not in P.

2. Designate v0 as a left-knee node.

3. for i � 0 to m do (see Figure 4.4.1)

Depending upon whether vi is a left-knee, right-knee, ordinary-left, ordinary-right,

switch-left, or switch-right node, do the following:

(a) vi is a left-knee node: If vi
�

1 has a left child, and this child is not vi
�

2,

then designate vi
�

1 as a switch-right node, otherwise designate it as an
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ordinary-left node. Recursively construct an upward left-corner drawing

of the subtree of T rooted at the non-spine child of vi.

(b) vi is an ordinary-left node: If vi
�

1 has a left child, and this child is not

vi
�

2, then designate vi
�

1 as a switch-right node, otherwise designate it as

an ordinary-left node. Recursively construct an upward left-corner drawing

of the subtree of T rooted at the non-spine child of vi.

(c) vi is a switch-right node: Designate vi
�

1 as a right-knee node. Recursively

construct an upward left-corner drawing of the subtree of T rooted at the

non-spine child of vi.

(d) vi is a right-knee, ordinary-right, or switch-left node: Do the same as in the

cases, where vi is a left-knee, ordinary-left, or switch-right node, respec-

tively, with “left” exchanged with “right”, and instead of constructing an

upward left-corner drawing of the subtree Ti of T rooted at the non-spine

child of vi, we recursively construct an upward left-corner drawing of the

mirror image of Ti.

4. Let G be the drawing with the maximum width among the drawings constructed in

Step 3. Let W be the width of G.

5. Place v0 at the origin.

6. for i � 0 to m do (see Figures 4.4.1 and 4.4.2)

Let Hi be the horizontal channel corresponding to the node placed lowest in the

drawing of T constructed so far.
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Depending upon whether vi is a left-knee, right-knee, ordinary-left, ordinary-

right, switch-left, or switch-right node, do the following:

(a) vi is a left-knee node: If vi
�

1 is the only child of vi, then place vi
�

1 on

the horizontal channel Hi
�

1 and one unit to the right of vi (see Fig-

ure 4.4.2(a)). Otherwise, let s be the child of vi different from vi
�

1. Let

D be the drawing of the subtree rooted at s constructed in Step 3. If s is the

right child of vi, then place D such that its top boundary is at the horizontal

channel Hi
�

1 and its left boundary is one unit to the right of vi; place

vi
�

1 one unit below D and one unit to the right of vi (see Figure 4.4.2(b)).

If s is the left child of vi, then place vi
�

1 one unit below and one unit to the

right of vi (see Figure 4.4.2(a)) (the placement of D will be handled by the

algorithm when it will consider a switch-right node later on).

(b) vi is an ordinary-left node: Since vi is an ordinary-left node, either vi
�

1

will be the only child of vi, or vi will have a right child s, where s
�� vi

�
1.

If vi
�

1 is the only child of vi, then place vi
�

1 one unit below vi in the same

vertical channel as it (see Figure 4.4.2(c)). Otherwise, let s be the right

child of vi. Let D be the drawing of the subtree rooted at s constructed in

Step 3. Place D one unit below and one unit to the right of vi; place vi
�

1

on the same horizontal channel as the bottom of D and in the same vertical

channel as vi (see Figure 4.4.2(d)).

(c) vi is a switch-right node: Note that, since vi is a switch-right node, it will

have a left child s, where s
�� vi

�
1. Let v j be the left-knee node of P closest
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to vi in the subpath v0v1 � � � vi of P. v j is called the closest left-knee ancestor

of vi. Place vi
�

1 one unit below and W
�

1 units to the right of vi.

Let D be the drawing of the subtree rooted at s constructed in Step 3. Place

D one unit below vi such that s is in the same vertical channel as vi (see

Figure 4.4.2(e)). If v j has a left child s
�

, which is different from v j
�

1, then

let D
�

be the drawing of the subtree rooted at s
�

constructed in Step 3. Place

D
�

one unit below D such that s
�

is in the same vertical channel as vi (see

Figure 4.4.2(f)).

(d) vi is a right-knee, ordinary-right, or switch-left node: These cases are the

same as the cases, where vi is a left-knee, ordinary-left, or switch-right

node, respectively, except that “left” is exchanged with “right”, and the

left-corner drawing of the mirror image of the subtree rooted at the non-

spine child of vi, constructed in Step 3, is first flipped left-to-right and then

is placed in D
�
T � .

To determine the area of D
�
T � , notice that the width of D

�
T � is equal to W

�
3 (see the

definition of W given in Step 3). From the definition of a spine, it follows easily that the

number of nodes in each subtree rooted at a non-spine node of T is at most n � 2, where

n is the number of nodes in T . Hence, if we denote by w
�
n � , the width of D

�
T � , then,

W � w
�
n � 2 � , and so, w

�
n � � w

�
n � 2 � �

3. Hence, w
�
n � � O

�
logn � . The height of D

�
T � is

trivially at most n. Hence, the area of D
�
T � is O

�
n logn � . It is easy to see that the Algorithm

can be implemented such that it runs in O
�
n � time.
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(a) (b)

Figure 4.4.1: (a) A binary tree T with spine v0v1 � � � v12. (b) A schematic diagram of the
drawing D

�
T � of T constructed by Algorithm BT-Ordered-Draw. Here, v0 is a left-knee,

v1 is an ordinary-left, v2 is a switch-right, v3 is a right-knee, v4 is an ordinary-right, v5 is
a switch-left, v6 is a left-knee, v7 is a switch-right, v8 is a right-knee, v9 is an ordinary-
right, v10 is a switch-left, v11 is a left-knee, and v12 is an ordinary-left node. For simplicity,
we have shown D0 � D1 � � � � � D9 with identically sized boxes but in actuality they may have
different sizes.

(a) (b) (c) (d) (e) (f)

Figure 4.4.2: (a,b) Placement of vi, vi � 1, and D in the case when vi is a left-knee node:
(a) vi � 1 is the only child of vi or s is the left child of vi, (b) s is the right child of vi. (c,d)
Placement of vi, vi � 1, and D in the case when vi is an ordinary-left node: (c) vi � 1 is the
only child of vi, (d) s is the right child of vi. (e,f) Placement of vi, vi � 1, D, and D in the
case when vi is a switch-right node. (e) v j does not have a left child, (f) v j has a left child
s

�
. Here, D

�
is the drawing of the subtree rooted at s

�
.
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[17] has shown a lower bound of Ω
�
n logn � for order-preserving planar upward straight-

line grid drawings of binary trees. Hence, the upper bound of O
�
n logn � on the area of

D
�
T � is also optimal. We therefore get the following theorem:

Theorem 4.4.1 A binary tree with n nodes admits an order-preserving upward planar

straight-line grid drawing with height at most n, width O
�
logn � , and optimal O

�
n logn �

area, which can be constructed in O
�
n � time.

We can also construct a non-upward left-corner drawing D
� �

T � of T , such that D
� �

T � has

height O
�
logn � and width at most n, by first constructing a left-corner drawing of the mirror

image of T using Algorithm BT-Ordered-Draw, then rotating it clockwise by 90 � , and then

flipping it right-to-left. This gives Corollary 4.4.1.

Corollary 4.4.1 Using Algorithm BT-Ordered-Draw, we can construct in O
�
n � time, a

non-upward left-corner order-preserving planar straight-line grid drawing of an n-node

binary with area O
�
n logn � , height O

�
logn � , and width at most n.

4.5 Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult to

draw a general tree.
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In this section, we give an algorithm, which we call Algorithm Ordered-Draw, for con-

structing (non-upward) order-preserving planar straight-line grid drawing with O
�
n logn �

area in O
�
n � time. Algorithm Ordered-Draw is a modification of the algorithm for drawing

binary trees presented in Section 4.4.

Let T be a tree with n nodes. In each recursive step, Algorithm Ordered-Draw breaks T

into several subtrees, draws each subtree recursively, and then combines their drawings to

obtain a left-corner drawing D
�
T � of T .

We now give the details of the actions performed at each recursive step of the algorithm

to construct a a left-corner drawing D
�
T � of T . Note that the counterclockwise ordering

of edges around each node, induces a counterclockwise ordering of the children of each

node. During its working, the algorithm will designate some nodes of T as either left-knee,

right-knee, switch-left, or switch-right nodes (for an example, see Figure 4.5.1):

1. Let P � v0v1v2 � � � vm be a spine of T . Define a non-spine node of T to be one that is

not in P.

2. Designate v0 as a left-knee node.

3. for i � 0 to m do (see Figure 4.5.1)

Depending upon whether vi is a left-knee, right-knee, ordinary-left, ordinary-right,

switch-left, or switch-right node, do the following:

(a) vi is a left-knee node: Designate vi
�

1 as a switch-right node. Recursively
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construct left-corner drawings of the subtrees of T rooted at all the non-

spine children of vi.

(b) vi is a switch-right node: Designate vi
�

1 as a right-knee node. Recursively

construct left-corner drawings of the subtrees of T rooted at all the non-

spine children of vi.

(c) vi is a right-knee, or switch-left node: These cases are the same as the

cases, where vi is a left-knee node, or switch-right node, respectively, with

“left” exchanged with “right”, and instead of recursively constructing left-

corner drawings of the subtrees of T rooted at all the non-spine children of

vi, we recursively construct the left-corner drawings of the mirror images

of these subtrees.

4. Let G be the drawing with the maximum width among the drawings constructed in

Step 3. Let W be the width of G.

5. Place v0 at the origin. Let Y0 be the horizontal channel one unit below the origin.

6. for i � 0 to m do (see Figures 4.5.1 and 4.5.2)

Depending upon whether vi is a left-knee, right-knee, ordinary-left, ordinary-right,

switch-left, or switch-right node, do the following:

(a) vi is a left-knee node: Let Q � s1s2 � � � sk be the (possibly empty) sequence

of the children of vi that come after vi
�

1 in the counterclockwise order of

the children of vi (see Figure 4.5.2(a)). In this sequence, the s j’s, 1 � j � k,

are placed in the same order as they occur in the counterclockwise order
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of the children of vi. Let D j be the drawing of the subtree rooted at s j

constructed in Step 3. Place D1 � D2 � � � � � Dk in that order one above the

other at unit vertical separation from each other, such that D1 is at the

bottom and Dk is at the top, the top of Dk is at the horizontal channel Yi,

and each D j is placed one unit to the right of vi (see Figure 4.5.2(b)).

Let Yi
�

1 be the horizontal channel one unit below D1 if Q is not empty, and

is the same as Yi if Q is empty.

(b) vi is a switch-right node: Note that, since vi is a switch-right node, vi � 1

must be a left-knee node.

Let Q � s1s2 � � � sk be the (possibly empty) sequence of the children of vi

that come after vi
�

1 in the counterclockwise order of the children of vi (see

Figure 4.5.2(c)). In this sequence, the s j’s, 1 � j � k, are placed in the same

order as they occur in the counterclockwise order of the children of vi. Let

D j be the drawing of the subtree rooted at s j constructed in Step 3. Place

D1 � D2 � � � � � Dk in that order one above the other at unit vertical separation

from each other, such that D1 is at the bottom and Dk is at the top, the top

of Dk is at horizontal channel Yi, and each D j is placed two units to the

right of vi � 1.

Place vi such that it is one unit to the right of vi � 1, and is one unit below

D1, if Q is not empty, and is at the horizontal channel Yi if Q is empty.

Place vi
�

1 one unit below and W
�

1 units to the right of vi (see Fig-

ure 4.5.2(d)).
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Let Q
� � s

�

1s
�

2 � � � s
�

r be the (possibly empty) sequence of the children of vi

that come before vi
�

1 in the counterclockwise order of the children of vi

(see Figure 4.5.2(c)). In this sequence, the s
�

j’s, 1 � j � r, are placed in

the same order as they occur in the counterclockwise order of the children

of vi. Let D
�

j be the drawing of the subtree rooted at s
�

j constructed in

Step 3. Place D
�

1 � D
�

2 � � � � � D
�

r in that order one above the other at unit vertical

separation from each other, such that D
�

1 is at the bottom and D
�

r is at the

top, s
�

r is placed on the same vertical channel as vi
�

1, and each D
�

j is placed

two units to the right of vi � 1 (see Figure 4.5.2(d)).

Let H be the horizontal channel which is one unit below the bottom of D
�

1

if Q
�

is not empty, and contains vi
�

1 if Q
�

is empty.

Let Q
� � � s

� �

1s
� �

2 � � � s � �

t be the (possibly empty) sequence of the children of

vi � 1 that come before vi in the counterclockwise order of the children of

vi � 1 (see Figure 4.5.2(c)). In this sequence, the s
� �

j ’s, 1 � j � t, are placed

in the same order as they occur in the counterclockwise order of the chil-

dren of vi. Let D
� �

j be the drawing of the subtree rooted at s
� �

j constructed

in Step 3. Place D
� �

1 � D
� �

2 � � � � � D
� �

r in that order one above the other at unit

vertical separation from each other, such that D
� �

1 is at the bottom and D
� �

t

is at the top, the top of D
� �

t is at the horizontal channel H, and each D
� �

j is

placed one unit to the right of vi � 1 (see Figure 4.5.2(d)).

Let Yi
�

1 be the horizontal channel which is one unit below the bottom of

D
� �

1 if Q
� �

is not empty, and is the same as H if Q
� �

is empty.
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(a) (b)

Figure 4.5.1: (a) A tree T with spine v0v1 � � � v5. (b) An O
�
n logn � area planar straight-

line grid drawing of T . In this drawing, v0 is left-knee node, v1 is switch-right node, v2 is
right-knee node, v3 is switch-left node, v4 is left-knee node, v5 is switch-right node.

(c) vi is a right-knee, or switch-left node: These cases are the same as the

cases, where vi is a left-knee node, or switch-right node, respectively, ex-

cept that “left” is exchanged with “right”, “counterclockwise” is replaced

by “clockwise”, and the left-corner drawings of the mirror images of the

subtrees rooted at the non-spine children of vi, constructed in Step 3, are

first flipped left-to-right and then are placed in D
�
T � .

Just as for Algorithm BT-Ordered-Draw, we can show that the width w
�
n � of D

�
T � satisfies

the recurrence: w
�
n � � w

�
n � 2 � �

3. Hence, w
�
n � � O

�
logn � . The height of D

�
T � is trivially

at most n. Hence, the area of D
�
T � is O

�
n logn � .

Theorem 4.5.1 A tree with n nodes admits an order-preserving planar straight-line grid

98



4.5. DRAWING GENERAL TREES

(a) (b) (c) (d)

Figure 4.5.2: (a) s1 � s2 ��������� sk is the sequence of the children of vi that come after vi
�

1

in the counterclockwise order of the children of vi. (b) Placement of vi, s1 � s2 ��������� sk, and
D1 � D2 ��������� Dk in the case when vi is a left-knee node. (c) s1 ��������� sk is the sequence of
the children of vi that come after vi

�
1 in the counterclockwise order of the children of vi.

s
�
1 ��������� s

�
k is the sequence of the children of vi that come before vi

�
1 in the counterclockwise

order of the children of vi. s
���
1 ��������� s

���
k is the sequence of the children of vi � 1 that come before

vi in the counterclockwise order of the children of vi � 1. (d) Placement of vi, vi
�

1, s1 ��������� sk,
D1 ��������� Dk, s

�
1 ��������� s

�
k, D

�
1 ��������� D

�
k, s

���
1 ��������� s

���
k , D

���
1 ��������� D

���
k in the case when vi is a switch-right

node.

drawing with O
	
n logn 
 area, O

	
logn 
 width, and height at most n, which can be con-

structed in O
	
n 
 time.

We can also construct a left-corner drawing D
� 	

T 
 of T , such that D
� 	

T 
 has height O
	
logn 


and width at most n, by first constructing a left-corner drawing of the mirror image of T

using Algorithm Ordered-Draw, then rotating it clockwise by 90 � , and then flipping it

right-to-left. This gives Corollary 4.5.1.

Corollary 4.5.1 Let T be a tree with n nodes. Using Algorithm Ordered-Draw, we can

construct in O
	
n 
 time, a left-corner order-preserving planar straight-line grid drawing D

of T with O
	
n logn 
 area, such that D has height O

	
logn 
 , and width at most n.

99



4.6. DRAWING BINARY TREES WITH ARBITRARY ASPECT RATIO

4.6 Drawing Binary Trees with Arbitrary Aspect Ratio

Let T be a binary tree. We show that, for any user-defined number A, where 2 �

A � n, we can construct an order-preserving planar straight-line grid drawing of T with

O
� �

n � A � logA � height and O
�
A

�
logn � width. Thus, by setting the value of A, users can

control the aspect ratio of the drawing. This result also implies that we can construct such

a drawing with area O
�
n loglogn � by setting A � logn.

Our algorithm combines the approach of [3] for constructing non-upward non-order-

preserving drawings of binary trees with arbitrary aspect ratio with our approach for con-

structing order-preserving drawings given in Sections 4.4 and 4.5. We will also use the

following generalization of Lemma 3 of [3]:

Lemma 4.6.1 Suppose A � 1, and f is a function such that:

� if n � A, then f
�
n � � 1; and

� if n � A, then f
�
n � � f

�
n

� � �
f

�
n

� � �
f

�
n

� � � �
1 for some n

� � n
�

� n
� � � n � A with

n
� �

n
� �

n
� � � n.

Then, f
�
n � � 6n � A � 2 for all n � A.

Proof: The proof is by induction over n, with the base case being n � A
�

1.

If n � A
�

1, then n
� � n

�

� n
� � � A. Hence, f

�
n

� � � f
�
n

� � � f
�
n

� � � � 1. Hence, f
�
n � � 1

�
1

�

1
�

1 � 4 � 6n � A � 2.
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Now we prove the induction. Suppose f
�
m � � 6m � A � 2 for all m � n � 1. Consider f

�
n � .

We have four cases:

� n
�

� n
�

� n
� � � A: Then, f

�
n

� � � f
�
n

� � � f
�
n

� � � � 1. Hence, f
�
n � � 1

�
1

�
1

�
1 � 4 �

6n � A � 2.

� Exactly two of n
�

� n
�

, and n
� �

have values less than or equal to A: Assume without

loss of generality that n
� � n

� � A and n
� �

� A. Then, f
�
n

� � � f
�
n

� � � 1, and f
�
n

� � � �

6n
� � � A � 2 � 6

�
n � A � � A � 2 � 6n � A � 6 � 2 � 6n � A � 8. Hence, f

�
n � � 1

�
1

�

6n � A � 8
�

1 � 6n � A � 5 � 6n � A � 2.

� Exactly one of n
� � n

�

, and n
� �

has value less than or equal to A: Assume without

loss of generality that n
� � A, and n

�

� n
� �

� A. Then, f
�
n

� � � 1, f
�
n

� � �
f

�
n

� � � �

6n
� � A � 2

�
6n

� � � A � 2 � 6
�
n

� �
n

� � � � A � 4 � 6n � A � 4. Hence, f
�
n � � 1

�
6n � A �

4
�

1 � 6n � A � 2.

� n
�

� n
�

� n
� �

� A: f
�
n � � f

�
n

� � �
f

�
n

� � �
f

�
n

� � � �
1 � 6n

� � A � 2
�

6n
� � A � 2

�

6n
� � � A � 2

�
1 � 6

�
n

� �
n

� �
n

� � � � A � 5 � 6n � A � 5 � 6n � A � 2.

�

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible

drawing, if the root of T is placed on the left boundary and no node of T is placed between

the root and the upper-left corner of the enclosing rectangle of the drawing. Note that a

left-corner drawing is also a feasible drawing.
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We now describe our algorithm, which we call Algorithm BDAAR, for drawing a binary

tree T with arbitrary aspect ratio. Let m be the number of nodes in T . Let 2 � A � m be

any number given as a parameter to Algorithm BDAAR.

Figure 4.6.1(a) and Figure 4.6.1(b) show the drawings of the tree of Figure 4.3.1(a) con-

structed by Algorithm BDAAR with A � �
m and using Corollary 4.4.1, and Corollary 4.5.1,

respectively.

(a) (b)

Figure 4.6.1: Drawings of the tree with n � 57 nodes of Figure 4.3.1(a) constructed by
Algorithm BDAAR with A � �

m � �
57 � 7 � 55 and using: (a) Corollary 4.4.1, and (b)

Corollary 4.5.1, respectively.

Like Algorithm BT-Ordered-Draw of Section 4.4, Algorithm BDAAR is also a recursive

algorithm. In each recursive step, it also constructs a feasible drawing of a subtree T
�

of

T . If T
�

has at most A nodes in it, then it constructs a left-corner drawing of T
�

using

Corollary 4.4.1 or Corollary 4.5.1, such that the drawing has width at most n and height
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O
�
logn � , where n is the number of nodes in T

�

. Otherwise, i.e., if T
�

has more than A nodes

in it, then it constructs a feasible drawing of T
�

as follows:

1. Let P � v0v1v2 � � � vq be a spine of T
�

.

2. Let ni be the number of nodes in the subtree of T
�

rooted at vi. Let vk be the vertex

of P with the smallest value for k such that nk � n � A and nk
�

1 � n � A (since T
�

has more than A nodes in it and n0 � n1 � � � � � nq is a strictly decreasing sequence of

numbers, such a k exists).

3. for each i, where 0 � i � k � 1, denote by Ti, the subtree rooted at the non-spine

child of vi (if vi does not have any non-spine child, then Ti is the empty tree, i.e.,

the tree with no nodes in it). Denote by T
�

and T
�

, the subtrees rooted at the non-

spine children of vk and vk
�

1, respectively, denote by T
� �

, the subtree rooted at vk
�

1,

and denote by T
� � �

, the subtree rooted at vk
�

2 (if vk and vk
�

1 do not have non-spine

children, and k
�

1 � q, then T
�
, T

�

, and T
� � �

are empty trees). For simplicity, in the

rest of the algorithm, we assume that T
�
, T

�

, T
� � �

, and each Ti are non-empty. (The

algorithm can be easily modified to handle the cases, when T
�
, T

�

, T
� � �

, or some Ti’s

are empty).

4. Place v0 at origin.

5. We have two cases:

� k � 0: Recursively construct a feasible drawing D
�

of T
�
. Recursively construct

a feasible drawing D
�

of the mirror image of T
�

. Recursively construct a

103



4.6. DRAWING BINARY TREES WITH ARBITRARY ASPECT RATIO

feasible drawing D
� � �

of the mirror image of T
� � �

. Let s0 be the root of T
�

and s1

be the root of T
�

.

T
�

is drawn as shown in Figure 4.6.2(a,b,c,d). If s0 is the left child of v0, then

place D
�

one unit below v0 with its left boundary aligned with v0 (see Fig-

ure 4.6.2(a,c)). If s0 is the right child of v0, then place D
�

one unit above and

one unit to the right of v0 (see Figure 4.6.2(b,d)). Let W
�
, W

�

, and W
� � �

be the

widths of D
�
, D

�

, and D
� � �

, respectively. v1 is placed in the same horizontal

channel as v0 to its right at distance max � W
� �

1 � W
� �

1 � W
� � �

� 1 � from it. Let

B0 and C0 be the lowest and highest horizontal channels, respectively, occupied

by the subdrawing consisting of v0 and D
�
. If s1 is the left child of v1, then flip

D
�

left-to-right and place it one unit below B0 and one unit to the left of v1 (see

Figure 4.6.2(a,b)). If s1 is the right child of v1, then flip D
�

left-to-right, and

place it one unit above C0 and one unit to the left of v1 (see Figure 4.6.2(c,d)).

Let B1 be the lowest horizontal channel occupied by the subdrawing consisting

of v0, D
�
, v1 and D

�

. Flip D
� � �

left-to-right and place it one unit below B1 such

that its right boundary is aligned with v1 (see Figure 4.6.2(a,b,c,d)).

� k � 0: For each Ti, where 0 � i � k � 1, construct a left-corner drawing Di of Ti

using Corollary 4.4.1 or Corollary 4.5.1.

Recursively construct feasible drawings D
�

and D
� �

of the mirror images of T
�

and T
� �

, respectively.

T
�

is drawn as shown in Figure 4.6.3(a,b,c,d). If T0 is rooted at the left child of

v0, then D0 is placed one unit below and with the left boundary aligned with v0.

104



4.6. DRAWING BINARY TREES WITH ARBITRARY ASPECT RATIO

If T0 is rooted at the right child of v0, then D0 is placed one unit above and one

unit to the right of v0. Each Di and vi, where 1 � i � k � 1, are placed such that:

– vi is in the same horizontal channel as vi � 1, and is one unit to the right of

Di � 1, and

– if Ti is rooted at the left child of vi, then Di is placed one unit below vi with

its left boundary aligned with vi, otherwise (i.e., if Ti is rooted at the right

child of vi) Di is placed one unit above and one unit to the right of vi.

Let Bk � 1 and Ck � 1 be the lowest and highest horizontal channels, re-

spectively, occupied by the subdrawing consisting of v0 � v1 � v2 � � � � � vk � 1 and

D0 � D1 � D2 � � � � � Dk � 1. Let d be the horizontal distance between v0 and

the right boundary of the subdrawing consisting of v0 � v1 � v2 � � � � � vk � 1 and

D0 � D1 � D2 � � � � � Dk � 1. Let W
�

and W
� �

be the widths of D
�

and D
� �

, respectively.

vk is placed to the right of vk � 1 in the same horizontal channel as it, such that the

horizontal distance between vk and v0 is equal to max � W
� �

� 1 � W
� �

1 � d
�

1 � . If

T
�

is rooted at the left-child of vk, then D
�

is flipped left-to-right and placed one

unit below Bk � 1 and one unit left of vk (see Figure 4.6.3(a,b)). If T
�

is rooted at

the right-child of vk, then D
�

is flipped left-to-right and placed one unit above

Ck � 1 and one unit to the left of vk (see Figure 4.6.3(c,d)) . Let Bk be the lowest

horizontal channel occupied by the subdrawing consisting of v1 � v2 � � � � � vk, and

D1 � D2 � � � � � Dk � 1 � D
�
. D

� �

is flipped left-to-right and placed one unit below Bk,

such that its right boundary is aligned with vk (see Figure 4.6.3(b,d)).
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(a) (b)

(c) (d)

Figure 4.6.2: Case k � 0: (a) s0 is the left child of v0 and s1 is the left child of v1. (b) s0 is
the right child of v0 and s1 is the left child of v1. (c) s0 is the left child of v0 and s1 is the
right child of v1. (d) s0 is the right child of v0 and s1 is the right child of v1.

(a) (b) (c) (d)

Figure 4.6.3: Case k � 0: Here k � 4, s0, s1, and s3 are the left children of v0, v1, and v3

respectively, s2 is the right child of v2, T0, T1, T2, and T3 are the subtrees rooted at v0, v1,
v2, and v3 respectively. Let s4 be the root of T

�
. (a) s4 is left child of v4. (b) s4 is the right

child of v4.

Let mi be the number of nodes in Ti, where 0 � i � k � 1. From Corollaries 4.4.1 and 4.5.1,

the height of each Di is O
�
logmi

� and width at most mi. Total number of nodes in the partial

tree consisting of T0 � T1 � � � � � Tk � 1 and v0 � v1 � � � � � vk � 1 is at most A � 1. Hence, the height of

the subdrawing consisting of D0 � D1 � � � � � Dk � 1 and v0 � v1 � � � � � vk � 1 is O
�
logA � and width is

at most A � 1 (see Figure 4.6.3).

Suppose T
�

, T
�
, T

�

, T
� �

, and T
� � �

have n, n
�
, n

�

, n
� �

, and n
� � �

nodes, respectively. If we
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denote by H
�
n � and W

�
n � , the height and width of the drawing of T

�

constructed by Algo-

rithm BDAAR, then:

H
�
n � � H

�
n

� � �
H

�
n

� � �
H

�
n

� � � � �
1 if n � A and k � 0

� H
�
n

� � �
H

�
n

� � �
H

�
n

� � � � �
O

�
logA �

H
�
n � � H

�
n

� � �
H

�
n

� � � �
O

�
logA � if n � A and k � 0

H
�
n � � O

�
logA � if n � A

Since n
�

� n
�

� n
� �

� n
� � � � n � A, from Lemma 4.6.1, it follows that H

�
n � � O

�
logA � �

6n � A �

2 � � O
� �

n � A � logA � . Also we have that:

W
�
n � � max � W

�
n

� � �
2 � W

�
n

� � �
2 � W

�
n

� � � � � if n � A and k � 0

W
�
n � � max � A � W

�
n

� � �
2 � W

�
n

� � � � if n � A and k � 0

W
�
n � � A if n � A

Since, n
� � n

�

� n � � n � 2, and n
� �

� n
� � � � n � A � n � 1, we get that W

�
n � � max � A � W

�
n � 2 � �

2 � W
�
n � 1 � � . Therefore, W

�
n � � O

�
A

�
logn � . We therefore get the following theorem:

Theorem 4.6.1 Let T be a binary tree with n nodes. Let 2 � A � n be any number. T ad-

mits an order-preserving planar straight-line grid drawing with width O
�
A

�
logn � , height

O
� �

n � A � logA � , and area O
� �

A
�

logn � �
n � A � logA � � O

�
n logn � , which can be constructed

in O
�
n � time.
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Setting A � logn, we get that:

Corollary 4.6.1 An n-node binary tree admits an order-preserving planar straight-line

grid drawing with area O
�
n log logn � , which can be constructed in O

�
n � time.
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Chapter 5

Area-Efficient Planar Straight-line Grid

Drawings of Outerplanar Graphs

5.1 Introduction

A drawing Γ of a graph G maps each vertex of G to a distinct point in the plane, and

each edge
�
u � v � of G to a simple Jordan curve with endpoints u and v. Γ is a straight-line

drawing, if each edge is drawn as a single line-segment. Γ is a polyline drawing, if each

edge is drawn as a connected sequence of one or more line-segments, where the meeting

point of consecutive line-segments is called a bend. Γ is a grid drawing if all the nodes

have integer coordinates. Γ is a planar drawing, if edges do not intersect each other in the

drawing. In this chapter, we concentrate on grid drawings. So, we will assume that the
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plane is covered by a rectangular grid. Let R be a rectangle with sides parallel to the X-

and Y -axes. The width (height) of R is equal to the number of grid points with the same

y (x) coordinate contained within R. The area of R is equal to the number of grid points

contained within R. R is the enclosing rectangle of Γ, if it is the smallest rectangle that

covers the entire drawing. The width, height, and area of Γ is equal to the width, height,

and area respectively, of its enclosing rectangle. The degree of a graph is equal to the

maximum number of edges incident on a vertex.

It is well-known that a planar graph with n vertices admits a planar straight-line grid draw-

ing with O
�
n2 � area [9,33], and in the worst case it requires Ω

�
n2 � area. It is also known that

a binary tree with n nodes admits a planar straight-line grid drawing with O
�
n � area [18].

Thus, there is wide gap between the Θ
�
n2 � area-requirement of general planar graphs and

the Θ
�
n � area-requirement of binary trees. It is therefore important to investigate special

categories of planar graphs to determine if they can be drawn in o
�
n2 � area.

Outerplanar graphs form an important category of planar graphs. We investigate the area-

requirement of planar straight-line grid drawings of outerplanar graphs. Currently the best

known bound on the area-requirement of such a drawing of an outerplanar graph with n

vertices is O
�
n2 � , which is that same as for general planar graphs. Hence, a fundamental

question arises: can we draw an outerplanar graph in this fashion in o
�
n2 � area?

In this chapter, we provide a partial answer to this question by proving that an outerplanar

graph with n vertices and degree d can be drawn in this fashion in area O
�
dn1

�
0 � 48 � �

O
�
dn1 � 48 � in O

�
n � time. This implies that an outerplanar graph with n vertices and degree

110



5.2. PREVIOUS RESULTS

O
�
nδ � , where 0 � δ � 0 � 52 is a constant, can be drawn in this fashion in o

�
n2 � area.

From a broader perspective, our contribution is in showing a sufficiently large natural cat-

egory of planar graphs that can be drawn in o
�
n2 � area.

In Section 5.4, we present our drawing algorithm. This algorithm is based on a tree-drawing

algorithm of [4]. The connection between the two algorithms comes from the fact that the

dual of an outerplanar graph is a tree.

5.2 Previous Results

There has been little work done on planar straight-line grid drawings of outerplanar graphs.

Let G be an outerplanar graph with n vertices. Currently the best known bound on the area-

requirement of such a drawing of an outerplanar graph with n vertices is O
�
n2 � , which is

that same as for general planar graphs. However, in 3D, we can construct a crossings-free

straight-line graph drawing of G with O
�
n � volume [14, 16].

[1] shows that G admits a planar polyline drawing as well as a visibility representation

with O
�
n logn � area. [26] shows that G admits a planar polyline drawing with O

�
n � area, if

G has degree 4. The technique of [26] can be easily extended to construct a planar polyline

drawing of G with O
�
d2n � area, if G has degree d [1].

The paper based on this Chapter will appear in [20].
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5.3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an

infinite rectangular grid, consisting of horizontal and vertical channels.

We denote by � G � the number of nodes (vertices) in a graph (tree) G.

A rooted tree is one with a pre-specified root. An ordered tree is a rooted tree with a pre-

specified left-to-right order of the children for each node. Let T be an ordered binary tree

with n nodes. Let p and δ be two constants such that p � 0 � 48 and 0 � δ � 0 � 0004. A

spine S of T is a path v0v1v2 � � � vm, where v0 � v1 � v2 � � � � � vm are nodes of T , that is defined

recursively as follows (as defined in the proof of Lemma A.1 in [4]):

� v0 is the same as the root of T , and vm is a leaf of T ;

� let αi and βi be the the left and right subtrees with the maximum number of nodes

among the subtrees that are rooted at any of the nodes in the path v0v1 � � � vi; let Li

and Ri be the subtrees rooted at the left and right children of vi respectively. Then,

– if � αi � p � � Ri � p � �
1 � δ � np and � Li � p � � βi � p �

�
1 � δ � np, set vi

�
1 to be the left

child of vi,

– if � αi � p � � Ri � p �
�
1 � δ � np and � Li � p � � βi � p � �

1 � δ � np, set vi
�

1 to be the right

child of vi,

– if � αi � p � � Ri � p � �
1 � δ � np and � Li � p � � βi � p � �

1 � δ � np, we terminate the con-

struction as follows:
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� if � Li � � � Ri � , set the spine to be the concatenation of path v0v1 � � � vi and the

leftmost path from vi to a leaf vm,

� otherwise (i.e. � Li � � � Ri � ), set the spine to be the concatenation of the path

v0v1 � � � vi and the rightmost path from vi to a leaf vm.

– in [4] it is shown that the case � αi � p � � Ri � p �
�
1 � δ � np and � Li � p � � βi � p �

�
1 � δ � np is not possible.

v0 � v1 � � � � � vm are called spine nodes. A subtree of S is a subtree of T rooted at the non-spine

child of a spine node. A left (right) subtree of S is a subtree of T rooted at a left (right)

non-spine child of a spine node.

We will use Lemma A.1 of [4], which is given below:

Lemma 5.3.1 (Lemma A.1 of [4]) Let p � 0 � 48. For any left subtree α and right subtree

β of a spine, � α � p � � β � p � �
1 � δ � np, for any constant δ, 0 � δ � 0 � 0004.

An outerplanar graph is a planar graph for which there exists an embedding with all ver-

tices on the exterior face. Throughout this chapter, by the term outerplanar graph we will

mean a maximal outerplanar graph, i.e., an outerplanar graph to which no edge can be

added without destroying its outerplanarity. It is easy to see that each face of a maximal

outerplanar graph is a triangle. Two vertices of a graph are neighbors, if they are connected

by an edge. The dual tree TG of an outerplanar graph G is defined as follows:

� there is a one-to-one correspondence between the nodes of TG and the internal faces
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of G, and

� there is an edge e � �
u � v � in TG if and only if the faces of G corresponding to u and

v share an edge e
�

on their boundaries. e and e
�

are duals of each other.

For example, Figure 5.3.1(b), shows the dual tree of the outerplanar graph of Fig-

ure 5.3.1(a).

(a) (b)

Figure 5.3.1: (a) An outerplanar graph G. Here, H, K1, K2, K
�

1, K
�

2, L1, L2, M1, N1, N2, N3,
N4, Qe1, Qe2, Qe4, and Qe5 are subgraphs of G, and are themselves outerplanar graphs. (b)
The dual tree TG of G. The edges of TG are shown with dark lines. Note that v0v1 � � � v12 is
a spine of TG.

Let P � v0v1 � � � vq be a connected path of TG. Let H be the subgraph of G corresponding

to P. A beam drawing of H is shown in Figure 5.3.2, where the vertices of H are placed on

two horizontal channels, and the faces of H are drawn as triangles.
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Figure 5.3.2: (a) A path P and its corresponding graph H. (b) A beam drawing of H.

A line-segment with end-points a and b is a flat line-segment if a and b either belong to the

same horizontal channel, or belong to adjacent horizontal channels.

Let B be a flat line-segment with end-points a and b, such that b is at least two units to the

right of a. Let G be an outerplanar graph with two distinguished adjacent vertices u and v,

such that the edge
�
u � v � is on the external face of G; u and v are called the poles of G. Let

D be a planar straight-line drawing of G. D is a feasible drawing of G with base B if:

� the two poles of G are mapped to a and b each,

� each non-pole vertex of G is placed at least one unit above both a and b, and is placed

at least one unit to the right of a and at least one unit to the left of b.
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5.4 Outerplanar Graph Drawing Algorithm

The drawing algorithm, which we call Algorithm OpDraw, is recursive in nature. In each

recursive step, it takes as input an outerplanar graph G with pre-specified poles, and a

long-enough flat line-segment B, and constructs a feasible drawing D of G with base B by

constructing a drawing M of the subgraph H corresponding to the spine of G, splitting G

into several smaller outerplanar graphs after removing H and some other vertices from it,

constructing feasible drawings of each smaller outerplanar graph, and then combining their

drawings with M to obtain D.

Figure 5.4.1: The drawing of the outerplanar graph of Figure 5.3.1(a) constructed by
Algorithm OpDraw.

We now give the details of the actions performed by Algorithm OpDraw in each recursive

step (see Figure 5.4.1):

� Let u and v be the poles of G. Let TG be the dual tree of G. Let r be the node of TG

that corresponds to the internal face F of G that contains both u and v. Convert TG

into an ordered tree as follows:
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– make TG a rooted tree by making r its root,

– and for each node w, let w
�

be the parent of w in TG (which now is a rooted

tree). Let c (d) be the children of w such that the face corresponding to c

immediately follows (precedes) the face corresponding to w
�

in the counter-

clockwise order of internal faces incident on the face corresponding to w. Make

c the leftmost child of w, and d the rightmost child of w. Assign the children of

w the same left-to-right order as the counter-clockwise order in which the faces

that correspond to them are incident on the face corresponding to w.

Note that TG is a binary tree because each internal face of G is a triangle.

� Draw F as a triangle such that u and v coincide with the end-points of B, and the third

vertex w of F is placed one unit above the higher of u and v. (We will determine later

on the horizontal distances of w from u and v, when we analyze the area-requirement

of the drawing.) In the rest of this section, we will assume that u is placed either

at the same horizontal channel as, or at a higher horizontal channel than v (the case

where v is placed higher than u is similar). (In Figure 5.4.1, u and v are shown to be

on the same horizontal channel, but the construction given below will also apply if u

were placed at a higher horizontal channel than v.)

� Let P � v0v1 � � � vq be the spine of G, where v0 � r. Assume that the edge
�
v0 � v1

� is the

dual of edge
�
v � w � (the case where

�
v0 � v1

� is the dual of edge
�
u � w � is symmetrical).

Let
�
v0 � v

� � be the dual of edge
�
u � w � . Let H be the subgraph of G corresponding to

the subtree of TG rooted at v
�

. Recursively construct a feasible drawing DH of H with
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uw as the base.

� Let c0 � w � c1 � � � � � cm
� � c

�

0
� � c

�

1 � c
�

2 � � � � � c
�

s be the counter-clockwise order of the neigh-

bors of v different from u, where, for each i (1 � i � m), the face ci � 1civ cor-

responds to the spine node vi, and for each i (1 � i � s), the face c
�

i � 1c
�

iv corre-

sponds to a non-spine node v
�

i of TG. (In Figure 5.4.1, m � 3.) Place the vertices

c1 � � � � � cm
� � c

�

0
� � c

�

1 � c
�

2 � � � � � c
�

s at the same horizontal channel as w. (We will deter-

mine later on the horizontal distances between these vertices.)

� Let
�
vi � xi

� be the dual of edge
�
ci � 1 � ci

� . Let Ki be the subgraph of G corresponding

to the subtree of TG rooted at xi. For each i, where 1 � i � m � 1, recursively construct

a feasible drawing of Ki with ci � 1ci as the base.

� Let
�
v

�

i � x
�

i
� be the dual of edge

�
c

�

i � 1 � c
�

i
� . Let K

�

i be the subgraph of G corresponding

to the subtree of TG rooted at xi. For each i, where 1 � i � s, recursively construct a

feasible drawing D
�

i of K
�

i with c
�

i � 1c
�

i as the base.

� Let α0 � α1 � � � � � αt be the vertices of Km, such that α0 � α1 � � � � � αh (0 � h � t) is the

clockwise order of the neighbors of cm � 1 in Km, and αh � αh
�

1 � � � � � αt is the clockwise

order of the neighbors of cm in Km. Let j be the index such that the dual of edge

�
c j � 1 � c j

� belongs to P (if no such j exists, then set j � t). (In Figure 5.4.1, j � 3.)

Place α0 � α1 � � � � � α j � 1 in the same horizontal channel, and α j � 1 � α j � � � � � αt along a

line making 45 � angle with the horizontal channels, such that

– αt is in the same vertical channel as cm, and at least one unit above the horizontal

channel X occupied by c0 � w � c1 � � � � � cm
� � c

�

0
� � c

�

1 � c
�

2 � � � � � c
�

s (we will give the
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exact value of the vertical distance between αt and X a little while later),

– for each k, where j � 1 � k � t � 1, αk is one unit above and one unit to the left

of αk
�

1, and

– α0 is in the same vertical channel as cm � 1.

(We will determine later on the horizontal distances between α0 � α1 � � � � � α j � 1.)

� For each i, where 0 � i � j � 1, removing αi � 1 and αi, splits Km into two subgraphs,

one containing cm � 1 and cm, and another subgraph L
�

i. Let Li be the subgraph of Km

consisting of the vertices of L
�

i, αi � 1 and αi, and the edges between them. Recursively

construct a feasible drawing of Li with αi � 1αi as the base.

� Let S � β0 � β1 � � � � � βµ be an ordered sequence of the neighbors of α j � 1 � α j � � � � � αt

that are not equal to cm � 1 and cm, and do not belong to L j � 1. In S, we first place the

neighbors of α j � 1, then of α j, and so on, finally placing the neighbors of αt . For

each k, where j � 1 � k � t, we place the neighbors of αk into S in the same order as

their clockwise order around αk. Let ε be the index such that the edge
�
βε � 1 � βε

� is

the dual of an edge in P (if there is no such ε, then set ε � µ). (In Figure 5.4.1, ε � 2.)

� Place β0 � β1 � � � � � βε � 1 in the same horizontal channel from left-to-right, and place

βε � βε �
1 � � � � � βµ in another horizontal channel from right-to-left, such that:

– β0 � β1 � � � � � βε � 1 are placed one unit above α j � 1,

– βε � βε �
1 � � � � � βµ are placed one unit below αt ,

– β0 and βµ are at either to the right of, or on the same vertical channel as c
�

s,
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– βε � 1 and βε are on the same vertical channel, and

– the distance between βε � 1 and βε is equal to 2 plus the vertical distance between

α j � 1 and αt .

� For each i, where 0 � i � ε � 1, if there is an edge e � �
βi � 1 � βi

� in G, then do

the following: Notice that removing e from G, split it into two subgraphs, one that

contains α j � 1 � α j � � � � � αt , and another subgraph M
�

i that does not contain any of them.

Let Mi be the subgraph of G consisting of βi � 1, βi, the vertices of M
�

i , and the edges

between them. Recursively construct a feasible drawing of Mi with βi � 1βi as its base.

� For each i, where ε � i � µ, if there is an edge e � �
βi � 1 � βi

� in G, then do the

following: Notice that removing e from G, splits it into two subgraphs, one that

contains α j � 1 � α j � � � � � αt , and another subgraph N
�

i that does not contain any of them.

Let Ni be the subgraph of G consisting of βi � 1, βi, the vertices of N
�

i , and the edges

between them. Recursively construct a feasible drawing D
� �

i of Ni with βi � 1βi as its

base, and then flip D
� �

i upside-down.

� Let
�
vρ � 1 � vρ

� be the edge of P that is the dual of the edge
�
βε � 1 � βε

� . Let R be

the subgraph of G that corresponds to the subpath vρvρ �
1 � � � vq. Construct a beam

drawing E of R. For each edge e on the external face of R, do the following: Let

e � �
γ1 � γ2

� . Removing γ1 and γ2 from G splits it into two subgraphs, one containing

β0 � β1 � � � � � βµ, and the other subgraph Q
�

e not containing them. Let Qe be the subgraph

of G containing γ1, γ2, and the vertices of Q
�

e, and the edges between them. If e is

on the top or bottom boundary of E , then recursively construct a feasible drawing De
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of Qe with γ1γ2 as its base. If e is on the bottom boundary of E , then flip Qe upside

down. (Note that if e is on the right boundary of E , then Qe will contain just the edge

e because vq is a leaf of TG.)

� We are now ready to give the vertical distance between αt and X : it is equal to 1
� θ,

where θ is maximum height of any of D
�

i, D
� �

i , and De, where e is on the bottom

boundary of E . Note that this will guarantee that the vertices of each D
� �

i and De

will occupy horizontal channels that are either above or the same as the horizontal

channel that contains c0 � w� c1 � � � � � cm
� � c

�

0
� � c

�

1 � c
�

2 � � � � � c
�

s. This ensures that there

are no crossings between the edges of any D
� �

i or De, and any edge of the form
�
v� c

�

j
� .

Let h
�
n � and w

�
n � be the height and width, respectively, of a feasible drawing D of G with

base B, constructed by the Algorithm OpDraw. Here, n is the number of vertices in G. Let

d be the degree of G. Note that, by the definition of feasible drawings, w
�
n � will be equal

to the horizontal separation between the end-points of B.

It is easy to prove using induction that w
�
n � � n � 1 is sufficient. As for the horizontal

distances between u and w, between ci � 1 and ci (for 1 � i � m � 1), between c
�

i � 1 and c
�

i (for

1 � i � s), between αi � 1 and αi (for 1 � i � j � 1), between βi � 1 and βi (for 1 � i � ε � 1),

and between βi � 1 and βi (for ε �
1 � i � µ), it is sufficient to set them to be equal to � H � � 1,

� Ki � � 1, � K �

i � � 1, � Li � � 1, � Mi � � 1, and � Ni � � 1, respectively. It is also sufficient to set the

distance between the end-points of each edge e on the top or bottom boundary of E , to be

equal to � Qe � � 1.
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As for h
�
n � , first notice that, because G has degree d, t �

�
j � 1 � is less than 2d, and hence,

the distance between βε � 1 and βε is less than 2d
�

2.

Let h
�

be a function, such that h
� �

f � � h
�
n � , where f is the number of internal faces in G,

i.e., the number of nodes in the dual tree TG of G.

From the construction of D, we have that:

h
� �

f � � max � max
1

�
i

�
s � h

� � � TK �i
� � � � max

ε �
1

�
i

�
µ � h

� � � TNi � � � � max
edge e on bottom boundary o f E � h

� � � TQe � � � �
�

max � h
� � � TH � � � max

1
�

i
�

m � 1 � h
� � � TKi � � � � max

1
�

i
�

j � 1 � h
� � � TLi � � � � max

1
�

i
� ε � 1 � h

� � � TMi � � � �

max
edge e on top boundary o f E � h

� � � TQe � � � � �
O

�
d � �

Since P is a spine of TG, and

� the dual trees of H, Ki, Li, Mi, and Qe (in the case when edge e is on top boundary of

E), are either left subtrees of P, or belong to the left subtrees of P, and

� the dual trees of K
�

i , Ni, and Qe (in the case when edge e is on bottom boundary of

E), are either right subtrees of P, or belong to the right subtrees of P,

from Lemma 5.3.1, it follows that:

h
� �

f � � max
f p
1

�
f p
2

� �
1 � δ � f p � h

� �
f1

� �
h

� �
f2

� �
O

�
d � � �
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Using induction, we can show that h
� �

f � � O
�
d f 0 � 48 � (see also [4]). Since f � O

�
n � ,

h
�
n � � h

� �
f � � O

�
d f 0 � 48 � � O

�
dn0 � 48 � .

Theorem 5.4.1 Let G be an outerplanar graph with degree d and n vertices. We can

construct a planar straight-line grid drawing of G with area O
�
dn1

�
0 � 48 � � O

�
dn1 � 48 � in

O
�
n � time.

Proof: Arbitrarily select any edge e � �
u � v � on the external face of G, and designate u and

v as the poles of G. Let B be any horizontal line-segment with length n � 1. Let δ be any

user-defined constant in the range
�
0 � 0 � 0004 � . Construct a feasible drawing of G with base

B using Algorithm OpDraw. From the discussion given above, it follows immediately that

the area of the drawing is O
�
dn1

�
0 � 48 � � O

�
dn1 � 48 � . It is easy to see the algorithm runs in

O
�
n � time. �

Corollary 5.4.1 Let G be an outerplanar graph with n vertices and degree d � O
�
nδ � ,

where 0 � δ � 0 � 52 is a constant. We can construct a planar straight-line grid drawing of

G with o
�
n2 � area in O

�
n � time.
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Chapter 6

Conclusion and Open Problems

The visualization of relational information is concerned with the presentation of abstract

information about relationships between various entities. It has many applications in di-

verse domains such as software engineering, biology, civil engineering, and cartography.

Relational information is typically modeled by an abstract graph, where vertices are en-

tities and edges represent relationships between entities. The aim of graph drawing is to

automatically produce drawings of graphs which clearly reflect the inherent relational in-

formation.

In this thesis, we have investigated problems related to the automatic generation of area-

efficient grid drawings of trees and outerplanar graphs, which are important categories of

graphs.

In this thesis, we have obtained the following results:
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1. An algorithm for producing planar straight-line grid drawings of binary trees with

optimal linear area and with user-defined arbitrary aspect ratio,

2. An algorithm for producing planar straight-line grid drawings of degree-d trees with

n nodes, where d � O
�
nδ � and 0 � δ � 1 � 2 is a constant, with optimal linear area

and with user-defined arbitrary aspect ratio,

3. An algorithm which establishes the currently best known upper bound, namely

O
�
n logn � , on the area of order-preserving planar straight-line grid drawings of or-

dered trees,

4. An algorithm which establishes the currently best known upper bound, namely

O
�
n loglogn � , on the area of order-preserving planar straight-line grid drawings of

ordered binary trees,

5. An algorithm for producing order-preserving upward planar straight-line grid draw-

ings of ordered binary trees with optimal O
�
n logn � area,

6. An algorithm which establishes the trade-off between the area and aspect ratio of

order-preserving planar straight-line grid drawings of ordered binary trees, in the

case when the aspect ratio is arbitrarily defined by the user, and

7. An algorithm for producing planar straight-line grid drawings of outerplanar graphs

with n vertices and degree d in O
�
dn1 � 48 � area. This result shows for the first time

that a large category of outerplanar graphs, namely those with degree d � O
�
nδ � ,

where 0 � δ � 0 � 52 is a constant, can be drawn in sub-quadratic area.
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All our algorithms are time-efficient. More specifically, algorithms 1 and 2 run in O
�
n logn �

time each, and algorithms 3, 4, 5, 6, and 7 run in O
�
n � time each.

We have also identified the following open problems, regarding planar straight-line grid

drawings of trees and outerplanar graphs:

� Drawing general trees in optimal linear area

– In this thesis, we have proved that a degree-d tree with n nodes, where d �

O
�
nδ � and 0 � δ � 1 � 2 is a constant, can be drawn in optimal linear area and

with user-defined arbitrary aspect ratio. So, a natural question is whether this

result can be extended to trees with even higher degree.

� Drawing ordered-trees

– Can we prove lower bounds on non-upward order-preserving drawings, other

than the trivial Ω
�
n � bound?

– Does every ordered binary tree admit a non-upward order-preserving drawing

in better than O
�
n log logn � area?

– Does every ordered tree admit a non-upward order-preserving drawing in better

than O
�
n logn � area?

– In this thesis, we have studied the trade-off between the area and aspect ratio of

order-preserving drawings of ordered binary trees. Can this result be extended

to even higher degree trees?

� Drawing outerplanar graphs
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– In this thesis, we have proved that an outerplanar graph with n vertices and

degree d, can be drawn in O
�
dn1 � 48 � area. If d � O

�
nδ � , where 0 � δ � 0 � 52 is

a constant, then the graph can be drawn in sub-quadratic area. Can we prove a

sub-quadratic area bound on outerplanar graphs with even higher degree?
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